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Abstract

A mathematical analysis is presented to establish the convergence of the matrix transformation (or matrix transfer)

method for the finite difference approximation of space-fractional diffusion problems. Combined this with an implicit

Euler time discretization the optimal order convergence is proved with respect to the discrete L2 and the maxi-

mum norm. The analysis is performed on general two and three-dimensional domains with homogeneous boundary

conditions. The corresponding error estimates are illustrated with some numerical experiments.
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1. Introduction

Numerical solution of space-fractional diffusion problems has been studied extensively in the last decade. The finite

difference methods for the conventional diffusion problems were extended in some sense including the development of

higher-order methods for the spatial discretization [1], [2] and the time integration [3], generalization of ADI methods

[4], [5], construction of appropriate iterative solvers [6] and computing on non-uniform meshes [7]. On the development

of the computational efficiency we refer to [5] and [7].

Usually, the first step of the numerical solution is the discretization of the fractional diffusion operator. Initiated

by the work [8] many authors contributed to this by developing high-order [9] or compact [10] finite difference approx-

imations. Another possibility is the finite element discretization, which using a dimensional lifting is fully analyzed

in [11]. The non-trivial aspect of the finite difference approximations is that we have to use a wide stencil for the

approximations due to the non-local nature of the corresponding differential operators. This results in full matrices
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with non-trivial matrix entries. Also, the coefficients of a straightforward approximation have to be shifted to ensure

the stability in the time integration [8].

A favorable alternative to bypass this procedure is offered by the so-called matrix transformation method, which

was first proposed in [12] and [13]. According to this, we simply have to take the power of the matrix corresponding

to the conventional diffusion (negative Laplacian) operator. For the computation of this matrix [14] or immediately

solving the linear systems in the time integration efficient techniques have been proposed [15].

But can we establish the convergence of this simple approach? A corresponding analysis is only available in case

of finite element discretizations [16] and for cubic domains in case of finite difference approximations.

The aim of this contribution is to prove a general convergence result of the matrix transformation (MTM) method

for finite difference approximation of space-fractional diffusion problems in two and three space dimensions.

After the formal problem statement we collect some tools which will be used in the error analysis. The estimates for

the Laplacian eigenfunctions and eigenvalues are of central importance. We perform then the error analysis verifying

the conditions of the Lax equivalence theorem. The article is closed with some numerical experiments illustrating the

convergence results.

2. Mathematical preliminaries

The equation to solve. We investigate the finite difference numerical solution of the space-fractional diffusion problem

∂tu(t,x) = −µ(−∆D)αu(t,x) x ∈ Ω, t > 0

u(0,x) = u0(x) x ∈ Ω
(1)

where ∆D denotes the Laplacian operator on the computational domain Ω ⊂ Rd with homogeneous Dirichlet boundary

conditions, which are implicitly prescribed in this way. Using the compact embedding H1
0 (Ω) ↪→ L2(Ω), we have that

∆−1
D : L2(Ω)→ L2(Ω) is positive, compact and self-adjoint, such that the power in (1) makes sense. Here µ is a positive

diffusion coefficient, d = 2, 3 is the space dimension and u0 : Ω → R is given. Since we apply a finite difference ap-

proach, we assume at this stage that u0 ∈ C2
0 (Ω) to have a well-defined classical Laplacian, which is approximated first.

Note that various operators are available for modeling space-fractional diffusion problems. The favor of using the

fractional Laplacian on the right-hand side of (1) is that this operator is arising from discrete stochastic models [17],

which correspond to real-life observations. Also this can be recognized as a special non-local operator, which satisfies
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a modified Fick’s law with mass conservation [18]. For alternative definitions of fractional order derivatives, we refer

to [19] and [20] and a detailed comparison of them can be found in [21].

Eigenfunction expansion, the fractional Laplacian and an imbedding theorem. The Hilbert–Schmidt theory gives that

the eigenfunctions {φj}j∈Z+ of -∆D form a complete orthogonal system in L2(Ω) with the associated eigenvalues

0 < λ1 ≤ λ2 ≤ . . . . With these

u =
∞∑
j=1

ujφj (2)

denotes the Fourier expansion of u provided that ‖φj‖L2(Ω) = 1.

The fractional Laplacian is defined then on the linear space

D2α :=

u ∈ L2(Ω) :
∞∑
j=1

u2
jλ

2α
j <∞


with

(−∆D)αu :=
∞∑
j=1

ujλ
α
j φj and |u|2D2α

:=
∞∑
j=1

u2
jλ

2α
j . (3)

We will make use of a classical Sobolev imbedding theorem H6(Ω) ⊂ C4(Ω), which implies that

‖u‖C4(Ω) . ‖u‖H6(Ω). (4)

For the general statement and the proof we refer to [22], Theorem 4.12.

The notation A . B means that there is a mesh-independent constant c such that A ≤ cB for the (usually

mesh-dependent) quantities A and B. If both A . B and B . A are satisfied then we simply write A ≈ B.

Estimates for Laplacian eigenvalues and eigenfunctions. The asymptotic behavior of the series (λj)j∈Z+ can be given

as

λk ≈ k
2
d , (5)

see [23]. For the maximum of |φm| we have the following esimate:

max
Ω
|φk| ≤ λ

d
4
k , (6)

see [24]. For an exhaustive review of similar results we refer to [25].

We also need a statement on the regularity of the eigenfunctions {φj}j∈N+ . We recall a simplified version of

Theorem 3.1 in [26].

If Ω is a bounded Lipschitz domain then there is an index j0 such that for all j ≥ j0 and n ∈ N we have

‖∇n+2φj‖0 . λ
n
2 +1
j . (7)
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Matrix powers and their relation to the fractional Laplacian. The power for positive semidefinite matrices is defined

using the binomial series expansion: if K > ‖A‖∗ for any matrix norm, we have

Aα = Kα
∞∑
k=0

(−1)k(I − A

K
)k. (8)

On the finite dimensional subspace SM = span {φ1, φ2, . . . , φM} ⊂ L2(Ω) the following operator is defined for

K > λM :

Aαu := Kα
∞∑
k=0

M∑
j=1

(
α

k

)
(−1)k

(
1− λj

K

)k
uj , (9)

where u = (u1, u2, . . . , uM ). For the application of the binomial series we also note that

(−1)k
(
α

k

)
≤ 0 for 0 ≤ α ≤ 1 and k = 1, 2, . . . (10)

and
∞∑
k=0

(−1)k
(
α

k

)
= (1− 1)α = 0. (11)

We also introduce the Fourier projection PM : L2(Ω)→ SM with

PMu = PM

 ∞∑
j=1

ujφj

 =
M∑
j=1

ujφj . (12)

A cornerstone of our analysis is the following observation.

Lemma 1. For u ∈ SM we have the identity (−∆D)αu = Aαu.

Proof: Since 2K > λM , we can use the binomial series expansion (1 + x)α =
∑∞
k=0

(
α
k

)
xk for x = −(1 − λl

K ), which

gives

λαl ϕl = Kα
∞∑
k=0

(
α

k

)
(−1)k

(
1− λl

K

)k
ϕl.

Inserting this identity into the definition of the fractional Laplacian and - due the absolute convergence - changing the

order of summation we get (9). �

Discretization. The closure Ω̄ of the computational domain is discretized with an equally spaced rectangular grid Ωh

with the grid cells of size (hx, hy) or (hx, hy, hz). The grid points are identified with integer pairs or triplets: the first,

second and the third component refers to the first, second and the third coordinate, respectively.
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For d = 2, we call (i, j) an interior grid point if all of its neighbors (i − 1, j), (i + 1, j), (i, j − 1) and (i, j + 1) are

in Ωh. The matrix Ah ∈ RN×N denotes the approximation of the operator ∆D with the standard five-star difference

scheme such that for each vector u ∈ RN indexed according to the grid points we have

−(Ahu)i,j :=
ui+1,j − 2ui,j + ui−1,j + ui,j+1 − 2ui,j + ui,j−1

h2
, (13)

whenever (i, j) is an interior grid point. According to the homogeneous boundary conditions, uk,l = 0 if (i, j) is not

an interior grid point.

For functions on Ωh we define the ”discrete” ‖ · ‖0,h-norm for the with

‖g‖0,h =

(
hxhy

∑
x∈Ωh

|g(x)|2
) 1

2

.

An obvious modification of this definitions give Ah and the ‖ · ‖0,h-norm for the three-dimensional case.

We also use the grid projection operator Ph : C(Ω̄)→ Ωh given by

Phu = {u(x) : x ∈ Ωh},

which maps to a continuous function its grid values. With this we can quantify the approximation property of the

matrix Ah: we overall assume that for u ∈ C4(Ω̄) we have

‖Ph(−∆D)u−AhPhu‖0,h . h2‖u‖C4 ,

which for u = φj with Ph(−∆D)u = Ph(−∆D)φj = λjPhφj gives

‖(λjI −A)Phφj‖0,h . h2‖φj‖C4 =: h2 sup
x∈Ω,|β|=4

|∂βφj(x)| ≈ h2 sup
x∈Ω
|∇4φj(x)|. (14)

This is indeed, an assumption on the domain Ω. Note that the last relation means the equivalence of the corresponding

norms: the first one is used as a definition of the ‖ · ‖C4-norm, while we have the regularity estimate with respect to

the second one in (7).

3. Results

Well-posedness and smoothness assumptions. In the analysis of the finite difference methods one should use rather

strict smoothness assumptions, which manifests in upper estimates for the coefficients in (2). We investigate this

connected with the well-posedness of (1).
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Proposition 1. For arbitrary u0 =
∑∞
j=1 u0jφj ∈ L2(Ω) the problem in (1) is well-posed and for any t ∈ R+ and

K ∈ N the series
∑∞
j=1 j

Kuj is convergent with the Fourier coefficients {uj}j∈N of u(t, ·). Consequently, we also have

u(t, ·) ∈ C∞(Ω) for any t ∈ R+.

Proof: According to [27], the solution of (1) can be given as

u(t, ·) =
∞∑
j=1

e−λ
α
j tu0jφj .

such that using also (5) and the boundedness of {uj0}j∈N we have

∞∑
j=1

jKuj =
∞∑
j=1

jKe−λ
α
j tu0j .

∞∑
j=1

jKe−j
2
3αtu0j .

∞∑
j=1

jKe−j
2
3αt <∞

by the root test for numerical series.

Also, for arbitrary k ∈ N we have

(−∆)ku(t, x) =
∞∑
j=1

λkj e
−λαj tu0jφj(x)

where using again (5) and the boundedness of {uj0}j∈N we have for the coefficients

∞∑
j=1

(
λkj e
−λαj tu0j

)2

.
∞∑
j=1

j4e−j
2
3αt <∞.

This means that for arbitrary t > 0 and k ∈ N we have (−∆)ku(t, ·) ∈ L2(Ω). By the elliptic regularity (see, e.g., [28],

p. 316, Theorem 3) we obtain that u(t, ·) ∈ C∞(Ω) as stated. �

To have sufficient smoothness also for the initial function we use the following.

Assumption 1. The series
∑∞
j=1 j

6
d |u0j | and

∑∞
j=1 j

2α
d +1|u0j | are convergent.

Remark: For the second order accuracy of the pointwise approximation of the operator ∆D we need that u0 ∈

C4(Ω). In one space dimension for Ω = (0, π) it means that we can differentiate term-by-term the sine series in (2) to

obtain

∂4u0(x) =
∞∑
j=1

j4u0j sin jx.

Accordingly, the smoothness assumption yields that
∑∞
j=1 j

8u2
0j should be convergent.
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Consistency. The consistency result is given in the following statement, which is proved in several steps.

Theorem 1. Using Assumption 1, for arbitrary α ∈ R+ and t ∈ R+
0 we have the following estimate:

‖Ph(−∆D)αu(t, ·)−AαhPhu(t, ·)‖0,h . h2. (15)

Proof: In the consecutive derivations, for the simplicity we use u instead of u(t, ·) for a generic tR+
0 . We first

decompose the left hand side of (15) as

‖Ph(−∆D)αu−AαhPhu‖0,h

≤ ‖Ph(−∆D)αu− Ph(−∆D)αPMu‖0,h + ‖Ph(−∆D)αPMu−AαhPhPMu‖0,h + ‖AαhPhPMu−AαhPhu‖0,h
(16)

so that we use M with

M ≥ max
{
h−4, h−

4
11 (α+1)

}
. (17)

Step 1: Estimation of the first term. The expansion in (2), the definition in (3), the estimates in (6) and (5) imply

the following estimate:

‖Ph(−∆D)αu− Ph(−∆D)αPMu‖0,h =

∥∥∥∥∥∥Ph(−∆D)α
∞∑

j=M+1

ujφj

∥∥∥∥∥∥
0,h

=

∥∥∥∥∥∥Ph
∞∑

j=M+1

λαj ujφj

∥∥∥∥∥∥
0,h

≤ sup
x∈Ω

∞∑
j=M+1

|λαj ujφj(x)| ≤
∞∑

j=M+1

λαj |uj |λ
d
4
j .

∞∑
j=M+1

j
2α
d |uj |j

2d
4d ≤ 1√

M

∞∑
j=M+1

j
2α
d +1|uj |.

Therefore, using Assumption 1 and the condition (17) for M we obtain

‖Ph(−∆D)αu− Ph(−∆D)αPMu‖0,h .
1√
M
. h2. (18)

Step 2: Estimation of the second term. We first note that using the notation K0 = min{λ1, λ1,h} we have

max
{∣∣∣∣1− λj

K

∣∣∣∣ ,∥∥∥∥Ih − Ah
K

∥∥∥∥} = 1− K0

K
.
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Using this with Lemma 1 and the equality in (8) we obtain that

‖Ph(−∆D)αPMu−AαhPhPMu‖0,h

=

∥∥∥∥∥∥Kα
∞∑
k=0

(
α

k

)
(−1)k

M∑
j=1

(
1− λj

K

)k
ujPhφj −Kα

∞∑
k=0

(
α

k

)
(−1)k

M∑
j=1

(
Ih −

Ah
K

)k
ujPhφj

∥∥∥∥∥∥
0,h

= Kα

∥∥∥∥∥∥
∞∑
k=0

(
α

k

)
(−1)k

M∑
j=1

[(
1− λj

K

)k
Ih −

(
Ih −

Ah
K

)k]
ujPhφj

∥∥∥∥∥∥
0,h

= Kα

∥∥∥∥∥∥
∞∑
k=1

(
α

k

)
(−1)k

M∑
j=1

[(
1− λj

K

)k−1
Ih + ...+

(
Ih −

Ah
K

)k−1
][(

1− λj
K

)
Ih −

(
Ih −

Ah
K

)]
Phujφj

∥∥∥∥∥∥
0,h

≤ Kα−1
∞∑
k=1

(
α

k

)
(−1)k−1

∥∥∥∥∥∥
M∑
j=1

[(
1− λj

K

)k−1
Ih + ...+

(
Ih −

Ah
K

)k−1
]
uj(λjI −Ah)Phφj

∥∥∥∥∥∥
0,h

≤ Kα−1
∞∑
k=1

(
α

k

)
(−1)k−1

M∑
j=1

k ·max

{∣∣∣∣1− λj
K

∣∣∣∣k−1

,

∥∥∥∥Ih − Ah
K

∥∥∥∥k−1
}
‖uj(λjI −Ah)Phφj‖0,h

= Kα−1α

∞∑
k=1

(
α− 1
k − 1

)
(−1)k−1

M∑
j=1

(
1− K0

K

)k−1

‖uj(λjI −Ah)Phφj‖0,h

≤ Kα−1α

∞∑
k=0

(
α− 1
k

)
(−1)k

(
1− K0

K

)k M∑
j=1

‖uj(λjI −Ah)Phφj‖0,h

≤ Kα−1α

(
K0

K

)α−1 M∑
j=1

‖uj(λjI −Ah)Phφj‖0,h . λα−1
1

M∑
j=1

‖uj(λjI −Ah)Phφj‖0,h.

(19)

To estimate further, we use inequality (14), the embedding theorem in (4), the regularity estimate in (7) and finally

(5) to obtain
M∑
j=1

‖uj(λjI −Ah)Phφj‖0,h ≤
M∑
j=1

ujh
2 sup

x∈Ω,|β|=4

|∂βφj(x)| ≤
M∑
j=1

ujh
2‖φj‖H6(Ω)

≤
M∑
j=1

ujh
2λ3
j ≤ h2

M∑
j=1

ujj
6
d ≤ h2

∞∑
j=1

ujj
6
d .

(20)

Comparing (19) and (20) and using Assumption 1 we obtain that

‖Ph(−∆D)αPMu−AαhPhPMu‖0,h . h
2. (21)
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Step 3: Estimation of the third term. Using the method in (21) and the condition in (17) for M we have the following

inequality:

‖Phu− PhPMu‖0,h =

∥∥∥∥∥∥Ph
∞∑

j=M+1

ujφj

∥∥∥∥∥∥
0,h

=

∥∥∥∥∥∥Ph
∞∑

j=M+1

ujφj

∥∥∥∥∥∥
0,h

≤ sup
∞∑

j=M+1

|λαj ujφj |

≤
∞∑

j=M+1

|uj |λ
d
4
j ≤ C0

∞∑
j=M+1

|uj |j
1
2 .M−5.5

∞∑
j=M+1

|uj |j6 .M−5.5.

(22)

The Gershgorin theorem gives an easy upper bound for an arbitrary eigenvalue of Ah:

|λN,h| ≤ (2d+ 2d)
1
h2

such that the spectral radius of Aαh is at most (4dh−2)α. Since Aαh is symmetric, this together with (22) and the

condition (17) for M gives that

‖AαhPhPMu−AαhPhu‖0,h ≤ ‖A
α
h‖‖PhPMu− Phu‖0,h ≤ (4dh−2)αM−5.5 . h−2αh2α+2 = h2. (23)

Finally, inserting the inequalities in (18), (21) and (23) into (16) implies the error estimate in the theorem:

‖Ph(−∆D)αu−AαhPhu‖0,h . h2. (24)

�

Stability. Using the MTM, the spectral properties of the matrix Aαh corresponding to the spatial discretization coincides

with the properties of Aαh . Therefore, the stability analysis can be performed similarly to the case of the conventional

diffusion problems. As an example, we discuss here the case of the implicit Euler time discretization with respect to

the ‖ · ‖0,h and the max norm.

Theorem 2. The implicit Euler method un+1 = (I + δAαh)−1un is unconditionally stable with respect to the ‖ · ‖0,h-

norm.

Proof: Since Aαh is positive semidefinite, we have that the spectral radius of the positive semidefinite matrix (I+δAαh)−1

is at most one. This coincides with its l2-norm, which proves its stability with respect to the ‖ · ‖0,h-norm. �

To investigate the convergence with respect to the max-norm, we first verify the following.

Lemma 2. For any α ∈ (0, 1] the matrix Aαh is diagonally dominant.
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Proof: We first rewrite Ah as Ah = 2d(I + S), where S is elementwise non-positive and use (13) to obtain

‖S‖max = max
k

N∑
j=1

|[Ah]k,j | ≤ 1. (25)

Therefore, we can use the binomial series expansion for 0 ≤ α ≤ 1 to have

(I + S)α =
∞∑
k=0

(
α

k

)
Sk = I +

∞∑
k=1

(
α

k

)
Sk. (26)

To investigate the second term on the right hand side, we use again (25) with (10) and (11) to get∥∥∥∥∥
∞∑
k=1

(
α

k

)
Sk

∥∥∥∥∥
max

≤
∞∑
k=1

∣∣∣∣(αk
)∣∣∣∣ ‖Sk‖max ≤

∞∑
k=1

∣∣∣∣(αk
)∣∣∣∣ = 1−

∞∑
k=0

(−1)k
(
α

k

)
= 1.

Therefore, using the notation sjk for the matrix entries of
∑∞
k=1

(
α
k

)
Sk we obtain for the jth row of (I + S)α that

−|sj1| − · · · − |sjj−1|+ |1 + sjj | − |sjj+1| − · · · − |sjN | ≥ −|sj1| − · · · − |sjj−1|+ 1− |sjj | − |sjj+1| − · · · − |sjN | ≥ 0,

which means that (I + S)α = 1
(2d)αA

α
h is diagonally dominant. �

For the stability analysis we also need the following classical result, see [29].

Lemma 3. For any diagonally dominant matrix B and β = mink
{
|Bkk| −

∑
j 6=k |Bkj |

}
we have that B is non-

singular and ‖B−1‖∞ ≤ 1
β .

We can now state the stability result.

Theorem 3. For any α ∈ (0, 1] the implicit Euler method un+1 = (I+δAαh)−1un is unconditionally stable with respect

to the ‖ · ‖max-norm.

Proof: According to Lemma 2 the matrix Aαh is diagonally dominant with positive diagonal entries, we have that

1 + [Aαh ]kk −
∑
j 6=k

|[Aαh ]kj | ≥ 1

such that Lemma 3 can be applied to I+Aαh and we have β ≥ 1. Therefore, (I+Aαh)−1 ≤ 1, which proves the stability

with respect to the ‖ · ‖max-norm. �

Using the Lax–Richtmyer theorem we obtain the main theorem of the paper.

Theorem 4. The implicit Euler method un+1 = (I + δAαh)−1un obtained from the matrix transformation method is

unconditionally convergent with respect to the ‖ · ‖0,h-norm for any α ∈ R+ and with respect to the ‖ · ‖max-norm for

any α ∈ (0, 1] and the corresponding convergence order is O(δ) +O(h2).
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4. Numerical experiments

The results in Section 3 are demonstrated in numerical experiments using first the model problem
∂tu(t, x, y) = −(−∆)αu(t, x, y) (x, y) ∈ Ω2L, t ∈ (0, T )

u(t, x, y) = 0 (x, y) ∈ ∂Ω2L, t ∈ (0, T )

u(0, x, y) = sinx sin 2y + sin 2x sin y (x, y) ∈ Ω2L,

(27)

where Ω2L = (0, 2π)× (0, 2π)\ [π, 2π]× [π, 2π] denotes an L-shaped domain, T = 0.1 and α ∈ R+ is a given parameter.

Note that the analytic solution of (27) is given with u(t, x, y) = exp(−5αt)(sinx sin 2y + sin 2x sin y).

As the second model problem we have solved numerically the following 3-dimensional space-fractional diffusion

problem :
∂tu(t,x) = −µ(−∆)αu(t,x) x ∈ Ω3L, t ∈ (0, T )

u(t,x) = 0 x ∈ ∂Ω3L, t ∈ (0, T )

u(0,x) = 100 (sin 2πx sin 2πy sin 4πz + α sin 2πx sin 4πy sin 2πz + 0.1 sin 4πx sin 2πy sin 2πz) x ∈ Ω3L,

(28)

where x = (x, y, z), Ω3L = (0, 1)3 \ [1/2, 1]3 denotes a Fichera cube, T = 1, µ = 0.1 and α ∈ R+ is a given parameter.

Note that the analytic solution of (27) is given with

u(t,x) = exp(−µ
(
24π2

)α
t)100 (sin 2πx sin 2πy sin 4πz + α sin 2πx sin 4πy sin 2πz + 0.1 sin 4πx sin 2πy sin 2πz) .

According to the matrix transformation method in both cases we proceeded as follows.

• The domain was discretized using a uniform square-grid with the grid size h.

• The standard five-point approximation of the operator −∆D was applied to obtain the matrix Ah.

• The matrix power −(Ah)α was computed to approximate −(−∆D)α.

• Implicit Euler time stepping was applied.

The computational results are shown for the first model problem in Table 1 and Table 2 and for the second model

problem in Table 3. While in the two-dimensional case the predicted convergence rate is reached shortly, in the three-

dimensional computations a remarkable oscillation can be detected. Since the majority of the real measurements is for

the subdiffusive case [30] and the computations are lengthy, we have tested (28) only with a single parameter α = 0.7.
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Table 1: Computational error and estimated convergence rate r with respect to the L2(Ω)-norm for the matrix transformation method

applied to the finite difference approximation of (27). Nδ: number of time steps, Nh the number of subintervals on the longest edge [0, 2π].

α = 0.6 α = 0.8 α = 1.2 α = 1.4

Nδ Nh L2-error r L2-error r L2-error r L2-error r

2 8 0.118 – 0.194 – 0.421 – 0.559 –

4 11 0.0635 1.86 0.105 1.85 0.233 1.81 0.311 1.80

8 16 0.0322 1.97 0.0539 1.95 0.121 1.93 0.162 1.92

16 23 0.0164 1.96 0.0265 2.03 0.0621 1.95 0.0805 2.00

32 32 0.00822 1.99 0.0138 1.92 0.0314 1.98 0.0421 1.92

64 45 0.00413 2.00 0.00696 2.06 0.0158 1.99 0.0212 1.99

128 64 0.00207 2.00 0.0349 1.99 0.00793 1.99 0.0106 2.00

According to Theorem 4 we obtain in each case an optimal convergence rate both in the L2-norm and in the

max-norm. The bottleneck of the above approach is the computation of the matrix power. In MATLAB (or Octave)

one can use the subroutine mpower or compute it using the equality Aα = exp(α · logA). More recent algorithms

are available in [15] and [14]. There are several other approaches to reduce the computational cost in the numerical

solution of space-fractional diffusion problems. A fast numerical treatment of implicit methods can be found in [31],

[5], where the authors explore the special structure of the corresponding dense stiffness matrices.

5. Summary

We have verified the convergence of the matrix transformation method applied to the space-fractional diffusion

problems. The corresponding computational algorithm is simple: one can completely avoid the computation of a

full matrix containing involved finite differences. At the same time, the spatial accuracy exhibits an optimal accuracy

(order 2) for any positive power α. Combined with an implicit Euler time stepping, the corresponding method exhibits

optimal convergence rate both in the L2-norm and for α ∈ (0, 1] in the max-norm.
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Table 2: Computational error and estimated convergence rate r with respect to the max-norm for the matrix transformation method

applied to the finite difference approximation of (27). Nδ: number of time steps, Nh the number of subintervals on the longest edge [0, 2π].

α = 0.6 α = 0.8 α = 1.2 α = 1.4

Nδ Nh max-error r max-error r max-error r max-error r

2 8 0.0436 – 0.0715 – 0.155 – 0.206 –

4 11 0.0231 1.89 0.0384 1.86 0.0849 1.83 0.113 1.82

8 16 0.0119 1.94 0.0199 1.93 0.0447 1.90 0.0598 1.89

16 23 0.00637 1.87 0.0103 1.93 0.0241 1.85 0.0314 1.90

32 32 0.00333 1.91 0.0553 1.87 0.0125 1.93 0.0168 1.87

64 45 0.00167 1.99 0.00278 1.98 0.00631 1.98 0.00846 1.99

128 64 0.000825 2.02 0.00139 2.00 0.00316 2.00 0.00424 2.00
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