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Inner-shell vacancy production for the O8+-Li collision system at 1.5 MeV/amu is studied theoretically. The
theory combines single-electron amplitudes for each electron in the system to extract multielectron information
about the collision process. Doubly differential cross sections obtained in this way are then compared with the
recent experimental data by A. C. LaForge et al. [J. Phys. B 46, 031001 (2013)], yielding good resemblance,
especially for low outgoing electron energy. A careful analysis of the processes that contribute to inner-shell
vacancy production shows that the improvement of the results as compared to single-active-electron calculations
can be attributed to the leading role of two-electron excitation-ionization processes.
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I. INTRODUCTION

Single- and multiple-ionization processes of atoms by
fast bare-ion impact have been of great interest for decades
[1] since they provide basic information about mechanisms
for few-body breakup processes. Experimentally, the devel-
opment of cold-target recoil-ion momentum spectroscopy
(COLTRIMS) [2] allows one to study the collision processes in
great detail. Yet, due to the limitations posed by the supersonic
gas-jet-target technique, the targets of interest are typically
limited to rare-gas atoms and molecules [3].

In recent experiments, laser cooling in a magneto-optical
trap (MOT) was combined with a reaction microscope
(MOTReMi) [4,5] to study single and multiple ionization of
alkali-metal atoms by ion impact. With this new approach the
first kinematically complete experiment for single ionization
of lithium was achieved, and experiments were performed
for the H+-Li collision system at 6 MeV/amu [6], the
O8+-Li collision system at 1.5 MeV/amu [6,7], and the
Li2+-Li collision system at 2.29 MeV/amu [8]. This triggered
theoretical efforts for the interpretation of the experimental
data [8–12].

The “hydrogenlike” structure of the lithium atom with its
large energy spacing between the K and L shells allows
for efficient laser cooling in a MOT and hence for accurate
studies of single-ionization processes. At the level of the singly
differential cross section (SDCS) outer-shell ionization has
proven to be nearly a single-electron process with a marginal
influence of the K-shell electrons [11]. Yet doubly differential
cross sections (DDCSs) for outer-shell ionization show that
the inner-shell electrons do play a role in the process, e.g., via
core polarization by the projectile [12]. In K-shell-vacancy
production, on the other hand, the effects of the presence of all
electrons are important already at the level of the SDCS [11].

Here, we study cross sections differential in energy of the
outgoing electron and in the transverse momentum transfer by
applying a strategy of combining single-electron amplitudes.
In this way we incorporate the multielectron nature of the
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collision process into the theoretical model. We apply the two-
center basis generator method (TC-BGM) [13] to calculate
amplitudes for electron transitions within the target atom and
combine them with continuum-distorted-wave eikonal-initial-
state (CDW-EIS) [14] single-electron ionization amplitudes.
The combined amplitudes are then amended with a phase
factor that accounts for the nucleus-nucleus interaction and
are subsequently Fourier transformed in order to obtain the
DDCSs differential in the outgoing electron energy and in
the transverse momentum transfer. When compared with
experimental data, our results show improvements relative
to previous attempts and lead to a better understanding of
the underlying processes that take place during inner-shell-
vacancy production for this collision system.

This paper is organized as follows. The methodology to
extract multielectron information from single-particle ampli-
tudes is given in Sec. II. In Sec. III we present DDCSs
for the O8+-Li system at 1.5 MeV/amu together with a
careful analysis of the contributions that constitute the overall
DDCS. We draw conclusions in Sec. IV. We use atomic units
(� = me = e = 4πε0 = 1) throughout the paper unless stated
otherwise.

II. METHODOLOGY

We use the framework of the semiclassical approximation,
in which the projectile follows a straight-line trajectory R =
ρ + vt with impact parameter vector ρ and constant velocity v.
The cross-section differential in the outgoing electron energy
Ee and in the transverse momentum transfer η is given as

dσ

dEedη
= keη

∫ 1

−1
d(cos θe)

∫ 2π

0
dφe

∫ 2π

0
dφη

∣∣Rike (η)
∣∣2

,

(1)
with the transition matrix element Rike (η) for the transition
from the initial state to a state that includes an unbound electron
with momentum ke,

Rike (η) = 1

2π

∫
dρeiη·ρaike (ρ), (2)

and

aike (ρ) = eiδ(ρ)Aike (ρ). (3)
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Here, Aike (ρ) is the impact-parameter-dependent multielec-
tron amplitude calculated without the influence of the in-
ternuclear interaction, with details given below. The phase
accumulated during the collision process due to the projectile
interaction with the target nucleus δ(ρ) is given by (see, e.g.,
Ref. [15])

δ(ρ) = −
∫ ∞

−∞
dtVNN(R(t)), (4)

with the nucleus-nucleus (NN) potential

VNN(R) = ZP ZT

R
. (5)

Within the independent-electron (IEL) model the full three-
electron Hamiltonian of the collision problem is replaced by a
sum of single-particle operators,

He(t) =
3∑

i=1

(
− 1

2

i(t) + V

(
ri
t

) − Zp

ri
p

)
. (6)

The last two terms in Eq. (6) describe the interaction of the ith
electron with the target and the projectile, respectively; ri

t and
ri
p are the distances between the ith electron and the target and

the projectile, respectively, and Zp is the projectile charge.
The time-dependent Schrödinger equation (TDSE) with

the Hamiltonian given by Eq. (6) separates into a set of
single-particle equations whose solutions are used to calculate
electronic transition amplitudes for the three-electron system
in a completely specified final state. In order to do so we
assemble the single-particle solutions to form a Slater de-
terminant |ψ1s↑ψ1s↓ψ2s↑(ρ,t)〉, where the subscripts indicate
the initial single-electron states. We project it at t = tf onto
the three-electron final-state Slater determinant |α1↑α2↓α3↑〉,
where αi (i = 1,2,3) are the final states of interest [16],

Aα1↑α2↓α3↑ (ρ) = 〈α1↑α2↓α3↑|ψ1s↑ψ1s↓ψ2s↑(ρ,tf )〉. (7)

The overall DDCS for the process of interest to this
work, namely, vacancy production in the inner shell (with
the detached electron having a well-defined momentum ke), is
obtained by plugging Eq. (7) into Eq. (3) and working through
Eqs. (2) and (1) for every possible final state. The result can
be expressed as follows:

dσ vac

dEedη
=

∑
f �=1s

(
dσ1s↑f ↓ke↑

dEedη
+ dσf ↑1s↓ke↑

dEedη
+ dσ1s↑ke↓f ↑

dEedη

)
.

(8)
Here,

dσα1α2α3
dEedη

is the DDCS for the process with the final state
indicated by αi (i = 1,2,3) with the proper spin projections,
and the sum runs over the target bound-state manifold. After
some simplifications that are outlined in the Appendix we
arrive at

dσ vac

dEedη
= dσ excl

dEedη
+

∑
f �=1s,2s

dσ EI1
f

dEedη
+

∑
f �=1s

dσ EI2
f

dEedη

+
∑
f �=1s

dσ ex
f

dEedη
+ 
Ee,η, (9)

where we can distinguish the following processes and ampli-
tudes associated with them:

(i) In exclusive ionization, one 1s electron is removed,
whereas the two electrons that are left behind remain unaf-
fected,

Aexcl =
√

2A1s→1sA1s→keA2s→2s . (10)

(ii) Excitation ionization (EI1) involves one-electron re-
moval from the inner shell and one-electron excitation from
the outer shell, and the residual inner-shell electron remains
unaffected,

AEI1
f =

√
2A1s→1sA1s→keA2s→f . (11)

(iii) Excitation ionization (EI2) involves one-electron re-
moval from the outer shell and one-electron excitation from
the inner shell, and the residual inner-shell electron remains
unaffected,

AEI2
f =

√
2A1s→1sA1s→f A2s→ke . (12)

The last two terms on the right-hand side of Eq. (9) correspond

to exchange processes
dσ ex

f

dEedη
and an antisymmetry correction

term 
Ee,η that contains all the cross terms. The origin of
these terms is explained in the Appendix. They turn out to be
negligibly small and henceforth will be omitted [11].

(iv) In addition to the above, we introduce shake off,
a correlated two-electron process that has proven to be of
importance for the creation of low-energy electrons during
inner-shell-vacancy production [11]. One 1s electron is excited
while the 2s electron is shaken off, ending up in the continuum,
whereas the residual inner-shell electron remains unaffected,

Ashake
f =

√
2A1s→1sA1s→f A

overlap
2s . (13)

Following [11], we employed the independent-event (IEV)
model for the EI2 process, where, in our calculation, ionization
takes place from the valence shell of the target in the ground-
state configuration and the elastic scattering and excitation
processes take place after the inner electrons rearrange to the
Li+ ground-state configuration.

The amplitudes on the right-hand side of Eqs. (10)–(13)
are single-particle transition amplitudes, and

√
2 accounts for

the indistinguishability of the electrons in the K shell (see
the Appendix). In Eq. (13) A

overlap
2s is the overlap between the

outer-shell electron orbital and a continuum state of a modified
Hamiltonian with the proper outgoing electron energy [11].

Transition amplitudes for electron excitations for processes
(i)–(iv) are calculated using the TC-BGM [13]. The inter-
actions within the target atom [see Eq. (6)] have been ap-
proximated by the exchange-only optimized potential method
(OPM) of density-functional theory [17]. Single-particle TD-
SEs are solved using a basis that consists of 1s-4f target
states and 1s-4f projectile states together with 71 BGM
pseudostates [13]. Electron capture has been shown to be
very weak in this collision system [11], but the projectile
states are included nevertheless to ensure consistency with
the calculation of Ref. [11]. All basis states are endowed
with electron translation factors to ensure Galilean invariance.
Amplitudes for ionization, on the other hand, are obtained
from CDW-EIS due to the difficulties posed by the extraction
of these amplitudes from TC-BGM. We note that the ionization
probabilities calculated from both methods are in very good
agreement (see Fig. 1 in Ref. [11]).
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FIG. 1. Modulus of the 1s → 2p0 single-particle transition am-
plitude as a function of impact parameter. Solid magenta line:
TC-BGM; dashed black line: fit.

For the Fourier transform of Eq. (2) to be fully converged,
one needs the three-electron amplitudes (10)–(13) for impact
parameters up to a few hundred atomic units. Unlike the
CDW-EIS, the TC-BGM calculations give reliable results
only for a limited range of impact parameters. It is therefore
necessary to extrapolate the excitation amplitudes from TC-
BGM calculations, both their moduli and phases, to avoid
numerical issues within the Fourier transform procedure. In
Figs. 1 and 2 we depict an example of the absolute value and
phase, respectively, of a transition amplitude from TC-BGM
together with a fit for a range of impact parameters. For
the purpose of this work such fits were carried out for each
excitation channel.

The sums in Eq. (9) run over the target bound-state mani-
fold. Due to the restricted basis in the TC-BGM calculations we
truncate these sums at n = 4, where n is the principal quantum
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FIG. 2. Phase of the 1s → 2p0 single-particle transition ampli-
tude as a function of impact parameter. Solid magenta line: TC-BGM;
dashed black line: fit.

number. Even after the truncation the procedure is still very
demanding numerically, with the main challenge posed by
the two-dimensional (2D) Fourier transform of three-electron
amplitudes in Eq. (2) that has to be calculated for each channel.

We note that in most of the previous calculations for
the lithium MOTReMI experiments the single-active-electron
(SAE) model was used. It is important to stress that in the
SAE one does not account for interactions of the projectile
with the nucleus or the passive electrons in the single-particle
transition amplitude. Therefore, one should amend it by a
phase factor that incorporates a potential, VNN, that accounts
for these interactions, i.e., VNN = ZP ZT

R
+ Vscr(R) + Vpol(R),

where the last two terms on the right-hand side are the
screening potential of the passive electrons and a polarization
potential, respectively (see, e.g., [12]). It has been shown that
one has to properly take into account the phase accumulated via
VNN for a complete understanding of the outer-shell ionization
process [12]. In our IEL model it would be inconsistent to
include screening and polarization terms in VNN(R) since all
electrons are active. Vscr(R) is inherently accounted for in
this framework [15], while polarization would have to be
modeled in terms of a time-dependent effective potential in
the single-particle Hamiltonian.

Finally, we note that a similar approach was employed ear-
lier to calculate SDCSs where, however, probabilities, instead
of amplitudes, for different transitions have been combined.
In that case it was not necessary to carry out the 2D Fourier
transform. The approach allowed us to explain SDCSs for the
O8+-Li collision system at 1.5 MeV/amu [11]. However, it
did not agree well with the experimental observations for the
case of Li2+-Li collisions at 2.29 MeV/amu [8].

III. RESULTS

The method just outlined gives access to calculating the
DDCS differential in the outgoing electron energy Ee and
in the transverse momentum transfer η. This is not possible
when we have transition probabilities as a starting point (see
Ref. [11]). The SDCSs can be calculated by integrating the
DDCSs of Eq. (1) over the transverse momentum transfer for
every Ee. To connect our work to the previous findings we
cross-checked our overall SDCS results as well as results for
the SDCSs for the contributing processes with those of [11]
and concluded that the agreement between the two approaches
is very good (not shown).

Now we turn our attention to the results for inner-shell-
vacancy production obtained from the procedure outlined in
the previous section. We compare the results of the present
calculations with the SAE results from the CDW-EIS model
and with the experimental data.

The original experimental data from Ref. [6] are only
relative. In Ref. [4] the SDCSs were normalized using
SAE CDW-EIS for the 2s ionization channel for which the
multielectron effects were found to be unimportant. The SDCS
is obtained by integrating the experimental DDCS for the
lowest Ee = 2 eV over the transverse momentum transfer.
It is then normalized to match the experimental value of the
SDCS from Ref. [4]. This procedure fixes the normalization
of all channels (in K-shell ionization for Ee = 2, 10, 20 eV).
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FIG. 3. DDCS for the 1.5 MeV/amu O8+-Li collision system as
a function of impact parameter for three outgoing electron energies:
Ee = 2 eV (orange), 10 eV (blue), 20 eV (black). Solid lines: present
overall results; dashed lines: CDW-EIS in the SAE approximation.

Finally, we carefully study the contributions to the overall
DDCS from processes (i)–(iv) introduced in the previous
section.

A. DDCSs

In Fig. 3 we compare our overall results for electron
energies Ee = 2, 10, 20 eV (solid lines) with SAE CDW-EIS
results (dashed lines). When comparing with Ref. [6], we note
that our own SAE CDW-EIS results agree very well in shape,
but we do not apply any arbitrary factors to change the spacing
between the curves for all three energies.

The SDCS differential in the energy of the outgoing
electron was shown to have a very weak dependence on the
electron energy in the range of interest when calculated in
the SAE model [11]. This trend is also seen in the case
of the DDCSs; that is, the dashed lines are very close to
each other. The SAE CDW-EIS theory predicts that for low
transverse momentum transfers (which classically correspond
to large impact parameters, i.e., distant collisions) it is more
likely to produce low-energy electrons, and for high transverse
momentum transfers one obtains more high-energy electrons.
The orange (2 eV) and blue (10 eV) dashed curves cross at
transverse momentum transfer η ≈ 0.67 a.u., and the blue
(10 eV) and black (20 eV) dashed curves cross at around
η ≈ 1.10 a.u.

After the multielectron processes have been incorporated,
the SDCS decreases much more rapidly with increasing
outgoing electron energy [11]. At the level of the DDCS
this leads to the cross sections being more separated from
each other, as seen in Fig. 3 (solid lines). Moreover, the lines
never cross and tend to be parallel at η > 2.5 a.u. Hence, slow
electrons are more likely to be released than the fast ones for
the whole range of η.

Our results are compared with the experimental data in
Fig. 4. The similarity in shape of the theoretical and exper-
imental results for Ee = 2 eV up to η ≈ 2.2 a.u. is striking.
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FIG. 4. DDCS for the 1.5 MeV/amu O8+-Li collision system
as a function of impact parameter for three outgoing electron
energies: Ee = 2 eV (orange), 10 eV (blue), 20 eV (black). Squares:
experimental data from Ref. [6]; solid lines: present overall results.

The general trend of the theoretical curve lying below the
experimental points is attributed to the fact that only a limited
number of excitation channels have been accounted for (up to
n = 4). In the case of the SDCS incorporation of all excitation
channels in an approximate way increased the cross section by
20% [11]. This fact, we believe, explains the small difference
between theory and experiment for low momentum transfers.
An analogous approximation on the level of amplitudes is
not possible without introducing arbitrary phases of excitation
amplitudes, causing unpredictable changes in the DDCSs.
Therefore, we refrain from extrapolating the excitation am-
plitudes for n > 4.

The sudden decrease of DDCSs at around η = 2 a.u. at
small electron energies seen in [6] is now deemed to be
an artifact caused by the limited experimental momentum
acceptance [18]. Therefore, we have removed the three
experimental points for Ee = 2 and 10 eV for the highest
transverse momentum transfer [compare Fig. 4 with Fig. 3(b)
from [6]].

The agreement between theory and experiment is less satis-
fying for the two higher outgoing electron energies (Ee = 10
and 20 eV). While the general trend of the experimental results
appears to be reproduced, the extended plateaus between
η = 0.25 a.u. to η = 0.75 a.u. and η = 0.25 a.u. to η = 1.0 a.u.
for Ee = 10 eV and Ee = 20 eV, respectively, are not ac-
counted for properly. Instead of the aforementioned plateaus,
the theoretical results display narrower maxima followed
by “knees” that widen the distribution over the momentum
transfer as compared to the SAE CDW-EIS results.

We elaborate more on the origin of the maxima and
knees in the next section. For momentum transfers between
the maxima and knees there is a region for which a large
discrepancy between theory and experiment is observed.
Moreover, similar to the case of the lowest outgoing electron
energy, the theory overestimates the experimental data for high
momentum transfers, especially for Ee = 10 eV. Nevertheless,
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FIG. 5. Partial contributions to the DDCS for processes (i)–(iv),
the overall DDCS, and SAE CDW-EIS results for the O8+-Li system
at 1.5 MeV/amu collision for outgoing electron energy Ee = 2 eV.

there is significant improvement compared to the SAE CDW-
EIS results, allowing us to conclude that we qualitatively
understand the experimental data.

To elucidate the role of the multielectron processes for this
collision system we now turn to a discussion of each process
individually.

B. Contributions

Each process discussed in Sec. II has a different dependence
on the transverse momentum transfer η for different outgoing
electron energy Ee. This results in a distinct variation of the
magnitude of the DDCS for different Ee and in different shapes
of each DDCS, as seen in Figs. 3 and 4. The contributions
are depicted in Figs. 5, 6, and 7 for Ee = 2, 10, and 20 eV,
respectively.
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FIG. 6. Same as Fig. 5, but for outgoing electron energy Ee =
10 eV.
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FIG. 7. Same as Fig. 5, but for outgoing electron energy Ee =
20 eV. The shake-off process has been removed due to the negligible
influence on the overall DDCS.

The DDCSs for processes with the inner-shell electron
detachment as the ionization channel, as well as the shake
process [(i),(ii), and (iv)], resemble the SAE results; that is,
they have narrow maxima at low values of the momentum
transfer and decrease rapidly with increasing η. The EI2
DDCS, on the other hand, peaks at larger η and decreases
less rapidly as η increases. This behavior is inherited from
the outer-shell ionization [see Figs. 1(c)–3(c) of Ref. [12]
for the valence-shell ionization DDCSs] by combining the
outer-shell ionization amplitude with amplitudes for inner-
shell excitations and elastic scattering. While all the processes
from (i) to (iv) play an important role in increasing the overall
DDCS to match the experimental values at low η, it is the EI2
process that is responsible for the broadening of the DDCS
such that it agrees well with the experiment at Ee = 2 eV
(Fig. 5).

As the energy of the outgoing electron Ee increases, the
partial DDCS shapes for all the aforementioned processes,
except the EI2 process, remain practically unchanged, and
only the overall strength diminishes. In particular the shake-off
process becomes negligible at Ee = 20 eV. The DDCS for the
EI2 process, on the other hand, is clearly suppressed, changing
the shape most noticeably (see Figs. 5, 6, and 7): the maximum
moves to higher momentum transfers as Ee increases. This
trend allows us to explain the broadening of the experimental
DDCS, as well as the appearance of knees described in the
previous section. Hence, it can be concluded that the shift
of the maximum in the EI2 DDCS with increasing outgoing
electron energy is responsible for the broadening of the overall
DDCS. This feature improves the agreement with the exper-
imental data for most of the transverse momentum transfer
range.

Finally, we note that calculations for the H+-Li system
at 6 MeV/amu have shown that for weak perturbations
the role of multielectron processes becomes negligible. A
similar observation has been made for the Li2+-Li system at
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2.29 MeV/amu [8]. In the latter case multielectron processes
amounted to less than 10% of the overall SDCS, whereas
for the H+-Li system at 6 MeV/amu these contributions are
less than 1%. The cause of the observed discrepancy between
theory and experiment for these systems remains unknown but
can perhaps be attributed to electron correlations that are not
accounted for in our model.

IV. CONCLUSIONS

We presented a method to analyze multielectron processes
by combining TC-BGM results for excitation with CDW-EIS
results for ionization at the level of amplitudes. This approach
allowed us to explain the experimental DDCSs for the O8+-Li
collision system at 1.5 MeV/amu. We attribute the leading
role in broadening the DDCSs compared to SAE CDW-EIS
results to excitation-ionization processes, in particular, the EI2
process.

Multielectron processes become less important as the
perturbation parameter (β = Zp/v) decreases. Hence, it would

be interesting to see experimental results for systems with
perturbation parameter between β = 1.03 for the O8+-Li
collision system at 1.5 MeV/amu [6] and β = 0.21 for Li2+-Li
collisions at 2.29 MeV/amu [8]. This would allow us to trace
how the role of the multielectron processes scales with the
perturbation parameter.
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APPENDIX

We show the validity of Eq. (9) by exploiting the approach given by Eq. (7). The three-electron amplitude for a given set of
spin projections is written as

Aα1↑α2↓α3↑ =
∣∣∣∣∣∣
〈α1↑|ψ1s↑〉 0 〈α1↑|ψ2s↑〉

0 〈α2↓|ψ1s↓〉 0
〈α3↑|ψ1s↑〉 0 〈α3↑|ψ2s↑〉

∣∣∣∣∣∣, (A1)

where we made use of the fact that due to the lack of spin dependence of the Hamiltonian, projections of the final single-electron
wave functions onto final states with an opposite spin projection are zero, and henceforth, we omit the spin projections for brevity
with the exception of the subscripts in the amplitudes that follow to specify the final-state configuration.

To sketch the steps to get from Eq. (8) to Eq. (9) we write the amplitudes of interest as

A1s↑f ↓ke↑ =
∣∣∣∣∣∣
〈1s|ψ1s〉 0 〈1s|ψ2s〉

0 〈f |ψ1s〉 0
〈ke|ψ1s〉 0 〈ke|ψ2s〉

∣∣∣∣∣∣ = 〈1s|ψ1s〉〈f |ψ1s〉〈ke|ψ2s〉 − 〈ke|ψ1s〉〈f |ψ1s〉〈1s|ψ2s〉, (A2)

Af ↑1s↓ke↑ =
∣∣∣∣∣∣
〈f |ψ1s〉 0 〈f |ψ2s〉

0 〈1s|ψ1s〉 0
〈ke|ψ1s〉 0 〈ke|ψ2s〉

∣∣∣∣∣∣ = 〈f |ψ1s〉〈1s|ψ1s〉〈ke|ψ2s〉 − 〈ke|ψ1s〉〈1s|ψ1s〉〈f |ψ2s〉, (A3)

A1s↑ke↓f ↑ =
∣∣∣∣∣∣
〈1s|ψ1s〉 0 〈1s|ψ2s〉

0 〈ke|ψ1s〉 0
〈f |ψ1s〉 0 〈f |ψ2s〉

∣∣∣∣∣∣ = 〈1s|ψ1s〉〈ke|ψ1s〉〈f |ψ2s〉 − 〈f |ψ1s〉〈ke|ψ1s〉〈1s|ψ2s〉. (A4)

Using Eqs. (A2)–(A4), we can express Eq. (8) via Eqs. (1)–(3) as

dσ vac

dEedη
=

∑
f �=1s

⎛
⎜⎜⎝

dσ
1s → 1s

1s → f

2s → ke

dEedη
+

dσ
1s → ke
1s → f

2s → 1s

dEedη
+

dσ
1s → f

1s → 1s

2s → ke

dEedη
+

dσ
1s → 1s

1s → ke
2s → f

dEedη
+

dσ
1s → ke
1s → 1s

2s → f

dEedη
+

dσ
1s → f

1s → ke
2s → 1s

dEedη
+ 


f

Ee,η

⎞
⎟⎟⎠ (A5)

=
∑
f �=1s

⎛
⎜⎜⎝2

dσ
1s → 1s

1s → f

2s → ke

dEedη
+ 2

dσ
1s → ke
1s → f

2s → 1s

dEedη
+ 2

dσ
1s → 1s

1s → ke
2s → f

dEedη
+ 


f

Ee,η

⎞
⎟⎟⎠ (A6)

= dσ excl

dEedη
+

∑
f �=1s,2s

dσ EI1
f

dEedη
+

∑
f �=1s

(
dσ EI2

f

dEedη
+ dσ ex

f

dEedη
+ 


f

Ee,η

)
, (A7)
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where
dσ

1s → α1
1s → α2
2s → α3

dEedη
are the DDCSs for the transitions to the |α1α2α3〉 final state and 


f

Ee,η
consists of all the cross terms. Finally,

the factors of 2 in Eq. (A6) are incorporated into the respective amplitudes, resulting in
√

2 factors in Eqs. (10)–(12).
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