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Abstract

Let (X,Z) be a continuous random vector in R × Rd, d ≥ 1. In this

paper, we define the notion of a nonparametric residual of X on Z that

is always independent of the predictor Z. We study its properties and

show that the proposed notion of residual matches with the usual residual

(error) in a multivariate normal regression model. Given a random vector

(X,Y,Z) in R × R × Rd, we use this notion of residual to show that the

conditional independence between X and Y , given Z, is equivalent to the

mutual independence of the residuals (of X on Z and Y on Z) and Z.

This result is used to develop a test for conditional independence. We

propose a bootstrap scheme to approximate the critical value of this test.

We compare the proposed test, which is easily implementable, with some

of the existing procedures through a simulation study.

Keywords: Bootstrap; conditional distribution function; energy statistic; one

sample multivariate goodness-of-fit test; partial copula; testing conditional inde-

pendence.

1 Introduction

Let (X,Z) be a random vector in R×Rd = Rd+1, d ≥ 1. We assume that (X,Z)

has a joint density on Rd+1. If we want to predict X using Z we usually formulate

the following regression problem:

X = m(Z) + ε, (1.1)
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1

ar
X

iv
:1

40
9.

38
86

v2
  [

st
at

.M
E

] 
 1

 O
ct

 2
01

5



where m(z) = E(X|Z = z) is the conditional mean of X given Z = z and ε :=

X −m(Z) is the residual (although ε is usually called the error, and its estimate

the residual, for this paper we feel that the term residual is more appropriate).

Typically we further assume that the residual ε is independent of Z. However,

intuitively, we are just trying to break the information in (X,Z) into two parts:

a part that contains all relevant information about X, and the “residual” (the

left over) which does not have anything to do with the relationship between X

and Z.

In this paper we address the following question: given any random vector

(X,Z) how do we define the notion of a “residual” of X on Z that matches with

the above intuition? Thus, formally, we want to find a function ϕ : Rd+1 → R
such that the residual ϕ(X,Z) satisfies the following two conditions:

(C.1) the residual ϕ(X,Z) is independent of the predictor Z, i.e.,

ϕ(X,Z) ⊥⊥ Z, and

(C.2) the information content of (X,Z) is the same as that of (ϕ(X,Z),Z),

i.e.,

σ(X,Z) = σ(ϕ(X,Z),Z), (1.2)

where σ(X,Z) denotes the σ-field generated by X and Z. We can also

express (1.2) as: there exists a measurable function h : Rd+1 → R such that

X = h(Z, ϕ(X,Z)); (1.3)

see e.g., Theorem 20.1 of Billingsley (1995).

In this paper we propose a notion of a residual that satisfies the above two

conditions, under any joint distribution of X and Z. We investigate the properties

of this notion of residual in Section 2. We show that this notion indeed reduces to

the usual residual (error) in the multivariate normal regression model. Further,

we use this notion of residual to develop a test for conditional independence.

Suppose now that (X, Y,Z) has a joint density on R × R × Rd = Rd+2. The

assumption of conditional independence means that X is independent of Y given

Z, i.e., X ⊥⊥ Y |Z. Conditional independence is an important concept in mod-

eling causal relations (Dawid (1979), Pearl (2000)), in graphical models (Lau-

ritzen (1996); Koller and Friedman (2009)), in economic theory (see Chiappori

and Salanié (2000)), and in the literature of program evaluations (see Heckman

et al. (1997)) among other fields. Traditional methods for testing conditional

independence are either restricted to the discrete case (Lauritzen (1996); Agresti
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(2013)) or impose simplifying assumption when the random variables are con-

tinuous (Lawrance (1976)). However, recently there has been a few nonpara-

metric testing procedures proposed for testing conditional independence without

assuming a functional form between the distributions of X, Y , and Z. Su and

White (2007) consider testing conditional independence based on the difference

between the conditional characteristic functions, while Su and White (2008) use

the Hellinger distance between conditional densities of X given Y and Z, and

X given Y to test for conditional independence. A test based on estimation

of the maximal nonlinear conditional correlation is proposed in Huang (2010).

Bergsma (2011) develops a test based on partial copula. Fukumizu et al. (2007)

propose a measure of conditional dependence of random variables, based on nor-

malized cross-covariance operators on reproducing kernel Hilbert spaces; Zhang

et al. (2012) propose another kernel-based conditional independence test. Poczos

and Schneider (2012) extend the concept of distance correlation (developed by

Székely et al. (2007) to measure dependence between two random variables or

vectors) to characterize conditional dependence. Székely and Rizzo (2014) inves-

tigate a method that is easy to compute and can capture non-linear dependencies

but does not completely characterize conditional independence; also see Györfi

and Walk (2012) and the references therein.

In Section 3 we use the notion of residual defined in Section 2 to show that the

conditional independence between X and Y given Z is equivalent to the mutual

independence of three random vectors: the residuals of X on Z and Y on Z, and

Z. We reduce this testing of mutual independence to a one sample multivariate

goodness-of-fit test. We further propose a modification of the easy-to-implement

energy statistic based method (Székely and Rizzo (2005); also see Székely and

Rizzo (2013)) to test the goodness-of-fit; see Section 3.1. In Section 3.2 we use

our notion of nonparametric residual and the proposed goodness-of-fit test to

check the null hypothesis of conditional independence. Moreover, we describe a

bootstrap scheme to approximate the critical value of this test. In Section 4 we

compare the finite sample performance of the procedure proposed in this paper

with other available methods in the literature through a finite sample simulation

study. We end with a brief discussion, Section 5, where we point to some open

research problems and outline an idea, using the proposed residuals, to define

(and test) a nonparametric notion of partial correlation.
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2 A nonparametric notion of residual

Conditions (C.1)–(C.2) do not necessarily lead to a unique choice for ϕ. To find a

meaningful and unique function ϕ that satisfies conditions (C.1)–(C.2) we impose

the following natural restrictions on ϕ. We assume that

(C.3) x 7→ ϕ(x, z) is strictly increasing in its support, for every fixed z ∈ Rd.

Note that condition (C.3) is a slight strengthening of condition (C.2). Suppose

that a function ϕ satisfies conditions (C.1) and (C.3). Then any strictly monotone

transformation of ϕ(·, z) would again satisfy (C.1) and (C.3). Thus, conditions

(C.1) and (C.3) do not uniquely specify ϕ. To handle this identifiability issue,

we replace condition (C.1) with (C.4), described below.

First observe that, by condition (C.1), the conditional distribution of the

random variable ϕ(X,Z) given Z = z does not depend on z. We assume that

(C.4) ϕ(X,Z)|Z = z is uniformly distributed, for all z ∈ Rd.

Condition (C.4) is again quite natural – we usually assume that the residual has

a fixed distribution, e.g., in regression we assume that the (standardized) residual

in normally distributed with zero mean and unit variance. Note that condition

(C.4) is slightly stronger than (C.1) and will help us uniquely identify ϕ. The

following result shows that, indeed, under conditions (C.3)–(C.4), a unique ϕ

exists and gives its form.

Lemma 2.1. Let FX|Z(·|z) denote the conditional distribution function of X|Z =

z. Under conditions (C.3) and (C.4), we have a unique choice of ϕ(x, z), given

by

ϕ(x, z) = FX|Z(x|z).

Also, h(z, u) can be taken as

h(z, u) = F−1X|Z(u|z). (2.1)

Proof. Fix z in the support of Z. Let u ∈ (0, 1). Let us write ϕz(x) = ϕ(x, z).

By condition (C.4), we have P[ϕ(X,Z) ≤ u|Z = z] = u. On the other hand, by

(C.3),

P[ϕ(X,Z) ≤ u|Z = z] = P[X ≤ ϕ−1z (u)|Z = z] = FX|Z(ϕ−1z (u)|z).

Thus, we have

FX|Z(ϕ−1z (u)|z) = u, for all u ∈ (0, 1),
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which is equivalent to ϕz(x) = FX|Z(x|z).

Let h be as defined in (2.1). Then,

h(z, ϕ(x, z)) = F−1X|Z(ϕ(x, z)|z) = F−1X|Z(FX|Z(x|z)|z) = x,

as required.

Thus from the above lemma, we conclude that in the nonparametric setup, if

we want to have a notion of a residual satisfying conditions (C.3)–(C.4) then the

residual has to be FX|Z(X|Z). The following remarks are in order now.

Remark 2.2. Let us first consider the example when (X,Z) follows a multivariate

Gaussian distribution, i.e.,(
X

Z

)
∼ N

((
µ1

µ2

)
,Σ :=

(
σ11 σ>12
σ12 Σ22

))
,

where µ1 ∈ R, µ2 ∈ Rd, Σ is a (d + 1) × (d + 1) positive definite matrix with

σ11 > 0, σ12 ∈ Rd×1 and Σ22 ∈ Rd×d.

Then the conditional distribution of X given Z = z is N(µ1 + σ>12Σ
−1
22 (z −

µ2), σ11 − σ>12Σ
−1
22 σ12). Therefore, we have the following representation in the

form of (1.1):

X = µ1 + σ>12Σ
−1
22 (Z− µ2) +

(
X − µ1 − σ>12Σ

−1
22 (Z− µ2)

)
where the usual residual is X − µ1 − σ>12Σ

−1
22 (Z − µ2), which is known to be

independent of Z. In this case, using Lemma 2.1, we get

ϕ(X,Z) = Φ

(
X − µ1 − σ>12Σ

−1
22 (Z− µ2)√

σ11 − σ>12Σ
−1
22 σ12

)
,

where Φ(·) is the distribution function of the standard normal distribution. Thus

ϕ(X,Z) is just a fixed strictly increasing transformation of the usual residual,

and the two notions of residual essentially coincide.

Remark 2.3. The above notion of residual does not extend so easily to the case

of discrete random variables. Conditions (C.1) and (C.2) are equivalent to the

fact that σ(X,Z) factorizes into two sub σ-fields as σ(X,Z) = σ(ϕ(X,Z))⊗σ(Z).

This may not be always possible as can be seen from the following simple example.

Let (X,Z) take values in {0, 1}2 such that P[X = i, Z = j] > 0 for all

i, j ∈ {0, 1}. Then it can be shown that such a factorization exists if and only if

X and Z are independent, in which case ϕ(X,Z) = X.
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Remark 2.4. Lemma 2.1 also gives an way to generateX, using Z and the residual.

We can first generate Z, following its marginal distribution, and an independent

random variable U ∼ U(0, 1) (here U(0, 1) denotes the Uniform distribution on

(0, 1)) which will act as the residual. Then (1.3), where h is defined in (2.1),

shows that we can generate X = F−1X|Z(U |Z).

In practice, we need to estimate the residual FX|Z(X|Z) from observed data,

which can be done both parametrically and non-parametrically. If we have a

parametric model for FX|Z(·|·), we can estimate the parameters, using e.g., max-

imum likelihood, etc. If we do not want to assume any structure on FX|Z(·|·),
we can use any nonparametric smoothing method, e.g., standard kernel methods,

for estimation; see Bergsma (2011) for such an implementation. We will discuss

the estimation of the residuals in more detail in Section 3.3.

3 Conditional independence

Suppose now that (X, Y,Z) has a joint density on R × R × Rd = Rd+2. In this

section we state a simple result that reduces testing for the conditional indepen-

dence hypothesis H0 : X ⊥⊥ Y |Z to a problem of testing mutual independence

between three random variables/vectors that involve our notion of residual. We

also briefly describe a procedure to test the mutual independence of the three

random variables/vectors (see Section 3.1). We start with the statement of the

crucial lemma.

Lemma 3.1. Suppose that (X, Y,Z) has a continuous joint density on Rd+2.

Then, X ⊥⊥ Y |Z if and only if FX|Z(X|Z), FY |Z(Y |Z) and Z are mutually inde-

pendent.

Proof. Let us make the following change of variable

(X, Y,Z) 7→ (U, V,Z) := (FX|Z(X), FY |Z(Y ),Z).

The joint density of (U, V,Z) can be expressed as

f(U,V,Z)(u, v, z) =
f(x, y, z)

fX|Z=z(x)fY |Z=z(y)
=
f(X,Y )|Z=z(x, y)fZ(z)

fX|Z=z(x)fY |Z=z(y)
, (3.1)

where x = F−1X|Z=z(u), and y = F−1Y |Z=z(v). Note that as the Jacobian matrix is

upper-triangular, the determinant is the product of the diagonal entries of the

matrix, namely, fX|Z=z(x), fY |Z=z(y) and 1.
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If X ⊥⊥ Y |Z then f(U,V,Z)(u, v, z) reduces to just fZ(z), for u, v ∈ (0, 1),

from the definition of conditional independence, which shows that U, V,Z are

independent (note that it is easy to show that U, V are marginally U(0, 1), the

Uniform distribution on (0, 1)). Now, given that U, V,Z are independent, we

know that f(U,V,Z)(u, v, z) = fZ(z) for u, v ∈ (0, 1), which from (3.1) easily shows

that X ⊥⊥ Y |Z.

Remark 3.2. Note that the joint distribution of FX|Z(X|Z) and FY |Z(Y |Z) is

known as the partial copula; see e.g., Bergsma (2011). Bergsma (2011) devel-

oped a test for conditional independence by testing mutual independence be-

tween FX|Z(X|Z) and FY |Z(Y |Z). However, as the following example illustrates,

the independence of FX|Z(X|Z) and FY |Z(Y |Z) is not enough to guarantee that

X ⊥⊥ Y |Z. Let W1,W2,W3 be i.i.d. U(0, 1) random variables. Let X = W1 +W3,

Y = W2 and Z = mod(W1 + W2, 1), where ‘mod’ stands for the modulo (some-

times called modulus) operation that finds the remainder of the division W1 +W2

by 1. Clearly, the random vector (X, Y, Z) has a smooth continuous density on

[0, 1]3. Note that Z is independent of Wi, for i = 1, 2. Hence, X, Y and Z are

pairwise independent. Thus, FX|Z(X) = FX(X) and FY |Z(X) = FY (Y ), where

FX and FY are the marginal distribution functions of X and Y , respectively.

From the independence of X and Y , FX(X) and FY (Y ) are independent. On the

other hand, the value of W1 is clearly determined by Y and Z, i.e., W1 = Z − Y
if Y ≤ Z and W1 = Z − Y + 1 if Y > Z. Consequently, X and Y are not

conditionally independent given Z. To see this, note that for every z ∈ (0, 1),

E[X|Y, Z = z] =

{
z − Y + 0.5 if Y ≤ z

z − Y + 1 + 0.5 if Y > z,

which obviously depends on Y . In Remark 3.6 we illustrate this behavior with a

finite sample simulation study.

Remark 3.3. We can extend the above result to the case when X and Y are

random vectors in Rp and Rq, respectively. In that case we define the condi-

tional multivariate distribution transform FX|Z by successively conditioning on

the co-ordinate random variables, i.e., if X = (X1, X2) then we can define FX|Z

as (FX2|X1,Z, FX1|Z). With this definition, Lemma 3.1 still holds.

To use Lemma 3.1 to test the conditional independence between X and Y

given Z, we need to first estimate the residuals FX|Z(X|Z) and FY |Z(Y |Z) from
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observed data, which can be done by any nonparametric smoothing procedure,

e.g., standard kernel methods (see Section 3.3). Then, any procedure for testing

the mutual independence of FX|Z(X|Z), FY |Z(Y |Z) and Z can be used. In this

paper we advocate the use of the energy statistic (see Rizzo and Székely (2010)),

described briefly in the next subsection, to test the mutual independence of three

or more random variables/vectors.

3.1 Testing mutual independence of three or more ran-

dom vectors with known marginals

Testing independence of two random variables (or vectors) has received much re-

cent attention in the statistical literature; see e.g., Székely et al. (2007), Gretton

et al. (2005), and the references therein. However, testing the mutual indepen-

dence of three or more random variables is more complicated and we could not

find any easily implementable method in the statistical literature.

In this sub-section, we test the mutual independence of three or more random

variables (vectors) with known marginals by converting the problem to a one-

sample goodness-of-fit test for multivariate normality. In the following we briefly

describe our procedure in the general setup.

Suppose that we have r ≥ 3 continuous random variables (or vectors) V1, . . . , Vr
and we want to test their mutual independence. We assume that we know

the marginal distributions of V1, . . . , Vr; without loss of generality, we can as-

sume that Vi’s are standard Gaussian random variables (vectors). We write

T := (V1, V2, . . . , Vr) ∈ Rk and introduce Tind := (V ∗1 , V
∗
2 , . . . , V

∗
r ) where V ∗j is

an i.i.d. copy of Vj, j = 1, 2, . . . , r, but in Tind the coordinates, V ∗1 , V
∗
2 , . . . , V

∗
r ,

are independent. To test the mutual independence of V1, V2, . . . , Vr all we need to

test now is whether T and Tind are identically distributed. If we observed a sam-

ple from T , we can test for the equality of distributions of T and Tind through a

one-sample goodness-of-fit test for the standard multivariate normal distribution,

i.e.,

H0 : T ∼ N(0, Ik×k),

as Tind ∼ N(0, Ik×k), where Ik×k is the identity matrix of order k and 0 :=

(0, . . . , 0) ∈ Rk.

In this paper we consider the following energy statistic (see Székely and Rizzo

(2005) and Rizzo and Székely (2010))

Λ(T ) = 2E‖T − Tind‖ − E‖T − T ′‖ − E‖Tind − T ′ind‖, (3.2)

where T ′ and T ′ind are i.i.d. copies of T and Tind, respectively (‖ · ‖ denotes the

Euclidean norm). Note that Λ(T ) is always nonnegative, and equals 0, if and
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only if T and Tind are identically distributed, i.e., if and only if V1, V2, . . . , Vr are

mutually independent (see Corollary 1 of Székely and Rizzo (2005)).

Suppose now that we observe n i.i.d. samples T1, . . . , Tn of T . The (scaled)

sample version of the energy statistic for testing the goodness-of-fit hypothesis is

En(T1, . . . , Tn) := 2
n∑

i=1

E‖Ti−Tind‖−
1

n

n∑
i=1

n∑
j=1

‖Ti−Tj‖−nE‖Tind−T ′ind‖. (3.3)

Note that the first expectation in the above display is with respect to Tind. Un-

der the null hypothesis of mutual independence, the test statistic En(T1, . . . , Tn)

has a limiting distribution, as n → ∞, while under the alternative hypothesis

En(T1, . . . , Tn) tends to infinity; see Section 4 of Székely and Rizzo (2005) and

Section 8 of Székely and Rizzo (2013) for detailed discussions. Thus any test that

rejects the null for large values of En(T1, . . . , Tn) is consistent against general al-

ternatives.

As Tind and T ′ind are i.i.d.N(0, Ik×k) random variables. The statistic En(T1, . . . , Tn)

is easy to compute:

E‖Tind − T ′ind‖ =
√

2E‖Tind‖ = 2
Γ
(
d+3
2

)
Γ
(
d+2
2

)
and for any a ∈ Rd+2, we have

E‖a− Tind‖ =

√
2Γ
(
d+3
2

)
Γ
(
d+2
2

) +

√
2

π

∞∑
k=0

(−1)k

k! 2k

|a|2k+2

(2k + 1)(2k + 2)

Γ
(
d+3
2

)
Γ
(
k + 3

2

)
Γ
(
k + d

2
+ 2
) .

The expression for E‖a−Tind‖ follows from the discussion in Zacks (1981) (see

page 55). See the source code “energy.c” in the energy package of R language

(R Development Core Team (2008)) for a fast implementation of this; also see

Székely and Rizzo (2013).

3.2 Testing conditional independence

In this sub-section we use Lemma 3.1 and the test for mutual independence

proposed in the previous sub-section (Section 3.1) to test for the conditional

independence of X and Y given Z. We start with a simple lemma.

Lemma 3.4. Suppose that (X, Y,Z) has a continuous joint density on Rd+2.

Then X ⊥⊥ Y |Z if and only if

W := (FX|Z(X|Z), FY |Z(Y |Z), FZ(Z)) ∼ U([0, 1]d+2),

where FZ(z) =
(
FZd|Zd−1,...,Z1(zd|zd−1, . . . , z1), . . . , FZ2|Z1(z2|z1), FZ1(z1)

)
, Z =

(Z1, . . . , Zd), z = (z1, . . . , zd), and U([0, 1]d+2) denote the Uniform distribution

on [0, 1]d+2.
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Proof. Note that by Lemma 3.1, X ⊥⊥ Y |Z if and only if FX|Z(X|Z), FY |Z(Y |Z)

and Z are mutually independent. Furthermore, note that FX|Z(X|Z), FY |Z(Y |Z)

are i.i.d. U(0, 1) random variables. Thus the proof of the lemma will be complete

if we show that FZ(Z) ∼ U([0, 1]d).

As each of FZd|Zd−1,...,Z1(Zd|Zd−1, . . . , Z1), . . . , FZ2|Z1(Z2|Z1), and FZ1(Z1) are

U(0, 1) random variables, it is enough to show that they are mutually inde-

pendent. For simplicity of notation, we will only prove the independence of

FZ2|Z1(Z2|Z1) and FZ1(Z1), independence of other terms can be proved similarly.

Note that

P(FZ2|Z1(Z2|Z1) ≤ z2|FZ1(Z1) = z1) = P(FZ2|Z1(Z2|Z1) ≤ z2|Z1 = F−1Z1
(z1))

= P
(
Z2 ≤ F−1Z2|Z1

(
z2|F−1Z1

(z1)
)∣∣∣Z1 = F−1Z1

(z1)
)

= FZ2|Z1

(
F−1Z2|Z1

(
z2|F−1Z1

(z1)
)
|F−1Z1

(z1)
)

= z2.

As the conditional distribution of FZ2|Z1(Z2|Z1) given FZ1(Z1) = z1 does not

depend on z1, we have that FZ2|Z1(Z2|Z1) and FZ1(Z1) are independent.

Let us now assume X ⊥⊥ Y |Z and define

W :=
(
FX|Z(X|Z), FY |Z(Y |Z), FZd|Z−d

(Zd|Z−d), . . . , FZ2|Z1(Z2|Z1), FZ1(Z1)
)
.

By Lemma 3.4, we have

W
D
= (U1, . . . , Ud+2),

where U1, U2, . . . , Ud+2 are i.i.d. U(0, 1) random variables. An equivalent formu-

lation is

H0 : T := Φ−1(W )
D
= N(0, I(d+2)×(d+2)), (3.4)

where Φ is the distribution function corresponding to the standard Gaussian

random variable, and for any a ∈ Rd+2, Φ−1(a) := (Φ−1(a1), . . . ,Φ
−1(ad+2)).

We observe i.i.d. data {(Xi, Yi,Zi) : i = 1, . . . , n} from the joint distribution

of (X, Y,Z) and we are interested in testing X ⊥⊥ Y |Z. Suppose first that the

distribution functions FX|Z(·|·), FY |Z(·|·), and FZ(·) are known. Then we have an

i.i.d. sample T1, . . . , Tn from T , where

Ti := Φ−1(FX|Z(Xi|Zi), FY |Z(Yi|Zi), FZ(Zi)). (3.5)

Now we can use the the test statistic (3.3) to test the hypothesis of conditional

independence.

As the true conditional distribution functions FX|Z, FY |Z, and FZ are un-

known, we can replace them by their estimates F̂X|Z, F̂Y |Z, and F̂Z, respectively,
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where F̂Z(z) =
(
F̂Zd|Zd−1,...,Z1(zd|zd−1, . . . , z1), . . . , F̂Z2|Z1(z2|z1), F̂Z1(z1)

)
; see Sec-

tion 3.3 for more details on how to compute these estimates. Let us now define

T̂i := Φ−1(F̂X|Z(Xi|Zi), F̂Y |Z(Yi|Zi), F̂Z(Zi)), (3.6)

for i = 1, 2, . . . , n. We will use

Ên := En(T̂1, . . . T̂n) (3.7)

to test the hypothesis of conditional independence.

3.2.1 Approximating the asymptotic distribution through bootstrap

The limiting behavior of En is not very useful in computing the critical value of

the test statistic Ên proposed in the the previous sub-section. In a related but

slightly different problem studied in Sen and Sen (2014), it was shown that, the

analogous versions of En and Ên have very different limiting distributions.

In independence testing problems it is quite standard and natural to approx-

imate the critical value of the test, under H0, by using a permutation test; see

e.g., Székely and Rizzo (2009), Gretton et al. (2007). However, in our problem as

we use T̂i instead of Ti, the permutation test is not valid; see Sen and Sen (2014).

In this sub-section, we propose a bootstrap procedure to approximate the

distribution of Ên, under the null hypothesis of conditional independence. We

now describe the bootstrap procedure. Let Pn,Z be the empirical distribution of

Z1, . . . ,Zn.

Step 1: Generate an i.i.d. sample {U∗i,1, U∗i,2,Z∗n,i}1≤i≤n of size n from the measure

U(0, 1)×U(0, 1)×Pn,Z; recall that U(0, 1) denotes the Uniform distribution

on (0, 1).

Step 2: The bootstrap sample is then {X∗n,1, Y ∗n,1,Z∗n,1}1≤i≤n, where

X∗n,i := F̂−1X|Z(U∗i,1|Z∗n,1) and Y ∗n,i := F̂−1Y |Z(U∗i,2|Z∗n,1). (3.8)

Step 3: Use the bootstrap sample {X∗n,i, Y ∗n,i,Z∗n,i}1≤i≤n to get smooth estimators

F̂ ∗X|Z, F̂
∗
Y |Z, and F̂ ∗Z of FX|Z, FY |Z, and FZ; see Section 3.3 for a discussion

on smooth estimation of the conditional distribution functions.

Step 4: Compute the bootstrap test statistic E∗n := En(T̂ ∗1 , . . . , T̂
∗
n) where

T̂ ∗i = Φ−1
(
F̂ ∗X|Z(X∗n,i|Z∗n,i), F̂ ∗Y |Z(Y ∗n,i|Z∗n,i), F̂ ∗Z(Z∗n,i)). (3.9)

11



We can now approximate the distribution of Ên by the conditional distribution

of E∗n given the data {Xi, Yi,Zi}1≤i≤n. In Section 4 we study the finite sample

performance of the above procedure through a simulation study and illustrate

that our procedure indeed yields a valid test for conditional independence.

Remark 3.5. In steps 1 and 2 above, we generate the bootstrap sample from the

approximated joint distribution of (X, Y,Z) under the null hypothesis of condi-

tional independence. In steps 3 and 4 we mimic the evaluation of the test statistic

Ên using the bootstrap sample. This is an example of a model based bootstrap

procedure. Sen and Sen (2014) prove the consistency of a similar bootstrap pro-

cedure in a related problem. As the sample size increases the approximated

joint distribution of (X, Y,Z) (under H0) would converge to the truth and the

bootstrap distribution would replicate the distribution of Ên.

3.3 Nonparametric estimation of the residuals

In this sub-section we discuss procedures to nonparametrically estimate FX|Z, FY |Z,

and FZ given data {Xi, Yi,Zi}1≤i≤n. The nonparametric estimation of the con-

ditional distribution functions would involve smoothing. In the following we

briefly describe the standard approach to estimating the conditional distribution

functions using kernel smoothing techniques (also see Lee et al. (2006), Yu and

Jones (1998), and Hall et al. (1999)). For notational simplicity, we restrict to

the case d = 1, i.e., Z is a real-valued random variable. Given an i.i.d. sample

of {(Xi, Zi) : i = 1, . . . , n} from fX,Z , the joint density of (X,Z), we can use the

following kernel density estimator of fX,Z :

f̂n(x, z) =
1

nh1,nh2,n

n∑
i=1

k

(
x−Xi

h1,n

)
k

(
z − Zi

h2,n

)
where k is a symmetric probability density on R (e.g., the standard normal density

function), and hi,n, i = 1, 2, are the smoothing bandwidths. It can be shown that

if nh1,nh2,n →∞ and max{h1,n, h2,n} → 0, as n→∞, then f̂n(x, z)
P→ fX,Z(x, z).

In fact, the theoretical properties of the above kernel density estimator are very

well studied; see e.g., Fan and Gijbels (1996) and Einmahl and Mason (2005) and

the references therein. For the convenience of notation, we will write hi,n as hi,

i = 1, 2.

The conditional density of X given Z can then be estimated by

f̂X|Z(x|z) =
f̂n(x, z)

f̂Z(z)
=

1
nh1h2

∑n
i=1 k

(
x−Xi

h1

)
k
(

z−Zi

h2

)
1

nh2

∑n
i=1 k

(
z−Zi

h2

) .
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Thus the conditional distribution function of X given Z can be estimated as

F̂X|Z(x|z) =

∫ x

−∞ f̂n(t, z) dt

f̂Z(z)
=

1
nh2

∑n
i=1K

(
x−Xi

h1

)
k
(

z−Zi

h2

)
1

nh2

∑n
i=1 k

(
z−Zi

h2

) =
n∑

i=1

wi(z)K

(
x−Xi

h1

)
whereK is the distribution function corresponding to k (i.e., K(u) =

∫ u

−∞ k(v) dv)

and wi(z) =
1

nh2
k
(

z−Zi
h2

)
1

nh2

∑n
j=1 k

(
z−Zj
h2

) are weights that sum to one for every z. Least square

cross-validation method proposed in Hall et al. (2004) can be used to find the

optimal choices for h1 and h2. For general d, the optimal parameters must satisfy

h1 ∼ n−2/(d+4) and h2 ∼ n−1/(d+4); see Section 6.2 of Li and Racine (2007) and Li

et al. (2013) for a thorough discussion.

Remark 3.6. Now we provide empirical evidence for the failure of the test pro-

posed in Bergsma (2011) in the example discussed in Remark 3.2. We plot (see

Figure 1) the histogram of p-values obtained from the proposed test (see Sec-

tion 3.2) and that of the p-values obtained from testing the independence of

FX|Z(X|Z) and FY |Z(Y |Z) (using their estimates F̂X|Z(·|·) and F̂Y |Z(·|·)). We use

the distance covariance test statistic (see Székely et al. (2007)) to test for the

independence of FX|Z(X|Z) and FY |Z(Y |Z). Figure 1 demonstrates that a test

for mutual independence of FX|Z(X|Z) and FY |Z(Y |Z) can fail to capture the

conditional dependence between X and Y given Z.

4 Simulation

We now investigate the finite sample performance of the testing procedure devel-

oped in this paper through a simulation study. We also compare the performance

of the our testing procedure to those proposed in Fukumizu et al. (2007) and

Zhang et al. (2012). We denote the the testing procedure proposed in Fukumizu

et al. (2007) by CIperm and use KCI to denote the kernel based conditional

independence test proposed in Zhang et al. (2012).

To illustrate and compare the performance of different testing procedures, we

consider the following sampling scenario borrowed from Zhang et al. (2012). Let

us assume that X and Y are only dependent on Z1 (the first coordinate of Z) and

that all other conditioning variables are independent of X, Y, and Z1. We assume

that Z ∼ Nd(0, σ
2
zId×d), X := W + Z1 + ε, and Y := W + Z1 + ε′, where ε, ε′,

and W are three independent mean zero Gaussian random variables. Moreover,

we assume that ε, ε′, and W are independent of Z, var(ε) = var(ε′) = σ2
E, and

var(W ) = σ2
W , where for any real random variable V , var(V ) denotes its variance.

Note that X ⊥⊥ Y |Z if and only if σW = 0.

13
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Figure 1: Histograms of p-values (estimated using 1000 bootstrap samples) over

1000 independent replications. Here, for i = 1, . . . , 200, {Xi, Yi, Zi} are i.i.d. sam-

ples from the example discussed in Remark 3.2.

In our finite sample simulations we fixed σE = 0.3 and σz = 0.2. We gen-

erate 500 i.i.d. samples {Xi, Yi,Zi}1≤i≤500 for each of d = 1, 3, and 5 and for

different values of σW . For each such sample, we use 1000 bootstrap replicates

to estimate the p-value of the proposed test procedure. We have used the “np”

(see Hayfield and Racine (2008)) package in R (R Core Team (2015)) to estimate

the conditional distribution functions with the tuning parameters chosen using

least-squares cross validation (see Section 3.3). In Figure 2 we plot the power

(estimated using 500 independent experiments) of the testing procedure proposed

in Section 3.2 along with those of CIperm and KCI as σW increases from 0 to

0.25, for dimensions 1, 3, and 5. We fix the significance level at 0.05.

The distribution of the KCI test statistic under the null hypothesis of con-

ditional independence is estimated with a Monte Carlo procedure suggested in

Zhang et al. (2012). To implement the CIperm and the KCI testing proce-

dures, we have used the MATLAB source codes provided in Zhang et al. (2012);

the source code can be found at http://people.tuebingen.mpg.de/kzhang/

KCI-test.zip. The R language codes used to implement our procedure are

available at http://stat.columbia.edu/~rohit/research.html.

Observe that for CIperm, the probability of type I error is much greater than

the significance level for d = 3. Furthermore, for d = 5, it fails to detect the
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Figure 2: The power (at significance level 0.05) of the three testing procedures

for sample size n = 500 as the dimension d and σW increase.

alternative for all values of σW . The performance of CIperm is sensitive to the

dimension of the conditioning variable. The probability of type I error for both the

proposed and the KCI testing procedures are around the specified significance

level. Moreover, the powers of KCI and the proposed test increase to 1 as σW
increases. Overall, we think that for this simulation scenario the KCI method

has the best performance.

5 Discussion

Given a random vector (X,Z) in R × Rd = Rd+1 we have defined the notion of

a nonparametric residual of X on Z as FX|Z(X|Z), which is always independent

of the response Z. We have studied the properties of the nonparametric residual

and showed that it indeed reduces to the usual residual in a multivariate nor-

mal regression model. However, nonparametric estimation of FX|Z(·|·) requires
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smoothing techniques, and hence suffers from the curse of dimensionality. A nat-

ural way of mitigating this curse of dimensionality could be to use dimension

reduction techniques in estimating the residual FX|Z(X|Z). Another alternative

would be to use a parametric model for the conditional distribution function.

Suppose now that (X, Y,Z) has a joint density on R×R×Rd = Rd+2. We have

used this notion of residual to show that the conditional independence between

X and Y , given Z, is equivalent to the mutual independence of the residuals

FX|Z(X|Z) and FY |Z(Y |Z) and the predictor Z. We have used this result to

propose a test for conditional independence, based on the energy statistic.

We can also use these residuals to come up with a nonparametric notion of

partial correlation. The partial correlation of X and Y measures the degree of

association between X and Y , removing the effect of Z. In the nonparametric set-

ting, this reduces to measuring the dependence between the residuals FX|Z(X|Z)

and FY |Z(Y |Z). We can use distance covariance (Székely et al. (2007)), or any

other measure of dependence, for this purpose. We can also test for zero par-

tial correlation by testing for the independence of the residuals FX|Z(X|Z) and

FY |Z(Y |Z).
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Székely, G. J., Rizzo, M. L., Bakirov, N. K., 2007. Measuring and testing depen-

dence by correlation of distances. Ann. Statist. 35 (6), 2769–2794.

Yu, K., Jones, M. C., 1998. Local linear quantile regression. J. Amer. Statist.

Assoc. 93 (441), 228–237.

Zacks, S., 1981. Parametric statistical inference. Vol. 4 of International Series in

Nonlinear Mathematics: Theory, Methods and Applications. Pergamon Press,

Oxford-New York, basic theory and modern approaches.

Zhang, K., Peters, J., Janzing, D., Schölkopf, B., 2012. Kernel-based condi-

tional independence test and application in causal discovery. arXiv preprint

arXiv:1202.3775.

19

http://dx.doi.org/10.1214/09-AOAS312

	1 Introduction
	2 A nonparametric notion of residual
	3 Conditional independence
	3.1 Testing mutual independence of three or more random vectors with known marginals
	3.2 Testing conditional independence
	3.2.1 Approximating the asymptotic distribution through bootstrap

	3.3 Nonparametric estimation of the residuals

	4 Simulation
	5 Discussion

