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Abstract 

 This paper concerns the selective oxidation of ethylene (EE) to acetaldehyde (AL) and 

acetic acid (AA) by oxygen in the presence of steam over non-supported Pd/V2O5 catalyst and 

over Pd/V2O5 catalysts supported by SiO2, TiO2, γ- Al2O3, and α-Al 2O3. A flow-through 

microreactor was applied at atmospheric pressure in the temperature range of 150-200 oC. The 

WHSV of EE was 0.17 or 0.84 h-1. The vanadia content of the supported catalysts was 

17 wt%, whereas their Pd content was 0.8 wt %. The reducibility of vanadia was determined 

using temperature-programmed reduction by hydrogen (H2-TPR). Applying ultraviolet-visible 

(UV-vis) spectroscopy and X-ray diffractometry (XRD) different vanadia species were 

identified over different supports. In the Pd/V2O5/α-Al 2O3 catalyst the vanadia had the same 

structure than in the Pd/V2O5 preparation. Even the low surface area α-Al 2O3 support affects 

the Wacker oxidation activity of the catalyst. Vanadia, deposited on the surface of TiO2 or γ-

Al 2O3 forms easily reducible polymeric species. In interaction with Pd this polymeric species 

is responsible for the total oxidation EE to CO2. Palladium, bound to the surface of bulk V2O5 

or to monomeric vanadate-like species on silica, forms Pd/VOx redox pairs, which are active 

and selective catalytic centers of the Wacker reaction. The Wacker mechanism was verified by 

test reactions, where one of the four components, such as Pd, V2O5, O2, or H2O, was left out 

from the reacting system. In absence of any of the components no selective catalytic partial 

EE oxidation proceeded, indicating that the Wacker mechanism could not operate. 

 

Keywords: Ethylene oxidation, Wacker mechanism, supported Pd/VOx catalysts, UV-vis 
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1. Introduction 

 Oxidative dehydrogenation of ethane is rapidly growing technology of ethylene (EE) 

production. Due to phasing out of naphta pyrolysis technology of EE production, where 1,3-

butadiene (BD) was obtained as by-product, a need is emerging for alternative BD production 

technologies. Ethylene is a plausible raw material of BD production. It is known for long that 

BD can be obtained by the catalytic conversion of ethanol (EL) or preferably by reacting EL 

and acetaldehyde (AL). Ethanol can be obtained from EE by catalytic hydration [1]. Biomass-

derived ethanol can be also used [2, 3]. To obtain AL from EE, selective catalytic oxidation 

must be carried out. The expectedly growing demand for AL motivated us to study the 

heterogeneous catalytic selective EE oxidation to AL. 

  Two technologies were developed for the production of BD from EL. In the Lebedev 

process [4] EL is converted to BD over mixed oxide catalyst, like MgO/SiO2 or ZnO/Al2O3. 

The first step of obtaining BD from EL is dehydrogenation EL to obtain AL. The reaction 

proceeds then through consecutive reactions, such as, aldol addition, dehydration, and 

hydrogenation, to get intermediates, 3-hydroxybutanal, crotonaldehyde, and crotyl alcohol, 

respectively, and, as a final step, dehydration of crotyl alcohol to get 1,3-BD. Hydrogenation 

of crotonaldehyde intermediate to alcohol can occur in the reaction mixture through transfer 

hydrogenation by EL. 

 In another technology, known as Ostromislensky process [5], a mixture of EL and AL is 

converted over alumina or clay catalyst. This technology applies two sequential catalytic 

reactors. In the first reactor EL is dehydrogenated to AL, whereas in the second one the 

produced AL reacts with co-fed EL to form BD.  

 Several studies revealed [6, 7] that higher yield of BD was obtained from a feed of AL/EL 

mixture than from pure EL. Therefore, there is an obvious interest to get AL from the readily 

available EE. Niiyama et al. [6] showed that AL could not be converted into BD over 

SiO2/MgO catalyst at all. Under the same reaction conditions the conversion of pure EL and 

10 vol % AL/EL mixture to BD were 10 % and 30 %, respectively. The reaction was studied 

also over ZrO2/SiO2 and Ta2O5/SiO2 catalysts. [7,8]. At a somewhat higher AL content of the 

feed the molar conversion of the AL/EL mixture was near to 30-40 %, whereas the BD yield 

was also about 20-30 %. From ethanol only, under the same reaction conditions, only EE and 

diethyl ether were obtained. 

 Above discussion suggest that besides processing bioethanol the processing of cheap EE 

is an alternative route of BD production. The raw material EE can be hydrated to EL in one 
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reactor, partially oxidized to AL in another reactor, and EL and AL is mixed and converted to 

BD in a third reactor  

 The heterogeneous catalytic hydration of EE to EL is a well-known acid catalyzed process 

[9]. Since 1960 the Wacker process is prevailing for the catalytic oxidation of EE to AL [10]. 

 The Wacker process realizes the aqueous-phase oxidation of EE by dioxygen in presence 

of HCl, PdCl2 and CuCl2. The catalytic cycle rests on the cooperation of Pd2+/Pd0 and 

Cu2+/Cu+ redox couples. During the oxidation of EE Pd2+ is reduced to Pd0 which is 

reoxidized to Pd2+ by Cu2+ and, at the end of a cycle, gaseous oxygen oxidizes the formed Cu+ 

to Cu2+. Generally, the industrial application of homogeneous catalytic reactions involves the 

disadvantage of complicated separation of product and catalyst and the moderate stability of 

the catalyst under severe reaction conditions. However, these problems can be overcome by 

immobilizing homogeneous catalysts on the surface of solid support. The present paper relates 

to the formation of AL from EE by realizing the Wacker process on a heterogeneous catalytic 

route. 

 Previous results showed that Wacker oxidation could be heterogenized by the combination 

of palladium with a solid, which is capable to reoxidize Pd0 to Pd2+. The best results were 

achieved by using copper [11.12] and vanadium [13,14] supported on different materials 

(zeolites [11], clays [12], oxides [13,14], activated carbons [15] etc.). Li et al. [14] compared 

the catalytic performance of Pd/V2O5 redox-pair on different supports (SiO2, TiO2 and γ-

Al 2O3) at 190°C in conversion of propylene to acetone and found that the titania-supported 

catalyst was the most active. Stobbe-Kreemers [13] reported that the TiO2 supported Pd/V2O5 

catalysts show an order of magnitude higher activity than the catalysts based on γ-Al 2O3. In 

early studies Seoane et al. [16] proved that Pd, supported on crystalline V2O5 also can convert 

EE to AL.  

 This study concerns the preparation, characterization, and catalytic testing of different 

oxide-supported Pd/V2O5 catalysts. The oxide support was shown to affect both Wacker 

activity and selectivity of catalyst.  

 

2. Experimental 

 

2.1 Catalyst preparation 

 Supports as, γ-Al 2O3 (Ketjen CK 300, Akzo-Chemie, specific surface area, SSA=190 

m2/g), α-Al 2O3 (prepared from γ-Al 2O3 by calcinaton at 1200°C for 4h, SSA=2 m2/g), SiO2 

(Cab-O-Sil, M-5, Cabot GmbH, Hanau SSA=197 m2/g), and TiO2 (Aeroxide TiO2, P-25, 
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Evonik Industries AG, SSA=55 m2/g) were impregnated by decavanadate (V10O56
6-) solution. 

The solution was prepared from metavanadate solution. Ten grams of ammonium 

metavanadate (NH4VO3, VEB Laborchemie, Apolda, 99.0 % purity) was dissolved in 1 dm3 

distilled water and, in order to obtain decavanadate ions, the pH of the solution was adjusted 

to pH=4 by stepwise addition of 0.1 mol/dm3 HNO3 solution. The impregnated supports were 

calcined at 400 °C for 4 h to obtain catalysts containing 17 wt% V2O5. An aliquot fraction of 

each supported vanadia sample was impregnated by Pd(NH3)4(NO3)2 (5.0 wt% Pd as solution, 

Strem Chemicals Inc.) solution and air-calcined again at 400 °C for 4h. The Pd/V2O5 sample 

was prepared by one-step impregnation of commercial V2O5 (Sigma-Aldrich, 99.6+%, metals 

basis). All the samples were impregnated by an amount of Pd solution to get catalyst, having 

Pd content of 0.8 wt%. 

 

2.2 Characterization of catalysts 

 

2.2.1. Specific surface area 

 Specific surface area (SSA) of the catalysts was obtained by the BET method from N2 

adsorption isotherm determined at -195°C by using Quantachrome NOVA Automated Gas 

Sorption Instrument. Before measuring adsorption isotherms samples were outgassed by 

vacuum at 150 °C for 24 h.  

 

2.2.2. X-ray powder diffraction 

 

 X-ray patterns were recorded by Philips PW 1810/3710 diffractometer applying 

monochromatized Cu Kα radiation (40 kV, 35 mA). The patterns were recorded at ambient 

conditions between 3° and 65° 2Θ, in 0.02° steps, counting in each step for 0.5 s. 

 

2.2.3. Temperature-programmed reduction by hydrogen (H2-TPR) 

 

 A flow-through microreactor made of quartz tube (I.D. 4 mm) was used. About 20 mg of 

catalyst sample (particle size: 0.63–1.00 mm) was placed into the reactor and was treated 

before the measurement in a 30 cm3/min flow of O2 at 400°C for 1 h. Then the sample was 

cooled to room temperature in O2 flow, flushed for 30 min by N2 and contacted then with a 

30 cm3/min flow of 10% H2/N2 mixture. The reactor temperature was ramped up at a rate of 

10 °C/min to 600°C and kept at this temperature for 1 h while the effluent gas was passed 
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through a trap, cooled by liquid nitrogen, and a thermal conductivity detector (TCD). Data 

were collected and processed by computer. The hydrogen consumption was calculated from 

the area under the H2-TPR curve. The system was calibrated by determining the H2-TPR 

curve of CuO reference material. 

 

2.2.4. UV-vis DRS spectroscopy 

 

 The in-situ UV-vis DRS spectra were collected by Thermo Scientific Evolution 300 UV-

VIS spectrophotometer equipped with Praying Mantis Diffuse Reflectance Accessory and 

High Temperature and Pressure Reaction Chamber. The finely ground reference (NaVO3, 

99.9%, Na3VO4 99.98%, V2O5, 99.6+%, Aldrich products) and catalyst samples were diluted 

with BaSO4 (Alfa Aesar, Puratronic 99.998%) in an amount to fit the Kubelka-Munk function 

F(R∞)<1 and measured against Spectralon as background. In order to obtain spectra of 

dehydrated samples the absorbance data were collected at 400 °C after in-situ calcination at 

400 °C in flowing oxygen for 30 min. The edge energy (Eg) for allowed transitions were 

determined by finding the intercept of the straight line fitted to the low-energy rise of the plot 

of [F(R∞)hν]2 against hν [17]. 

 

2.2.5. Catalytic activity measurements 

 

 Catalytic test reactions were carried out at atmospheric pressure in a fixed-bed, continuous 

flow tubular microreactor. Prior to the reaction the catalysts were activated in oxygen flow (20 

cm3/min) for 1 h at 350°C. The same treatment was applied to re-activate used catalysts. In 

the catalytic test C2H4/O2/H2O/He gas mixture was fed on 500 mg of catalyst sample (particle 

size 0.63-1.00 mm). The partial pressures of EE, oxygen, and water were 3.4, 13.5, and 27 

kPa, respectively. The effect of the partial pressures on the activity was studied by varying the 

partial pressure of oxygen and water in the ranges of 0-41 and 0-54 kPa, respectively, on 

expense of the partial pressure of the helium. In the measurements of partial pressure 

dependence 100 mg of catalyst, diluted with 400 mg of inert γ-Al 2O3 was used. The total flow 

rate of the reaction mixture was always 30 cm3/min. All gas lines of the apparatus were heated 

to 120°C in order to avoid condensation of water and reaction products. The reaction products 

were analyzed by on-line Shimadzu GC-2010 gas chromatograph (GC) equipped with a 30-m 

HP-PLOT-U column, thermal conductivity and flame ionization detectors (TCD and FID). 

The calibration of the GC for each reactant and product compound was carried out separately. 
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The conversion of EE was calculated from the EE concentrations in the feed and effluent. 

Selectivities were calculated from molar product composition. 

 

3. Results and discussion 

 

 The Wacker oxidation requires co-operation of Pd/VOx catalyst/co-catalyst redox pair. It 

was proven using D2O and H2O
18 water in the reaction mixture that oxygen atoms in product 

AL originated from the water [18, 19]. The absence of V2O5, Pd, oxygen or water in the 

reacting system makes it obvious that simultaneous presence of each component is a must to 

initiate Wacker reaction (Fig. 1). Fig. 1A shows that without V2O5 in the supported catalyst 

total oxidation is the dominant reaction even at temperature as low as at 150°C. The formation 

of methane in traces and deactivation of the catalyst was also observed. In absence of Pd the 

EE conversion began at 225°C and the only reaction product was again CO2 (Fig 1B). The 

role of oxygen in Wacker oxidation reaction cycle is the selective re-oxidation of the co-

catalyst, i. e., the reduced vanadium atoms. Fig. 2C shows that AL is formed by near to 100% 

selectivity with low and constantly decreasing conversion even in absence of oxygen. In latter 

experiment the V2O5 content of the catalyst was 2.78 mmol, while the amount of formed AL, 

determined by integration of its formation rate curve vs. reaction time, was 2,27 mmol. This 

observation indicates that V2O5 is capable to re-oxidize Pd until reaching oxidation state V4+, 

and that reaction terminates when the co-catalyst loses its oxidation capacity. In absence of 

water in the feed (Fig. 2D), besides of CO2, partially oxidized products (acetaldehyde and 

acetic acid) were formed, suggesting the appearance of some Wacker-type activity. However, 

the conversion was very low (vide infra). The presence of some water formed in the system 

by EE oxidation explains the appearance of Wacker oxidation. 

 Wachs and Weckhuysen [20] claimed that vanadia overlayer on oxide supports has 

structure, which is different from that of crystalline V2O5. Theoretical calculations based on 

the V-O bond lengths of crystalline V2O5 estimated monolayer surface vanadia coverage 

corresponding to a surface concentration of about 10 VOx/nm2 [21]. Indeed, the surface 

concentration, determined by Raman spectroscopy, was very similar for different oxide 

supports. It was 7.3 VOx/nm2 for Al2O3 and 7.9 VOx/nm2 for TiO2 support [22]. Silica support, 

having surface concentration as low as 0.7 VOx/nm2
, was an exception. Over SiO2 support 

bulk V2O5 crystals started to grow before monolayer coverage was achieved. In present study 

the same amount of V2O5 was impregnated on different supports. Because the surface area of 
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the supports were different the same amount of vanadia corresponded to different vanadia 

coverages (Table1). 

 The DR UV–vis method is able to distinguish vanadia forms having different extents of 

polymerisation [23]. The bulk orthovanadate (Na3VO4) contains isolated VO4 units. In this 

structure there are no vanadium atoms connected to another vanadium via oxygen (Fig. 2A). 

The metavanadate (NaVO3) structure consists of polymeric VO3 chains, where every 

vanadium atom is linked to two other one through oxygen atoms. In bulk V2O5 the number of 

V-O-V linkages is 5 for each vanadium atom. The Eg was found to be 2.18 eV for bulk V2O5, 

2.98 eV for pure NaVO3 and 3.40 eV for Na3VO4 (Fig. 2A). In a V2O5/NaVO3/Na3VO4 

mechanical mixture each component contributed to the measured Eg value in proportion to its 

molar fraction in the mixture. That means that from the Eg edge energy of a supported vanadia 

catalyst the percentage of isolated, polymeric and bulk vanadia forms can be estimated using 

an Eg vs. composition calibration line. Based on the structural assignments of Gao and Wachs 

[23] the following surface vanadia structures were identified on the applied supports: (i) the 

SiO2 (Eg=3.26) contained predominantly isolated VO4 and minor amount of bulk V2O5 phase, 

(ii) the γ-Al 2O3 (Eg=3.14) contained mixture of polymeric (VO3) and isolated (VO4) (~ 60 vs 

40%) vanadia, and traces of bulk V2O5, (iii) the α-Al 2O3 (Eg=2.65) contained mainly VO5/VO6 

polymer with minor amount VO3 polymeric chain structure. The presence of V2O5 was 

detected by XRD (vide infra). Results of XRD and UV-vis measurements proved that vanadia 

coverage over γ-Al 2O3 (7.1 V/nm2) is close to monolayer. 

 The TiO2 support exhibits strong absorption in the UV-vis region which overwhelms the 

weaker absorption from the smaller amount of supported vanadium oxide species, thus no 

reliable results can be extracted from UV-DRS spectra of the titania supported vanadia 

samples [23]. However, the crystalline surface V2O5 species can be characterized by XRD 

method (Fig. 2B). In accordance with results of UV-vis measurements the most intense and 

narrowest reflection of the V2O5/α-Al 2O3 sample at 20.3° indicates the presence of large 

vanadia crystallites. Bulk V2O5 phase could be detected also in the V2O5/SiO2 sample 

suggesting that formation of V2O5 crystallites was more facile than the spreading of vanadia 

in monolayer. Over γ-Al 2O3 and TiO2 the growth of bulk phase just started to develop. These 

supports are covered with polymeric VO3 species. However the presence of isolated VO4 

could not be excluded.  

 Reducibility characterizes the co-catalytic activity of the VOx component, i. e., the ability 

of the vanadia oxygen atoms to re-oxidize the Pd redox sites. H2-TPR measurements were 

performed to characterize the reduction properties of supported VOx and Pd/VOx phases (Fig. 
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3). The H2 consumptions, calculated from the integrated area of the H2-TPR peaks, are listed 

in Table 2. It is known that the reduction of supported palladium oxide starts at around 0°C 

[24]. The metallic palladium can initialize then hydrogen spill-over to the vanadia or to the 

support. In this process hydrogen dissociates on the palladium and moves to the surface of the 

surrounding oxide lowering its oxidation state or forming bronze [25]. As a result a reduction 

peak of V2O5 appears at much lower temperature than that for the Pd-free supported vanadia 

samples. Over Pd-free TiO2 and γ-Al 2O3 the reduction of vanadia starts at about 300°C (Fig. 

3A). Note that over these supports the main vanadia form is near to monolayer thickness. The 

reduction of bulk V2O5 and supported bulk vanadia species over α-Al 2O3 and SiO2 starts at 

around 500°C (Fig. 3A). The reduction peak is broad indicating that reduction of vanadium in 

the bulk of the oxide is hindered. Over palladium doped catalysts the main reduction peak 

appeared shifted to the 80-260°C (Fig. 3B). At higher temperatures only small peaks could be 

discerned even for the catalysts containing bulk vanadia. However, the reduction of latter 

catalysts starts and ends at somewhat higher temperatures than reduction of the catalysts 

covered by vanadia in near to monolayer thickness (Fig. 3B). The H2 consumption of Pd/V2O5 

sample is about five times higher compared to other samples what results in a broad TPR 

peak. Reduction of samples containing bulk vanadia starts at higher temperature compared to 

other samples and the maxima of the TPR curve is also at higher temperature, i.e. 163 and 

203°C for α-Al 2O3 and SiO2, respectively (Table 2). The total H2 consumption expressed in 

H2/V ratio for each sample varies between 0.90-1.15 substantiating that V5+ → V3+ reduction 

occurred.  

 Results of catalytic test reactions over different oxide supports are shown in Fig. 4. Note 

that the conversions and AL selectivities are significantly higher than those shown by Fig. 1 

indicating that the reaction follows the mechanism of Wacker oxidation. The highest yield of 

partially oxidized products was achieved using Pd/VOx/SiO2 catalyst (Fig. 4C). Over 

Pd/VOx/α-Al 2O3 catalyst the AL selectivity was rather high (45-70%), however, the AL yield 

was low because the EE conversion was the lowest (20-40%) among the studied catalysts 

(Fig. 4B). Results represented on Fig. 4D suggest that the titania-supported catalyst has high 

activity (~100% conversion), but its selectivity towards partially oxidized products is rather 

low. The conversion over Pd/VOx/γ-Al 2O3 catalyst was similar to that of Pd/VOx/SiO2, 

although its CO2 selectivity was with about 30 % higher than that of the Pd/VOx/SiO2 catalyst 

(cf. Fig. 4A and 4C). 

 Ethylene conversion and product selectivities are shown as function of oxygen partial 

pressure using the 0.8%Pd/V2O5 catalyst (Fig. 5B). The selectivities of AA and CO2 showed 
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slight increase on the expense of AL selectivity with increasing oxygen concentration in the 

feed. The EE conversion increased parallel with the increasing selectivities. The reaction was 

strongly effected by water between 0 and 40 kPa water partial pressures (Fig. 5C). Higher EE 

conversions and AL selectivities were obtained at higher water partial pressures. 

 Above results seem to correlate with the structure of supported vanadia. At identical 

loadings the structure of the surface-bound vanadia depends on the size and the chemical 

character of the support surface. Each supported catalyst contains V2O5 in roughly 

comparable amount (Fig. 2B). However, the surface concentration of the monomeric and 

polymeric surface vanadia species shows significant difference. The Pd/VOx active phase over 

supports of high SSA, like γ-Al 2O3 and SiO2, shows high activity in the EE conversion but 

significant difference in the selectivity for total oxidation (Fig. 4A and 4C). The main 

difference is that the silica support carries mainly isolated VO4 surface species, whereas 

γ-Al 2O3 support is rich in polymeric surface vanadia species in close to monolayer thickness. 

This comparison teaches that polymeric surface vanadia species favour total oxidation but are 

unfavourable components of the Wacker catalysts. Earlier studies [13,14,26] reported that 

Pd/V2O5/TiO2 catalysts having much lower V2O5 content (<~10 wt%) than the one used in 

present study have outstanding activity in Wacker oxidation. The relatively low selectivity of 

the 0.8%Pd/17%V2O5/TiO2 catalyst for AL and AA formation is in harmony with the finding 

that at the applied vanadia loading the titania support contains mainly polymeric vanadia 

species, having high activity in total oxidation to CO2 (Fig. 4D). Above results suggest that 

Wacker activity could be assigned either to isolated VO4 species and/or to bulk phase V2O5 in 

the catalyst. In order to come to conclusion we examined the catalytic performance of non-

supported Pd/V2O5 catalyst in details (Fig 5). Fig. 5A shows that 0.8%Pd/V2O5 catalyst 

exhibits catalytic activity that is similar to that of the SiO2-supported sample. This finding 

substantiates that selective oxidation activity can be attributed to the presence of redox pair 

sites generated by Pd, bound either to bulk V2O5 or to monomeric VO4 species, and to the 

absence of polymeric vanadia species in the catalyst. 

 The monomeric VO4 structure on the surface of SiO2 support is substantially inactive in 

the oxidation of the primary product AL. Specific surface area of α- Al2O3 support is below 2 

m2/g and impregnation with 17 wt% V2O5 results in a surface vanadia coverage value of 68 

V/nm2. It implies that the VOx structure built on the surface of this support must be very 

similar to bulk V2O5 phase. Still, the UV-vis measurement shows that the supported multilayer 

of vanadia is different form the bulk V2O5. In accordance, results of catalytic test reactions 
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(compare Fig. 4B and 5A) manifest that non-supported sample is more efficient regarding 

both EE conversion and AL selectivity, especially at lower temperatures. 

 The γ-Al 2O3 and TiO2 supported vanadia can be reduced by H2 at the lowest temperature 

(Fig 3A). The presence of Pd in the catalysts lowers the reduction temperature of vanadia in 

all the catalysts. The γ-Al 2O3 and TiO2-supported vanadia becomes reduced at the lowest 

temperature (Fig 3B). The most favourable Wacker catalyst, the SiO2-supported catalyst 

containing mainly monomeric VO4 species, is obviously less reducible than the γ-Al 2O3 and 

TiO2 supported catalysts containing mainly polymeric vanadia species (Fig. 3). The very high 

reducibility of the polymeric vanadia species can be the reason of the non-selective EE 

Wacker oxidation property of the γ-Al 2O3 and TiO2 supported catalysts.  

 

4. Conclusions 

 

 Oxidation of ethylene by oxygen in the presence of steam was investigated over non-

supported, and SiO2, TiO2, γ- Al2O3, and α-Al 2O3-supported Pd/V2O5 catalysts. The vanadia 

structures were identified by UV-vis and XRD measurements. Besides some bulk V2O5 phase 

catalysts contained predominantly either monomeric vanadate-like, VO4, surface species or 

bulk V2O5 (VO5/VO6 polymer) species. It was shown that VO3 polymeric (metavanadate-like) 

species are responsible for the ethylene oxidation activity to CO2 and, as a consequence, for 

the poor selectivity in the oxidation to acetaldehyde and acetic acid. It was shown that the 

polymeric VO3 species was more reducible than the monomeric VO4 and the bulk V2O5 

species. Results suggested that high reducibility of vanadia is responsible for the high activity 

in the non-selective catalytic oxidation. Better Wacker activity was achieved with the less 

reducible SiO2 and α-Al 2O3-supported Pd/V2O5 catalysts than with the very easily reducible 

TiO2 and γ- Al2O3-supported catalysts. Vanadia over low surface area α-Al 2O3 and bulk 

vanadia have similar structures. Nevertheless, the non-supported Pd/V2O5 catalyst is more 

active and selective than the Pd/V2O5/α-Al 2O3 catalyst, showing that this support still has 

adverse effect on the Wacker activity. 
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Figure legends 
 
Fig. 1. Verification of Wacker mechanism. In absence of (A) V2O5, (B) Pd, or (C) O2, and (D) 
H2O total oxidation or negligible conversion ethylene occurs.  
 
Fig.2. (A) Plot of edge energy vs. number of V-O-V bonds of vanadium atoms obtained by 
UV-Vis DRS for vanadia compounds and catalyst samples, and (B) XRD patterns showing the 
most intense vanadia reflections of the catalyst samples. 
 
Fig 3. H2-TPR profiles of (A) supported V2O5 and (B) supported Pd/V2O5 catalysts. 
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Fig 4. Catalytic conversion of 3% ethylene/12% oxygen/24% water/He gas mixture as a 
function of temperature over different catalysts. mcat ~500 mg, total flow rate 30 cm3/min. 
 
Fig 5 Catalytic conversion of 3% ethylene/12% oxygen/24% water/He gas mixture over 
0.8%Pd/V2O5 catalysts as function of (A) temperature, (B) O2 partial pressure, and (C) water 
partial pressure. The temperature and the partial pressure dependences were measured at 
150 oC, using  ~500 and 100 mg of catalyst, respectively. The 100 mg catalyst was diluted to 
500 mg by inert γ-Al 2O3. The total flow rate of the reaction mixture was always 30 cm3/min. 
 
Table legends 
 
Table 1. Characterization of catalysts 
Table 2. Results of H2-TPR measurements calculated from the results shown in Fig. 3 
 
 
Table 1. Characterization of catalysts 
Catalyst Surface area XRD p.aa. Edge energyb Vanadia coverage 
 (m2/g)  (eV) (V/nm2) 
Pd/V2O5/SiO2

c 159 (197)d 82 3.25 6.9 
Pd/V2O5/γAl 2O3

c 145 (190) d 20 3.12 7.1 
Pd/V2O5/TiO2

c 45 (55)) d 30 n.m.d 27.1 
Pd/V2O5/αAl 2O3

c 4 (2) d 230 2.62 67.8 
Pd/V2O5

e 8 (8)d n.m.f 2.21. - 
a Peak area of the most intense V2O5 XRD line (001) Card No 41-1426. 
b Edge energy of absorption peak determined by UV-Vis  DRS. 
c The supports were impregnated with 17 wt% V2O5 and 0.8 wt% Pd. 
d Surface area of pure supports. 
e 0.8 wt% Pd supported on pure V2O5. 
f Not measured. 
 
 
 
Table 2. Results of H2-TPR measurementsa  
Catalystb Low-temperature peak  High-temperature peak Σ H2/V 
 H2 (mmol/g) Tmax (°C) H2/V  H2 (mmol/g) Tmax (°C) H2/V  
V2O5/TiO2 - - -  2.16 524 1.15 1.15 
Pd/V2O5/TiO2 1.76 115 0.94  0.41 - 0.21 1.15 
V2O5/γ-Al 2O3 - - -  2.00 496 1.07 1.07 
Pd/V2O5/γ-Al 2O3 1.71 150 0.91  0.31 - 0.16 1.07 
V2O5 - - -  11.72 600/36 c 1.06 1.06 
Pd/V2O5 9.95 132 0.81  1.08 - 0.09 0.90 
V2O5/SiO2 - - -  2.05 600/3c 1.09 1.09 
Pd/V2O5/SiO2 1.69 203 0.90  0.36 - 0.19 1.09 
V2O5/α-Al 2O3 - - -  1.87  600/2c 1.00 1.00 
Pd/V2O5/α-Al 2O3 1.83 163 0.97  0.20 - 0.10 1.07 
a Calculated from the results shown in Fig. 3. 
b The supports were impregnated with 17 wt% V2O5 and 0.8 wt% Pd 
c Final temperature of the heating program/time in minutes on the temperature.  
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