
New Models of Graph-Bin Packing

Cs. Bujtása,e, Gy. Dósab, Cs. Imrehc, J. Nagy-Györgyd, Zs. Tuzab,e

aDepartment of Computer Science and Systems Technology, University of Pannonia,
H-8200 Veszprém, Egyetem u. 10, Hungary

bDepartment of Mathematics, University of Pannonia, H-8200 Veszprém, Egyetem u. 10,
Hungary

cDepartment of Informatics, University of Szeged, H-6720 Szeged, Árpád tér 2, Hungary
dDepartment of Mathematics, University of Szeged, H-6720 Szeged, Aradi Vértanúk tere 1,

Hungary
eAlfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, H-1053 Budapest,

Reáltanoda u. 13–15, Hungary

Abstract

In [Int. J. Found. Computer Sci. 22 (2011) 1971–1993] the authors intro-
duced a very general problem called Graph-Bin Packing (GBP). It requires a
mapping µ : V (G) → V (H) from the vertex set of an input graph G into a
fixed host graph H, which, among other conditions, satisfies that for each pair
u, v of adjacent vertices the distance of µ(u) and µ(v) in H is between two pre-
scribed bounds. In this paper we propose two online versions of the Graph-Bin
packing problem. In both cases the vertices can arrive in an arbitrary order
where each new vertex is adjacent to some of the previous ones. One version
is a Maker-Breaker game whose rules are defined by the packing conditions. A
subclass of Maker-win input graphs is what we call ‘well-packable’; it means
that a packing of G is obtained whenever the mapping µ(u) is generated by
selecting an arbitrary feasible vertex of the host graph for the next vertex of G
in each step. The other model is connected-online packing where we are looking
for an online algorithm which can always find a feasible packing. In both models
we present some sufficient and some necessary conditions for packability. In the
connected-online version we also give bounds on the size of used part of the host
graph.

Keywords: Graph theory, packing, online algorithm, combinatorial games,
combinatorial optimization

1. Introduction

In paper [4] a very general problem was introduced, which is a common gen-
eralization of many fundamental problems studied to a great extent separately
in thousands of papers in the literature of combinatorial optimization, theoret-
ical computer science, graph theory, and operations research. Since bin packing
and graph homomorphism are highly important instances of our problem, we

Preprint submitted to Elsevier May 18, 2016

named it graph-bin packing, or graph H-bin packing when the underlying struc-
ture (host graph) H has to be mentioned explicitly.

The input of the problem is a simple graph G = (V,E) with lower and upper
bounds on its edges and weights on its vertices. The vertices correspond to items
which have to be packed into the vertices (bins) of a host graph, such that each
host vertex can accommodate at most L weight in total, and if two items are
adjacent in G, then the distance of their host vertices in H must be between
the lower and upper bounds of the edge joining the two items.

It has been noticed in [4] that Graph-Bin Packing is a very general frame-
work; it includes many widely studied algorithmic problems like Bin Pack-
ing (with or without conflicts), Scheduling (with or without incompatible
jobs), Graph Homomorphism, Subgraph- and Induced Subgraph Iso-
morphism, (k, d)-Coloring, Distance-Constrained Labeling, Channel
Assignment, Bandwidth, Partition, and 3-Partition as subproblems ex-
pressible by suitable choices of the parameters.

In [4] some results are presented about the complexity of deciding whether G
is packable into a given host graph, and some sufficient and also some necessary
conditions are given on packability. The optimization version where the goal
is to minimize the size of a connected extension1 of the used part of the host
graph is also studied.

We note that there are further papers considering extensions of the bin
packing problem to graphs. The most closely related problem is the ‘polyp
packing problem’ studied in [11, 12] where the goal was to embed some paths in
a vertex-disjoint or edge-disjoint way into some copies of a host graph. The host
graphs, which were called polyps, consist of simple paths of the same length
with a common endpoint. Those papers presented some complexity results
and studied the extensions of the well-known First-Fit bin packing algorithm.
Another problem, where the graphs present constraints on the possible packing,
is the ‘bin packing with conflicts’ model (see [5, 6]) where the items adjacent
in the conflict graph cannot be packed into the same bin. A version where the
graph presents only restrictions on the order in which the items can be packed
into a bin is studied in [2].

An offline algorithm completely knows the input, and is allowed to use all
pieces of information before a decision is made. In this paper we will consider
definitions of packing the input graph into the host graph sequentially, where
the packing algorithm has less power. On the other hand, in order to exclude
some rather trivial classes of negative problem instances, we will consider only
connected input sequences which are vertex orders where each prefix induces a
connected subgraph of the input graph.

In Section 2 the notion of well-packable graphs is introduced and studied.
First we define a Maker-Breaker game where two players are packing the input
graph into the host graph, one player wants to find a suitable packing at the

1It means a connected subgraph G+ of H, that contains all those vertices of H into which
at least one vertex of G has been packed.

2

end and the other wants to prevent the packing. An input graph is called well-
packable if the packing can be finished independently of the strategies of the
players. We present several sufficient and some necessary conditions in special
classes of graphs for being well-packable.

Section 3 is devoted to the study of connected-online packing. A graph is
called connected-online packable if there exists an online algorithm that finds
a feasible packing for every connected-online input sequence. We present some
simple structural statements about connected-online packable graphs, and also
give some results about the optimization version of the problem.

We close the paper with collecting some further questions in Section 4.

1.1. Standard notation.

In a graph G the distance between two vertices x and y is defined as the
length2 of a shortest x–y path, and is denoted by dG(x, y). The diameter of
graph G is diam(G) = supx,y∈V (G) dG(x, y). A geodesic path means an x–y
path of length dG(x, y).

The two-way infinite path is denoted by P∞. As usual, we denote by Cn the
cycle of length n, and by Pn the path on n vertices.

If v ∈ V (G) then G − v denotes the graph obtained from G by deleting v
and its incident edges.

1.2. Problem definition for Graph H-Bin Packing

The problem called Graph H-Bin Packing can be specified with the fol-
lowing components:

• Host graph, H

It is a fixed connected graph H = (X,F) with vertex set X and edge set
F , and vertex capacity L > 0.

In the general setting the capacity L(x) may depend on x ∈ X, and
the edges may have different lengths; but in the present work we assume
L(x) = L for all x (possibly L =∞), and unit length for all edges.

• Input graph, G

It is a finite simple graph G = (V,E) in which each vertex v ∈ V has a
given size s(v) (0 ≤ s(v) ≤ L) and each edge e = uv ∈ E has a lower and
an upper edge-length bound a(e) = a(u, v) and b(e) = b(u, v) which are
integers or ∞, such that 0 ≤ a(u, v) ≤ b(u, v) holds.

• Packing, µ

A mapping µ : V → X is a packing of G = (V,E) into H = (X,F) if it
satisfies the following two conditions.

2 That is the number of edges, or the sum of their lengths if a length function is given on
the edge set of G. Throughout this paper all edges will be assumed to have unit length.

3

– For each vertex x ∈ X of H,∑
v∈V : µ(v)=x

s(v) ≤ L.

– For each edge e = uv ∈ E of G,

a(u, v) ≤ dH(µ(u), µ(v)) ≤ b(u, v).

If such a packing µ exists, we say that G is H-packable, or packable into
H.

In the following, µ denotes a feasible packing.
In the optimization version we are looking for a packing which uses the

least space from the host graph. In this context the following measures can be
studied.

• The minimum number of vertices, taken over all µ and all possible con-
nected extension graphs G+ for µ(V), is denoted by nH(G).

• The minimum diameter, taken over all µ and all possible connected ex-
tension graphs G+ for µ(V), is denoted by dH(G).

• The minimum radius, taken over all µ and all possible connected extension
graphs G+ for µ(V), is denoted by rH(G).

It has been observed in [4] that the assumption

L ≥ max
S⊆V : if e⊆S then a(e)=0

∑
v∈S

s(v).

is equally unrestrictive as the simpler one L = ∞ or s(v) = 0 for all v ∈ V .
That is, the two are replaceable by each other in any assertion, and therefore
we shall always use the form L = ∞ and will not emphasize later on that the
conclusions remain valid under the finite lower bound on L.

It should be noted that under a purely online scenario the condition L =
∞ would provide an extra information, in the sense that if L < ∞ then the
algorithm does not know in advance whether the condition above holds. On the
other hand, in our current setting the input graph is completely known, so the
validity of the lower bound on L is possible to check for the case if an algorithm
makes use of it.

Despite the above, vertices of size 0 may have substantial influence on pack-
ability, via their edge-length bounds.

2. Maker-Breaker games and well-packable
graphs

Let now G = (V,E) be a connected graph, and suppose that G is H-packable.
In this subsection we deal with the question, “how easily” is G packable into

4

H. This question can be investigated (among other options) in the following
context:

We define a Maker-Breaker game regarding the packability of the input graph
G. Maker-Breaker games are widely studied in combinatorial game theory (see
[1, 9] for a general overview). Two players, M (Maker) and B (Breaker), alter-
nately pack the vertices of G into the host graph, packing one vertex at a time.
The first move is done by M, he can choose any vertex of G to be packed first.
In any turn afterwards, each vertex chosen by the players has to be adjacent
in G to at least one of the previously packed ones. The packing of each vertex
has to be feasible: the lower and upper bounds on the edges and also the upper
bound L regarding bin capacity must be satisfied in every step. It is allowed for
B to pass at any time, but M has to make a feasible move on his turn whenever
there is at least one.

The purpose of M is to pack the entire graph, the purpose of B is to prevent
M from this. The winner is M if at the end of the game the entire graph G is
packed into H (i.e., B was not able to prevent this packing), and B wins if there
comes a moment when the next step is impossible: there is no feasible choice
for the position of any unpacked vertex of G for the next player.

Certainly, for every finite input graph G and every fixed host graph H,
precisely one of M and B has a winning strategy. We have not analyzed whether
any anomalies occur if B is not allowed to pass (but M may or may not), or if
the first move is done by B. On the other hand, obviously, allowing both M and
B to pass would not increase the chances of M to win, because B may e.g. apply
the strategy of passing in each step when M has just passed.

Problem 1. What conditions are necessary or sufficient to ensure a winning
strategy for M?

The following notion intends to describe the “best” instances from the view-
point of M.

Definition 2. A connected graph G is well-packable into H if the entire graph
G will be packed into H at the end, no matter what strategies M and B apply.

In other words, if a graph is well-packable, it means that starting with any
vertex, packing it into any vertex of the host graph, and in any subsequent
step continuing with any feasible packing of any vertex adjacent to at least one
previously packed vertex, the graph remains packable. As a matter of fact, this
property does not need the notion of packing game, and for such input graphs
even the clumsiest algorithm reaches a feasible solution (if it respects the rules).

In this section we explore some properties of well-packable graphs.
Obviously, if G is well-packable into H then G is packable into H but the

well-packability does not follow from the packability.

Problem 3. Given a host graph H, what kind of graphs G are well-packable?
Is there a characterization of the well-packable graphs?

5

Example 4. Assume that L =∞.

1. Let G = Pn. G is well-packable into P∞ and if b(e) = 1 for all e ∈ E(G)
then G is well-packable into Pn (and into Pk for all k ≥ 2).

2. Let n > 4 and G = Cn. It is easy to see that if b(e) = 1 for all e ∈ E(G)
then G is not well-packable into Cn. (We note that if a(e) = 0 for all
e ∈ E(G), or a(e) = 1 for all e ∈ E(G) and n is even then M has a
winning strategy; if a(e) = 1 for all e ∈ E(G) and n ≥ 5 is odd then B has
a winning strategy.)

3. Let G = Cn, a(e) = 0 and b(e) = 1 for all e ∈ E(G). For every n ≥ 3, G
is well-packable into P1, P2 and P3. On the other hand, if n ≥ 5, G is not
well-packable into P∞ and into any Pk with k ≥ 4 either. This example
illustrates the interesting fact that if H ⊂ H ′ then the well-packability
into H ′ does not follow from the well-packability into H (however the
packability into H ′ follows from the packability into H).

4. If a(e) = 0 for all e ∈ E(G) then G is well-packable into P1.

5. If a(e) = 0 and b(e) = ∞ for all e ∈ E(G) then G is well-packable into
each host graph with at least one vertex.

The following proposition states that concerning well-packability, even the
edges with non-restrictive bounds a(e) = 0 and b(e) = ∞ may be important.
This is because of the restriction that after each step a connected subgraph has
to be packed.

Proposition 5. Let G be an input graph and H a host graph. Consider the
graph G′ with V (G′) = V (G), E(G′) =

(
V (G)

2

)
, and define for each e ∈ E(G′)

the edge-length bounds

a(e) =

{
a(e) e ∈ E(G)
0 e 6∈ E(G)

, b(e) =

{
b(e) e ∈ E(G)
∞ e 6∈ E(G)

.

(i) G is packable into H if and only if G′ is packable into H.

(ii) If G′ is well-packable into H then G is well-packable into H.

(iii) For every connected nontrivial host graph H, there exists an input graph
G such that G is well-packable into H but G′ is not well-packable into H.

Proof. Statements (i) and (ii) are trivial. To prove (iii) we give a very simple
example with two different edge-length functions. First consider a connected
graph H of diameter at least 3 and the path G = v1v2v3. Let us define a(e) =
b(e) = 1 for all e ∈ E(G) and let L =∞. Since the capacity is infinite, and for
every x ∈ V (H) there is some vertex y ∈ V (H) at distance 1 apart, G is well-
packable into H. On the other hand, if the vertices of G′ arrive in the order
v1, v3, v2, and dH(µ(v1), µ(v3)) ≥ 3, then there is no feasible packing for v2.
Thus, G′ is not well-packable into H. If diam(H) = 1 or 2, we set G = v1v2v3
and L = ∞ again, but here b(e) = 0 is assumed for all e ∈ E(G). Then, G is

6

well-packable into H, but G′ is not. The latter is shown by the packing where
v1 and v3 arrive first and they are mapped into different vertices of H. �

Below we give some sufficient conditions, and also some necessary conditions.

Proposition 6. Suppose that in the input graph G = (V,E) we have b(e) =∞
for all edges e ∈ E, si ≤ L for all vertices vi ∈ V , and the diameter of the host
graph H is ∞. Then G is well-packable into H.

Proof. In a connected graph of infinite diameter, for every finite set of vertices
there is a vertex at arbitrarily large distance apart. Thus, if the upper edge-
length bounds are non-restrictive, then in each step there exists a vertex in H
that respects all constraints on the lower edge-length bounds for the next vertex
of G, and into which no vertex has been packed yet. �

Proposition 7. Let H = P∞ with L = ∞. Then G is well-packable into H if
and only if each biconnected subgraph of G is well-packable into H.

Proof. It is enough to show that if each biconnected component3 of G is
well-packable into H then G is well-packable too. The other direction follows
immediately by the definition. Suppose, to the contrary, that each biconnected
component of G is well-packable into H and G is not well-packable into H. Then
there is a vertex v ∈ V (G) and a packing strategy such that v is not packable
with this strategy. First observe that there must be at least two packed neigh-
bors of v, otherwise we could not encounter contradicting bounds. Moreover
by the connectivity condition of the packed vertices there is a biconnected com-
ponent of G containing v and its packed neighbors because for any two packed
neighbors of v there is at least one cycle containing them together with v. There-
fore, since we cannot pack v, we get a starting strategy for this biconnected
component which cannot be finished with v, and this yields a contradiction. �

Corollary 8. If G is a tree and L =∞, then G is well-packable into every H
whose diameter is at least 2 maxe∈E a(e)− 1. In particular, G is well-packable
into P∞.

Proof. In each step we have to satisfy the bounds a(e) and b(e) only for a single
edge e = uv. The condition on the diameter of H ensures that H contains at
least one vertex x at distance exactly a(e) apart from µ(v). Since L =∞, vertex
u can be packed into x. �

We derive two further implications of this corollary.

Corollary 9. Suppose that for each cycle C in G for every edge e in C we have
b(e) = 0. Then G is well-packable into P∞ with L =∞.

3often called block in the literature

7

Corollary 10. Suppose that for each cycle C in G for every edge e in C we
have b(e) =∞. Then G is well-packable into P∞ with L =∞.

In general, the conditions L = ∞ and a(e) = 0 for every e ∈ E are not
sufficient for well-packability:

Proposition 11. For every graph G containing at least one cycle, there exists
a function b : E → N such that G together with the bounds b(e) and a(e) = 0
(for every e ∈ E) and with L =∞ is not well-packable into P∞.

Proof. Choose an edge e0 of a cycle of length ` and let b(e0) = `, whilst for
every edge e 6= e0 define b(e) = 1. If the ends of e0 are packed at distance ` in
the first step, then the packing cannot be completed under the given constraints.
�

We have already observed in part 4 of Example 4 that, under the conditions
of Proposition 11, graph G is well-packable into a host graph with one vertex.
Further, it is well-packable into any host graph if b(e) = 0 for every e ∈ E(G).

Motivated by the construction in the previous proof, the following condition
is obtained:

Theorem 12. Suppose that G is well-packable into H with diam(H) = ∞,
and let C = u1u2 . . . uk be any cycle in G. If the set {u2, . . . , uk} induces a
path in G, then the inequality

b(uk, u1) + b(u1, u2) ≥
k−1∑
i=2

b(ui, ui+1) (1)

has to hold. Moreover if a(e) = 0 for all e ∈ E(G) and condition (1) holds for
all cycles C of G then G is well-packable into P∞ with L =∞.

Proof. Recall that if G is well-packable then each induced subgraph of G is
well-packable into H. Let us observe further that if some cycle with two of its
edges violates (1), then there also exists an induced cycle with the same property.
Since u2u3 . . . uk is an induced path, we can start with packing these vertices in
this order into a long geodesic path of H, going in a fixed direction, such that for
each 3 ≤ i ≤ k, vertex ui is packed at distance b(ui−1, ui) after µ(ui−1). Hence,

the distance dH(µ(u2), µ(uk)) equals
∑k−1
i=2 b(ui, ui+1), and if the inequality in

the proposition is not valid, vertex u1 cannot be packed properly.
For the second part of the statement suppose, to the contrary, that G is a

minimal counterexample; that is, G is not well-packable but each proper induced
subgraph of G is well-packable into P∞. It is clear that n = |V (G)| > 3.

By Proposition 7 we can assume that G is biconnected, otherwise it would
have a biconnected subgraph which is not well-packable and this contradicts the
minimality of the counterexample. Moreover by the minimality assumption,
vn is the only unpacked vertex in G; the other vertices can be packed using

8

arbitrary strategy. We denote by µ the packing obtained for G − vn. By the
biconnectivity condition there is 1 ≤ j < n such that G−{vj , vn} is connected,
so it is well-packable. Moreover, since G is a minimal counterexample, G−{vj}
is also well-packable into P∞. Then we can suppose that we pack the vertices of
G−{vj} in the order which is ended by vn. So there is a vertex x of P∞ such that
dP∞(µ(vi), x) ≤ b(vi, vn) for all i 6= j. Choose among these vertices the vertex
x where dP∞(µ(vj), x) is smallest. Since we are considering a counterexample,
we have dP∞(µ(vj), x) > b(vj , vn). Further, since we minimized dP∞(µ(vj), x),
there is an 1 ≤ ` < n such that dP∞(µ(v`), x) = b(v`, vn), and µ(v`) and
µ(vj) are on the opposite sides of x in P∞. Therefore dP∞(µ(v`), µ(vj)) =
dP∞(µ(v`), x) + dP∞(µ(vj), x) > b(v`, vn) + b(vj , vn). Then using an induced
path between vj and v`, and applying the fact that µ is a valid packing of these
vertices, we get a contradiction to condition (1). �

The following example shows that the above condition is not sufficient if
there is an e ∈ E(G) with a(e) > 0. Let L =∞, V (G) = {v1, . . . , v5},

E(G) = {vivi+1 | i = 1, 2, 3, 4} ∪ {v1v5, v2v5, v3v5},

b(v1v2) = b(v2v3) = b(v3v4) = 2,
b(v4, v5) = b(v1v5) = 3,
b(v2v5) = b(v3v5) = 1.

If a(e) = 0 for all e ∈ E(G), then G is well-packable; if a(e) = b(e) for all
e ∈ E(G), then G is not well-packable (however it is packable) into P∞.

We also note that the condition above is not necessary for packability: if
G = C5 with a(e) = 0 and b(e) = 1 for all e ∈ E(G), then G is packable into
P∞.

Corollary 13. Let H be a host graph with diam(H) = ∞. If the graph G is
well-packable into H, then for every induced cycle Ck of length k in G, the
following properties have to hold:

(i) If Ck contains an edge ei with b(ei) =∞, then no two consecutive edges
in the cycle can have finite upper bounds b(ej), b(ej+1) <∞.

(ii) For k = 3, the upper edge-length bounds of every C3 have to satisfy the
triangle inequality.

(iii) For k = 4, if the edges of C4 are e1, e2, e3, e4 (in this order) and each of
them has finite upper bound, then b(e1) = b(e3) and b(e2) = b(e4) must
hold.

(iv) If k ≥ 5, and every edge of Ck has finite upper bound, then for each edge
e of Ck the equality b(e) = 0 has to hold.

Moreover if L =∞, a(e) = 0 for all e ∈ E(G), and properties (i)–(iv) hold for
every cycle Ck of length k in G, then G is well-packable into P∞.

Proof. The conditions (i)–(iv) simultaneously are equivalent to the following
condition: if C = u1u2 . . . uk is any induced cycle in G, then inequality (1) has
to hold. �

9

3. Connected-online input sequences

Between the classes of packable graphs and well-packable graphs, there is an
intermediate class interesting on its own. The concept applies to a large variety
of online graph problems.

Definition 14. A connected-online input sequence of a connected graph G =
(V,E) is an ordering v1, . . . , vn of V such that the set {vj | 1 ≤ j ≤ i} induces a
connected subgraph of G for all 1 ≤ i ≤ n. We say that a connected input graph
of Graph H-Bin Packing is connected-online packable into H if there exists
an on-line algorithm that finds a feasible packing for every connected-online
input sequence of G.

It should be emphasized that the entire graph G and all its edge-length
bounds a(e), b(e) are known already at the beginning, but each vertex vi arrives
without the indication of its label (name), only its size si and the adjacen-
cies to the earlier vertices vj with 1 ≤ j < i and the corresponding values
a(vivj), b(vivj) are revealed upon arrival. For example, if all the si are equal
then we have zero information in the first step, which vertex of G is v1; and
similarly, if also all pairs (a(e), b(e)) are the same, then after the arrival of v1
and v2 we do not know which edge of G corresponds to v1v2.

3.1. Connected-online packability

Problem 15. Given a host graph H, what kind of graphs G are connected-
online packable into H ? Is there a characterization of the connected-online
packable graphs?

Obviously if G is well-packable into H then G is connected-online packable
into H, and if G is connected-online packable into H then G is packable into H.
Therefore the sufficient conditions of well-packability (see for example Proposi-
tions 6 and 8) are sufficient conditions of connected-online packability, moreover
the necessary conditions of packability (for example b(v1v2) + b(v2v3) ≥ a(v1v3)
if v1v2, v2v3, v1v3 ∈ E(G)) are necessary conditions of connected-online packa-
bility.

Example 16. Assume that L =∞.

1. Let G be a tree. If b(e) = 1 for all e ∈ E(G) then (by Corollary 8) G
is well-packable into P∞ so it is connected-online packable into P∞ (and
also into Pk for all k ≥ 2). Similarly, assuming b(e) = 1, every bipartite
graph is connected-online packable into any H with at least one edge.

2. Let G = Cn. It is easy to see that if b(e) = 1 for all e ∈ E(G) then G is
connected-online packable (but if n ≥ 5 then it is not well-packable) into
Cn.

3. Let n > 4 and G = Cn, a(e) = 0 and b(e) = 1 for all e ∈ E(G). Then G
is connected-online packable into Pk for all k ≥ 1 (but if k ≥ 4 then it is
not well-packable).

10

4. If a(e) = 0 for all e ∈ E(G) then G is connected-online packable into every
H (but not necessarily well-packable).

5. Let G be a C6 plus an edge e′ connecting two antipodal vertices, with
a(e) = b(e) = 1 if e 6= e′ and a(e′) = b(e′) = 3. Then G is packable but
not connected-online packable into P∞.

Remark 17. Two further simple cases of connected-online packability can be
mentioned.

• If the edges of G can be identified (e.g. the pairs (a(e), b(e)) are distinct)
then G is connected-online packable into H if and only if G is packable
into H.

• Let G be a clique with a(e) = a and b(e) = b for all e ∈ E(G), and let H
be an arbitrary host graph. Then G is connected-online packable into H if
and only if G is packable into H.

We note that if H ⊂ H ′ then the connected-online packability into H ′ follows
from the connected-online packability into H. This monotonicity is not true,
however, for well-packability.

The following statement, which considers the same question as Proposition
5 for well-packing, states that concerning connected-online packability, even the
edges with non-restrictive bounds a(e) = 0 and b(e) = ∞ may be important.
This is because of the restriction that after each step a connected subgraph has
to be packed. Part (i) is repeated for the sake of completeness.

Proposition 18. Let G be an input graph and H a host graph. Consider G′

with V (G′) = V (G), E(G′) =
(
V (G)

2

)
, and if e ∈ E(G′) then let

a(e) =

{
a(e) e ∈ E(G)
0 e 6∈ E(G)

, b(e) =

{
b(e) e ∈ E(G)
∞ e 6∈ E(G)

.

(i) G is packable into H if and only if G′ is packable into H.

(ii) If G′ is connected-online packable into H then G is connected-online pack-
able into H.

(iii) There is an input graph G such that G is connected-online packable into
H but G′ is not connected-online packable into H.

Proof. Statements (i) and (ii) are trivial. To prove (iii) consider G = P4 =
wxyz with a(e) = b(e) = 1 for all e ∈ E(G), and let L = ∞. Obviously G is
connected-online packable into P∞ but G′ is not connected-online packable into
P∞ because if v1v2 is a non-edge, we cannot know whether it is wy or wz. �

On the other hand we note that a statement similar to Proposition 7 cannot
be formulated in case of connected-online packability. To see this, consider a
graph which consists of two cycles of length 2k sharing a vertex. For one of

11

the cycles each edge e has a(e) = b(e) = 1, for the other cycle we have an edge
f not containing their common vertex with a(f) = b(f) = 2k − 1 and for the
other edges a(e) = b(e) = 1. Then the biconnected subgraphs are the cycles
and it is easy to see that both of them are connected-online packable into P∞.
The vertices of the first cycle have to be packed into two adjacent vertices of
the host graph, the vertices of the second cycle have to be packed into different
vertices in the host graph. On the other hand when we receive a part of one of
the cycles from the graph, we do not know from which cycle it is taken, thus we
do not know which strategy should be used. Therefore the entire graph is not
connected-online packable.

It is easy to see that the following propositions hold.

Proposition 19. G is connected-online packable into H if and only if each
induced subgraph of G is connected-online packable into H.

Proposition 20. If a graph G is connected-online packable into P∞, then it is
connected-online packable into any host graph which has infinite diameter (and
the same capacity L).

Proof. Since diam(H) = ∞, we can identify two vertices x, y ∈ V (H) and a
geodesic path between them such that dH(x, y) ≥ 1 + 2

∑
e∈E(G) b(e). (In fact,

a shorter geodesic x–y path of H would also suffice to start with.) Packing the
first vertex from the input sequence into the central vertex of the geodesic path,
we can apply the same strategy as for the host graph P∞. �

The following proposition belongs to the case where the packing problem
models graph coloring. We denote by χOL(G) the online chromatic number of
graph G, which is the minimum number of colors any online algorithm can use
to properly color G when the vertices arrive in an unknown order.

Proposition 21. Suppose H = Kk and L = ∞. Then a graph G = (V,E)
with a(e) = 1 for all e ∈ E is

• H-packable if and only if χ(G) ≤ k;

• connected-online packable into H if χOL(G) ≤ k, but this condition is not
necessary.

Proof. We can define the vertices of the host graph as the color classes. There-
fore, if a coloring or online coloring exists then we can use the coloring algorithm
to pack the items. In case of packability a packing algorithm can be transformed
into a coloring algorithm, thus we have equivalence. In case of online packing the
assumption that we always have a connected subgraph might make the problem
easier than online coloring, as the following example shows. It is known (see
[8]) that there is a tree Tk on 2k−1 vertices with χOL(Tk) = k, but it is easy to
see that every connected bipartite graph is connected-online 2-colorable. �

12

3.2. Optimization problems

As usual, we measure the performance of online algorithms by competitive
ratios. For a minimization problem (which are the determination of nH(G),
dH(G), and rH(G)) an online algorithm is called α-competitive if, on any input,
the value of solution found by the algorithm is at most α times the offline
optimum. We refer to [3, 7, 10] for an overview on competitive analysis. Note
that α needs not be a constant, it may get larger as input size tends to infinity.

We take our first example from graph coloring, which corresponds to the
assumptions H = P∞, L =∞, moreover a(e) = 1 and b(e) =∞ for every edge
e of the input graph. Then χ(G) = nH(G).

Remark 22. Restricting the input sequences to connected ones may or may not
have a substantial consequence on approximability, as shown by the following two
problem classes.

1. Despite that the maximum online chromatic number of trees of order n is
Ω(log n), every tree is connected-online 2-colorable.

2. It follows from the next proposition that the connected-online chromatic
number of 2-trees4 of order n is Ω(log n). All k-trees are chordal, and
their chromatic number is equal to k + 1 except that χ(Kk) = k.

The second part of this remark can be stated in the following more general
assertion. The idea is applicable to many other types of online graph problems,
too, but in the proposition we again restrict ourselves to coloring. In notation,
the complete join G′+G′′ of two graphs has vertex set V (G′)∪ V (G′′) (vertex-
disjoint union) and edge set E(G′) ∪E(G′′) ∪ {v′v′′ | v′ ∈ V (G′), v′′ ∈ V (G′′)}.

Proposition 23. For a class G of graphs, define G+ := {G+K1 | G ∈ G}. If
the graphs of order n in G have online chromatic number at least fn, then the
graphs of order n + 1 in G+ have connected-online chromatic number at least
fn + 1.

Proof. To each online input sequence of any G ∈ G we can associate a
connected-online input sequence of G + K1 by choosing the vertex of K1 first.
Since the color of this vertex cannot occur in G, the lower bound follows. �

In the previous section we have seen in Corollary 8 that, under the assump-
tion L = ∞, if G is a tree with b(e) = ∞ for all e ∈ E(G) and diam(H) ≥
2 maxe∈E(G) a(e) − 1 then G is well-packable into H. Here we prove a slightly
stronger bound under the connected-online scenario on trees. If G is a con-
nected graph and A is an online algorithm, then denote by dAH(G) the diameter
of packing G into H by A; and let dOLH (G) = minA d

A
H(G).

4A k-tree is a graph that can be built recursively from the complete graph of order k, by
joining a new vertex in each step to a complete subgraph of order k in the part constructed
previously.

13

Theorem 24. Restrict the input of the connected-online problem to the class
of trees. Suppose that H = P∞ and L =∞. Then

dOLH (G) ≤ max
e,e′∈E, e6=e′

a(e) + a(e′)− 1

holds for every input graph G = (V,E), independently of the upper edge-length
bounds b(e).

Moreover there is a tree G with

dOLH (G) = max
e,e′∈E, e 6=e′

a(e) + a(e′)− 1.

Proof. We view the vertices of P∞ as the integer points of the real line. In
this way a closed interval [p, q] will represent the set {xi | i ∈ Z, p ≤ i ≤ q}.

Assume that the vertices arrive in a sequence v1, . . . , vn such that the graph
induced by {vj | 1 ≤ j ≤ i} is a tree (i.e., connected) for each i = 1, . . . , n.
We will find a mapping µ with the following properties: If vivj ∈ E(G) then
|µ(vi)−µ(vj)| = a(vivj), moreover if xp (xq) is the first (respectively, last) vertex
into which some vertex has been packed, then there exist edges e(p), e(q) ∈ E
such that

• xp ∈ µ(e(p)) and xq ∈ µ(e(q)),

• assuming µ(e(p)) = {xp, xp′} and µ(e(q)) = {xq′ , xq}, we have q′ < p′

(µ(e(p)) and µ(e(q)) are overlapping).

This situation is easily achieved after the proper packing of v1, v2, v3 if we ensure
that the interval of one of the two edges contains the other. We are going to
prove that the conditions can be maintained in every step.

Suppose that the packing has been made for v1, . . . , vi, and vi+1 arrives next,
connected to the current subtree with the edge ei = vi+1vj . Let ai := a(ei) and
suppose µ(vj) = xr.

If r < p′ we define µ(vi+1) = xr+ai . If r+ ai ≤ q then the properties remain
true. If r + ai > q then xr+ai will be the last vertex into which a vertex has
been packed, moreover µ(e(p)) and µ(e(r+ ai)) = µ(ei) are overlapping, so the
properties remain true.

If r ≥ p′ > q′ we define µ(vi+1) = xr−ai . If r − ai ≥ p then the properties
remain true. If r−ai < p then xr−ai will be the first vertex into which a vertex
has been packed, moreover µ(e(q)) and µ(e(r− ai)) = µ(ei) are overlapping, so
the properties remain true.

Since the actual intervals belonging to the two extremal edges share at
least two vertices after each step, the diameter of the packing can never ex-
ceed maxe,e′∈E, e 6=e′ a(e) + a(e′)− 1.

To show the tightness part of the theorem, consider P4 with the bounds
a(v1v2) = b(v1v2) = 2, a(v2v3) = b(v2v3) = 1, a(v3v4) = b(v3v4) = 2. First v1
and v2 arrive any algorithm has to pack them to vertices of distance 2. Then the
next vertex is v3. If the algorithm packs it in a way that dH(µ(v1), µ(v3)) = 3
then we are done. Otherwise v3 is packed to the vertex in P∞ which is between

14

µ(v1) and µ(v2). Then v4 arrives and after packing it either dH(µ(v1), µ(v4)) = 3
or dH(µ(v2), µ(v4)) = 3 will be valid.

We can prove that for any N > 1 there is a path PN with maxe∈E(Pn) a(e) =
N for which dOLH (PN) ≥ 2N − 1. At first consider an arbitrary connected-
online algorithm A and suppose, to the contrary, that if PN is a path with
maxe∈E(P) a(e) = N then dAH(PN) = M < 2N − 1. Then there is an input
sequence v1, . . . , vm with maxi<m dH(µA(vi), µA(vm)) = M . Now give edges
with a(vmvm+1) = dM/2e and a(vm+1vm+2) = dM/2e + 1. Algorithm A can-
not pack vm and vm+1 with maxi<j≤M+2 dH(µA(vi), µA(vj)) ≤ M so this is
a contradiction. It is easy to see that there is a function f such that the
length of PN ≤ f(N), therefore there is a path PN with finite length and
maxe∈E(P) a(e) = N and dOLH (PN) ≥ 2N − 1. �

The following example shows that if G is not a tree then we can achieve
much worse bound: set G = Kn with a(e) = N , b(e) = ∞ for all e ∈ E(G),
H = P∞ and L = ∞. Then G is connected-online packable into H, moreover
dH(G) = (n− 1)N . However Lemma 24 has a corollary in a special case.

Corollary 25. If H = P∞, L = ∞, and for every e ∈ E(G) there is at most
one Ce cycle in G containig e and

b(e) ≥ max
e′,e′′,e′′′∈E(Ce)

a(e′) + a(e′′) + a(e′′′)− 1

then G is connected-online packable into H.

Proof. If the given subgraph is a tree then we can use the algorithm of
Lemma 24, so if a vertex closing a cycle arrives then it is easy to pack it.
After the arrival of a cycle delete the last two edges of it and use the algorithm
on the components of the remaining graph. It will work well because the deleted
edges will not be in another cycle. �

4. Concluding remarks and further problems

In this section we summarize the most important open questions concerning
the models introduced in our paper.

Problem 26. Given a host graph H and a class G of graphs with vertex sizes
and edge-length bounds, what is the complexity of determining whether a generic
input graph G ∈ G is

• H-packable?

• well-packable into H?

• connected-online packable into H?

Problem 27. What conditions are necessary and/or sufficient for packability,
connected-online packability and well-packability if L <∞?

15

Problem 28. What bounds on competitive ratios of connected-online algorithms
can one achieve if L <∞?

Problem 29. What bounds on dH(G), nH(G), and rH(G) can be achieved if
L <∞?

Another track of research could be the study of analogous problems where
we only know that the input graph is taken from a specified graph class G, but
it is not known which graph it is.

It would also be of interest to investigate packings of directed graphs into
host digraphs, but we have not considered this variant here. Moreover, we
restricted ourselves to finite input graphs, but at least the existence problem of
a packing G→ H where both G and H are infinite would make sense. Infinity
raises various complications, however, for instance one can observe that the
usual compactness theorem fails to be valid on packing.

Acknowledgements

J. Nagy-György was supported by the European Union and the State of Hun-
gary, co-financed by the European Social Fund in the framework of TÁMOP-
4.2.4.A/ 2-11/1-2012-0001 ‘National Excellence Program’. Gy. Dósa was sup-
ported by the European Union and the State of Hungary, co-financed by the
European Social Fund in the framework of TÁMOP-4.2.2.B-15/1/KONV-2015-
0004. Research of Cs. Bujtás, Gy. Dósa and Zs. Tuza was supported by the Hun-
garian Scientific Research Fund NKFIH/OTKA under the grant SNN 116095.
Research of Cs. Imreh was supported by the Alexander von Humboldt Founda-
tion.

[1] J. Beck, Combinatorial Games: Tic-Tac-Toe Theory, Cambridge Univer-
sity Press, 2008.

[2] A. Bódis, Bin packing with directed stackability conflicts, Acta Universi-
tatis Sapientiae, Informatica, 7(1), 31–57, 2015.

[3] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analy-
sis, Cambridge University Press, 1998.

[4] Cs. Bujtás, Gy. Dósa, Cs Imreh, J. Nagy-György, and Zs. Tuza, The Graph-
Bin Packing problem, International Journal of Foundations of Computer
Science 22 (2011), 1971–1993.

[5] L. Epstein, Online variable-sized bin packing with conflicts, Discrete Opti-
mization 8(2), (2011), 333–343

[6] L. Epstein and A. Levin, On bin packing with conflicts, SIAM J. Optimiza-
tion, 19(3), 1270–1298, 2008.

[7] A. Fiat and G. J. Woeginger (eds.), Online algorithms: The State of the
Art, LNCS 1442, Springer-Verlag Berlin, 1998.

16

[8] A. Gyárfás and J. Lehel, On-line and first-fit colorings of graphs, Journal
of Graph Theory, 12 (1988), 217–227.

[9] D. Hefetz, M. Krivelevich, M. Stojakovic, and T. Szabó, Positional Games
Ober- wolfach Seminars, vol. 44. Birkhäuser (2014)

[10] Cs. Imreh, Competitive analysis, In Algorithms of Informatics Volume 1,
ed. Antal Iványi, mondAt, Budapest 2007, 395–428.

[11] G. Y. Katona, Edge disjoint polyp packing, Discrete Applied Mathematics,
78(1-3), (1997), 133–152.

[12] G. Y. Katona, Vertex disjoint polyp packing, Annales Universitatis Scien-
tiarum Budapestinensis de Rolando Eotvos Nominatae Sectio Computator-
ica, 21, (2002), 81–118.

17

