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Abstract 

This paper presents the use of self-assembled molecular (SAM) layers of 

fluorophosphonic acids developed on aluminum surface. The SAM monolayers were 

adsorbed from ethanol solution, characterized by surface morphology visualized by 

atomic force microscopy, by the wettability by contact angle measurements. 

The anticorrosion efficiency of the nanolayers determined by ex situ AFM measurements 

and by electrochemical techniques, which indicated the importance of the 

fluorophosphonic acid concentration and of the film formation time in the molecular 
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deposition process. The morphological change with or without nanolayers caused by the 

corrosive environment was in accordance with the electrochemical results. 

 

Key words: fluorophosphonic acid; SAM layers; corrosion inhibition; dynamic contact 

angle; AFM; electrochemical polarization. 

 

1. Introduction 

Aluminum and its alloys are widely used in many industries. In special engineering 

fields, such as in reaction vessels, pipes, machinery, in aviation, automotive industry, 

electronics, and in construction business, the use of aluminum is due to its low density 

and favorable mechanical properties such as excellent durability. The aluminum is an 

active metal and its resistance to corrosion depends on the formation of the protective 

oxide film; the environment influences its behavior. The corrosion resistance of 

aluminum alloy in aggressive environment is not good, as the natural oxide film on 

aluminum alloy cannot offer sufficient protection against aggressive anions. Therefore, 

there are several effective anticorrosion inhibitors like nitrate, phosphate, phosphonic 

acids [1-3]  and other organic molecules; [4] used in dissolved form that can control the 

metal dissolution either in acidic, in alkaline or in neutral solutions. The presence of 

chloride ion is a special case as the aluminum is very sensitive for the pitting corrosion 

[5]. 

In addition to corrosion inhibitors (organic and/or inorganic), there are other methods to 

protect the aluminum and its alloys from corrosion such as coatings (metallic, inorganic, 

conversion and organic coatings), as well as control of environment (pH, temperature, 

dissolved oxygen).  

One of these possibilities to control aluminum dissolution is when nano- or microlayers 

are developed on the metal surface. An example is the use of layers formed via sol-gel 

technology [6]. The application of organic silane derivatives in thin film can also prevent 

the aluminum from corrosion [7,8]. In other cases, amphiphilic molecules form molecular 

films on the metal surface, and control the dissolution of aluminum [9-11]. The molecular 
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layer formation can happen via different techniques like Langmuir-Blodgett and self-

assembling methods (SAM).The SAM layer technology is one of the most effective 

methods, which improves the corrosion resistance of aluminum and its alloys. The 

advantage of the SAM technique is that it is very simple, environmentally friendly, has of 

great interest because of several application in many engineering field e.g. in 

microelectronics, biosensors, and so on. The basic principle of self-assembly technology 

is physical or chemical adsorption between the head groups of the amphiphilic molecules 

and the surface of the solid substrate at the solid/liquid interfaces. When a solid substrate 

immerses in an organic surfactant solution, the functional groups of surfactant molecules 

are able to adsorb spontaneously onto the solid surface, the hydrophobic side chains are 

kept together via van der Waals forces, hydrogen bonding, π-π stacking, and, the 

consequence is a structured molecular layer formation. The history of the self-assembling 

technique goes back to the eighties of the last century; its importance continuously 

increases. The first experiments were done on gold and copper surface with alkane thiols, 

which mainly chemisorbs on an oxide-free metal surface. Controversially, the carboxylic, 

phosphonic and sulfonic acids form SAM layers only on oxide film of metals. 

Phosphonic acid SAMs are increasingly used for building thin films [12-15] due to their 

ability to form well defined and stable layers on oxide surfaces [1-14]. As a native oxide 

film covers almost all engineered metals, the application of organic SAM coatings for 

corrosion protection is of high technological importance [16-19]. The adsorption of 

phosphonic acids in organic film on aluminum oxide surfaces is of substantial interest, as 

they form not only very stable monolayer on aluminum alloys covered with an 

amorphous thin oxide film [15, 20-23] but their self assembled molecular films promote 

the adhesion of a further coating. Maege et al. investigated the adhesion of different 

organophosphonates on aluminum alloys and assumed an acid-base interaction with a 

tridentate binding [25]. In some cases, the influence of the length and substituents in the 

alkyl chain were in the focus of the work. Other papers reported the influence of the 

substituents and the heat treatments on the effectiveness [25-31]. Some reports appeared 

on the anticorrosion effectiveness of phosphonic acid SAM layers on aluminum surface 

[32,33]. All reports unequivocally demonstrated that with increasing alkyl chain length 
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the efficiency increases. The phosphonic head group physicsorbs more stably than the 

carboxylic or sulphonic groups on solid metals. 

In the present work, we demonstrate the deposition of SAM layer on aluminum surface 

from a special amphiphile, i.e. from fluorophosphonic acid. Fluorinated alkyl phosphonic 

acids (typically utilized materials bearing seven- and eight-carbon perfluoroalkyl groups) 

in self-assembled monolayers, often employed in soil resistant and release coatings, have 

gained wide acceptance as they go better than  alternative materials with hydrocarbon or 

silicone tails [34]. The fluorophosphonic acid layer deposition was followed by 

measuring the change in the wettability via contact angle measurement. The anticorrosion 

effectiveness of the SAM layers was characterized by potentiodynamic polarization test 

informed us about the change in the corrosion current and in the shift of the corrosion 

potential and allowed the calculation of the efficiency. In the presence of aggressive 

electrolyte the AFM measurements provided numerical data on the roughening of the 

aluminum surface with and without nanolayer. 

2. Materials and Methods 

2.1 Materials used in the experiments 

The metal sample was aluminum alloy 5052 (99.8Al. 0.8Mg). 

The fluorophosphonic acid (CH3-(CF2)5-CH2-CH2-PO3H2; Specific Polymers, Castries, 

France; SP-01-003; MW: 421.1) was dissolved without further purification in methanol 

for preparation of SAM layers. Methanol, ethanol, isopropanol, sodium chloride and 

sodium perchlorate were Sigma-Aldrich products.  

2.2 Pretreatment of coupons before SAM deposition 

The aluminum coupons were degreased in isopropanol  as well as in ethanol (ultrasonic 

bath, 2x5 min), and kept in boiling distilled water for 1 hour (to cover the aluminum 

surface homogeneously with oxide film, as this amphiphilic molecule can adsorb only  

onto the oxide layer). The coupons were dried on air at room temperature and kept under 

normal atmosphere before layer preparation 

2.3 Preparation of organic layers 

The SAM layer on the aluminum alloy surface was prepared in fluorophosphonic acid  

solutions (5x10
-3 

M as well as 5x10
-2 

M in methanol) by dipping the oxidized coupons 

into the amphiphilic solutions for pre-defined times. After removal from the 
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fluorophosphonic acid solutions the metal samples were rinsed with pure methanol, dried 

in nitrogen and kept in exsiccator till the characterization, investigation.  

2.4 Characterization and evaluation of the aluminum alloy surface alone or after 

modification by fluorophosphonic acid SAM layer 

 

Dynamic contact angles were measured in distilled water at room temperature by a 

digital surface tensiometer (NIMA Ltd., Model DST 9005; UK), which works on the 

Wilhelmy-theory and registers the dynamic contact angle. The aluminum alloy coupons 

with or without organic films were automatically dipped in and pulled out from ultrapure 

water (MilliQ) with a rate of 8 mm/min.  The contact angle values and the hysteresis 

were registered. 

Surface morphology visualized by atomic force microscopy 

The aluminum alloy surface with and without nanolayers were visualized by atomic force 

microscope (Digital Instrument, NanoScope 3) under atmospheric condition. The analysis 

of the captured images allowed the evaluation of the surface roughness of the aluminum 

alloy coupons with and without SAM layers, before and after interaction with aqueous 

electrolyte solutions (0.5M NaCl and 0.1M NaClO4).  

Electrochemical measurements were performed by Autolab PGSTAT 30 Autolab 

instrument (Metrohm) in 0.5 M NaCl solution, at room temperature in a three-electrode 

system. The aluminum alloy working electrode (3.14 cm
2
) was covered either only by 

natural oxide layer, or, on the top of the oxide layer, by SAM layer of fluorophosphonic 

acid. The counter electrode was a platinum plate and a saturated calomel electrode (SCE) 

was the reference. The samples in the electrolyte were initially stabilized at least for half 

an hour to reach a constant Ecorr value. The scanning rate in the potentiodynamic 

polarization tests was 0.5 mV/s in the range of −1100 mV and + 1000 mV. 

3. Results and discussion 
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3.1 Change in the wettability after nanolayer deposition 

The adsorption of phosphonic acids on aluminum surface is really an acid-base reaction, 

when the driving force is the formation of a surface salt [35]. This fact is well known 

from the spontaneous formation of nanolayers from long-chain n-alkanoic acids [36]. In 

contrast to the alkanoic acids the phosphonic acids form salts with aluminum oxide which 

is practically insoluble in water. (On the AFM image in Figure 2. the markings of the salt 

are visible on the surface.) This may be one of the reasons for the high stability of these 

SAMs. The change in the contact angel values (which characterizes the wettablility) was 

followed, on one hand, by registration of the influence of the amphiphile concentration 

and, on other hand, by the investigation of the layer deposition time. The instrument we 

used, measures the so-called dynamic contact angle when the solid sample is dipped into 

(in our case: in water) and pulled out from the liquid with a pre-determined rate; both the 

advancing and the retracting contact angels are registered. When the dipping-in and 

pulling-out process happens not only ones, but several times, the change in the contact 

angles shows the stability of the nanolayer and the coverage of the surface. When the 

hysteresis is significant, the layer under investigation can absorb the liquid, which 

indicates the non-compact structure of the nanolayer. Dynamic contact angle data 

measured on fluorophosphonic acid SAM layers are summarized in Table 1.  

Table 1: The influence of the amphiphile concentration, of the layer formation time and 

the number of dipping on the wettablity of the aluminum surface covered by SAM layer.  

 

 

Fluorophosphonic 

acid concentration 

SAM formation 

time [h] 

Contact angle, 

advancing [°] 

Contact angle, 

retracting [°] 

methanol 4 1
st
 dip: 65 35 

methanol 4 4
th

 dip: 42 35 

5x10
-3 

M 4 1
st
 dip: 175 65 

5x10
-3 

M 4 2
nd

 dip: 130 57 
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5x10
-3 

M 4 3
rd

 dip: 118 53 

5x10
-3 

M 4 4
th

 dip. 110 50 

5x10
-3 

M 4 5
th

 dip: 103 50 

5x10
-3 

M 48 1
st
 dip: 168 95 

5x10
-3 

M 48 2
nd

 dip:163 93 

5x10
-2 

M 4 1
st
 dip:138 130 

5x10
-2 

M 48 1
st
 dip:145 133 

5x10
-2 

M 48 2
nd

 dip: 135 133 

5x10
-2 

M 48 3
rd

 dip: 135 133 

5x10
-2 

M 48 4
th

 dip. 135 133 

5x10-
2 

M 48 5
th

 dip: 135 133 

 

It is clear that the deposition of the SAM layer endows the surface with more 

hydrophobic character than that of the pure aluminum alloy. In order to see the influence 

of the solvent, the coupons were immersed into the pure organic solvent used for the 

layer preparation for the same time. When the film formation time is longer, the layer is 

more stable, its hydrophobicity does not change with the dipping numbers significantly 

which shows that the coverage of the surface with the amphiphilic molecules is more 

complete. This observation is supported by the analysis of the difference between 

advancing and retracting angles. In general, across this series of experiments the average 

contact angles increase and reach limiting values, depending on the concentration of the 

amphiphile and on the dipping time.  Longer film formation time gives similar result as 

the more concentrate amphiphilic solution, i.e. both factors produce more compact SAM 

layer on the aluminum alloy surface. Other important observation is that in the case of 

more concentrated amphiphile solution the contact angle values are stable even after 

several dipping into water and, additionally, the retracting angle values are very high, the 

difference between the advancing and retracting angles is little. 

3.2 Analysis of the aluminum alloy surface by atomic force microscopy 
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In order to get information about the change on the aluminum alloy surface morphology 

before and after corrosion tests, the solid surfaces with or without nanolayers were 

imaged. It is important to mention that the amorphous metal alloy surface was not 

grained and polished; it was used as-received for the layer deposition.  

The aluminum alloy surface was visualized before and after contacting with the two 

electrolytes. One was the sodium chloride solution, which induces pitting corrosion. The 

other one was sodium perchlorate solution, which is a so-called “neutral” electrolyte. The 

AFM images in the next figures adumbrate into the influence of both electrolytes on the 

aluminum alloy surface with and without nanolayers.  

    
Figure 1. Oxide layer covered aluminum alloy surface visualized by 3D and section analysis.  

 
Figure 2. Fluorophosphonic acid SAM layer on aluminum alloy surface visualized by 3D and 

section analysis.  

 

 

 
 

Figure 3. Aluminum alloy surface without nanolayer in sodium choride for 1 h, visualized by 3D 

and section analysis.  
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Figure 4. Aluminum alloy surface without nanolayer in sodium perchlorate for 1 h, visualized by 

3D and section analysis.  

 

 

 

 
 

Figure 5. Aluminum alloy surface covered by fluorophosphonic acid SAM layer in sodium 

chloride for 1 h, visualized by 3D and section analysis.  

 

 

                                        
Figure 6. Aluminum alloy surface covered by fluorophosphonic acid SAM layer in sodium 

perchlorate for 1 h, visualized by 3D and section analysis.  

  

 

In order not only qualitatively but also quantitatively evaluate the AFM images, the 3D 

images were analyzed and the surface roughness registered (Table 1). 

 
Table 2. Roughness and depth analysis data derived from AFM images, measured on aluminum 

alloy samples with and without SAM layers (SAM formation time: 4 hours in 5x10
-2 

M 

fluorophosphonic acid solution; electrolytes: NaCl and NaClO4 solutions for 1 h at room 

temperature) 

 
Sample RMS [nm] max. peak depth [nm] 

Al 9.36 122 

Al + NaCl 86.2 413 

Al + NaClO4 139.0 422 
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Al + fluorophosphonic acid SAM 11.5 88 

AL + fluorophosphonic acid SAM + NaCl 14.5 145 

Al + fluorophosphonic acid SAM + NaClO4 26.2 217 

 

According to the 3D image in Figure 1 the oxide-covered aluminum alloy surface is 

smooth which is reflected in the section image and in the RMS as well as in the depth 

analysis values. The presence of NaCl solution on the aluminum changes the surface 

rough with visible pits. All these are visible on the section images and demonstrated by 

the increased RMS and peak depth values.   

The roughness of the aluminum alloy surface in the presence of the chloride anion is 

about 10x higher than without the aggressive anion. Pits are visible on the surface; their 

depth is in the range of 100 nm and 370 nm. The metal surface turned to be much more 

uneven when it interacted with sodium perchlorate electrolyte. In this case the coarseness 

is about 14-time higher that reveals the most intensive roughening of the aluminum alloy. 

The corrosive damages reveal themselves in broad and wide holes that are representative 

for general corrosion. This is very peculiar as the perchlorate anion – from the corrosion 

point of view – is considered to be a neutral electrolyte. This unexpected behavior needs 

further investigation.  

When the aluminum oxide surface is covered by the SAM nanolayer formed from 

fluorophosphonic acid, the surface morphology is typical, it is covered by repetitive 

patterns, that demonstrates the deposited molecular layer which formed insoluble salts; 

the height of these protruding particles are measurable, and are in the range of 20-45 nm.  

When the electrolytes interact with the nanolyer covered aluminum surface, the presence 

of the SAM layer on the metal surface decreases significantly the effect of the aggressive 

ions i.e. of the sodium chloride and sodium perchloride. Both the section images and the 

RMS values confirm what is visible on the 3D AFM images: the presence of the 

molecular layer inhibit the interaction of electrolyte with the metal surface. It is reflected 

in the smooth surface and in the not significantly altered RMS values. 

3.3 Anticorrosion effectiveness characterized by electrochemical measurements 

Electrochemical measurements were applied to show the anticorrosion efficiency of the 

nanolayers. The potentiodynamic measurements demonstrate that the SAM layer of the 

fluorophosphonic acid shifts the corrosion potential into the anodic direction (from -838 
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mV to -697 mV) and decreases both the anodic metal dissolution and the cathodic 

reduction processes (Figure 7). The inhibitive efficiency was 99.02% which was 

calculated from the corrosion current measured on bare metal and on the SAM layer 

coated metal surface by the equation: E (%) = [1- icorr, inhib/icorr bare] x100 (where E means 

efficiency; icorr, inhib is the corrosion current measured on the coated surface; icorr bare is the 

corrosion current measured on the bare metal surface. 

 

 

Figure 7. Tafel plots measured on pure aluminum alloy surface and on metal surface 

covered by fluorophosphonic acid SAM layer (electrolyte: 0.1 M NaCl solution; layer 

formation in 5x10
-2 

M fluorophosphonic acid solution for 4 hours) 

 

The electrochemical impedance spectroscopic measurements also proved the 

effectiveness of the nanolayer in sodium chloride solution. As the Figure 8 demonstrates 

the layer compactness increased with increasing time. The charge transfer resistance of 

the layer is significantly higher after 244 hours than at 24 hours. 

All results got by different techniques (contact angle values, Tafel curves, AFM) on 

aluminum alloy are in accordance with those measured in the presence of SAM layer of 

the same amphiphile on carbon steel: with increasing the concentration and the layer 

formation time the effectiveness of the molecular layer increases [37].   
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Figure 8. EIS spectra measured on pure aluminum alloy surface and on the metal surface 

covered by fluorophosphonic acid SAM layer (electrolyte: 0.1 M NaCl solution; layer 

formation in 5x10
-2 

M fluorophosphonic acid solution for 4 hours) 

4. Conclusion 

Compact self assembled nanolayer of fluorophosphonic acid was developed on aluminum 

alloy oxide surface.  It was characterized by measuring the change of the wettability in 

water. The anticorrosion activity of the molecular film was demonstrated by the change 

in the roughness on the surface of the metal, metal/SAM layer, metal/electrolyte and 

metal/SAM/electrolyte by using atomic force microscopy. In the presence of both 

electrolytes (sodium chloride and sodium perchlorate) the metal oxide surface was 

destroyed. The chloride ions caused pitting corrosion, the perchlorate ions general 

corrosion. The presence of the SAM layer did not allow the undesired effect of the 

anions; the surface remained smooth, almost intact after the corrosion test. The 

changed/unchanged the morphology visualized by AFM was one of the instruments to 

prove the effectiveness of the nanolayers. Electrochemical measurement 

(potentiodynamic polarization and EIS) also confirmed the usefulness of the 

fluorophosphonic acid nanolyers on aluminum surface against pitting and general 

corrosion. 
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