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FRACTIONAL DERIVATIVES FOR VORTEX SIMULATIONS

BÉLA J. SZEKERES ∗ AND FERENC IZSÁK †

Abstract. Two modifications of the incompressible Navier–Stokes equations are investigated.
The first modification is based on assuming hyperviscosity such that the Laplacian operator is re-
placed with a fractional Laplacian. In the second modification consists of using fractional time
derivatives. Both models are tested on the classical Backward Facing Step benchmark problem with
different expansion ratios. The simulation results are in a good accordance with real measurements.
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1. Introduction. The Navier–Stokes equations for the velocity field u : Ω → R
2

of an incompressible fluid are given as

∂u

∂t
= (−u · ∇)u −∇p + ν∆u

∇ · u = 0.
(1.1)

For most fluids the kinematic viscosity ν is very small compared to the other terms.
A corresponding numerical model has to resolve at least down to the viscosity length-
scale: for example, the air’s viscosity lengthscale is in the millimeter range while the
energy-carrying lengthscales are up to thousands of kilometres [1]. To save computa-
tional cost, we have to bring the dissipation lengthscales closer to the grid scale in a
spatial discretization. To achieve this two ways are offered nowadays. The first one is
the eddy viscosity conception. Shortly, this model increases the kinematic viscosity,
which results in larger viscous forces. Another option which we use here is to replace
the viscosity term with a hyperviscosity term −νh(−∆)α, where α ≥ 1. If the flow
approaches a steady state we can also try to stabilize the corresponding numerical
simulations using fractional time derivatives. The aim of this contribution is to in-
troduce the above modifications of the incompressible Navier–Stokes equations for an
efficient and accurate numerical simulation of vortices.

Model 1: Fractional hyperviscosity. In our hyperviscosity model we do not
change the viscosity coefficient but we let the power of the Laplacian operator to be
non-integer:

∂u

∂t
= (−u · ∇)u −∇p − ν(−∆)αu

∇ · u = 0.
(1.2)

We show on the well-known Backward Facing Step (BFS) benchmark problem that α

can be chosen according to real measurements.
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Model 2: Time-fractional Navier–Stokes equations. In many real situ-
ations, after some time the flow becomes almost steady-state such that the time
derivative is negligible. Accordingly, for some applications only a stationary solution
of (1.1) is investigated. For a coarse spatial discretization the numerical solution of
this problem can be highly inaccurate. To avoid this we propose to replace the time

derivative in with (1.2) with ∂β
u

∂tβ for some β ∈ (0, 1) rather than take the stationary
equation. Since the fractional order time derivative is a non-local operator, and can
be given as a limit of linear combination of past values, we expect that this stabilizes
the time integration in the numerical solutions.

In concrete terms we investigate the following problem on Ω:

∂βu

∂tβ
= (−u · ∇)u −∇p + ν∆u

∇ · u = 0,

(1.3)

where the boundary conditions will be specified later. We test this model also on the
Backward Facing Step benchmark problem and point out that numerical simulations
are in good accordance with some real measurements [9], [10], [14], [15].

2. Main results. In this section we summarize the results for the new models.
In both cases we start with some mathematical preliminaries.

2.1. The model with fractional hyperviscosity. For a given right hand side
f ∈ L2(Ω) the solution operator of the boundary value problem

−∆u = f in Ω

u = 0 on ∂Ω
(2.1)

can be recognized as (−∆D)−1 : L2(Ω) → L2(Ω), which is a compact, self-adjoint
operator.

The Hilbert–Schmidt theory of compact operators (see, e.g., [3], Section 6.2)
implies the existence of the complete system {φj}j∈Z+ of its eigenfunctions with the

eigenvalues 0 < µ1 ≤ µ2 ≤ . . . . With these f =
∑∞

j=1 fjφj denotes the Fourier

expansion of f . We also use the notation λj := 1
µj

for j ∈ N
+.

Definition 2.1. Let us introduce the linear space

Ds :=







f ∈ L2(Ω) :

∞
∑

j=1

f2
j λs

j < ∞







and (−∆)α : D2α → L2(Ω) for α > 0 with

(−∆)αf :=

∞
∑

j=1

fjλ
α
j φj and |f |2D2α

:=

∞
∑

j=1

f2
j λ2α

j .

Using this definition the viscous term in (1.1) is replaced with a hyperviscous
term to get the following equations:

∂u

∂t
= (−u · ∇)u −∇p − ν(−∆)αu, α ≥ 1

∇ · u = 0. (2.2)
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To discretize (2.2) we use the method of the work [2], which is a finite difference
approximation on a staggered grid. The semidiscretization results in the following
ODE:

~ut + Lh(~u)~u + gradhp = 0,

divh~u = 0, (2.3)

where Lh(~u) = Dh(~u) + ν(−∆h)α, Dh(~u)~u is the approximation of the nonlinear
terms, divh is the discrete divergence and gradh is the discrete gradient operator. To
approximate the operator (−∆)α, the so-called matrix transform (or matrix transfer)
method (MTM) has been proposed in [6], [16] and [17] and generalized in [18] for time
and space-fractional diffusion problems. This approach makes possible to compute
with the sparse matrix −∆h corresponding to the standard Laplacian operator −∆.
A corresponding error analysis was carried out for the finite element methods with
respect to the L2-norm [7] and for the finite difference methods with respect to the
L2,h-norm [8].

The fractional power α of a matrix can be defined and approximated in several
ways, see [19]. Since we only focus to the power of symmetric positive definite matrices
the following simple algorithm is applied:

1. Compute the decomposition V DV −1 = −∆h, where the columns of V are
the eigenvectors of −∆h and D is a diagonal.

2. Take the power of the diagonal elementwise so that (−∆h)α = V DαV −1.

Indeed, we have to compute vectors of form (−∆h)−α~u by solving linear problems
with the matrix (−∆h)α. For this an efficient algorithm is proposed in [18].

We solve then (2.3) using a simple predictor-corrector algorithm introduced by
Patankar [5]. We start from an initial velocity field ~u0 and an initial value for the
pressure p0 and apply the time step τ . The main steps of the algorithm are the
following.

1. Solve the following equation for ~w:

~w − ~un

τ
+ Lh(~un)~w + gradhpn = 0. (2.4)

2. Solve the following equation for q:

divhgradhq =
1

τ
divh ~w.

3. Compute the pressure values pn+1 = q + pn.
4. Compute the velocity vector ~un+1 = ~w − τgradhq.

2.2. Time-fractional Navier–Stokes equations. For this model we use the
time-fractional derivative, see also [4].

Definition 2.2. For functions f : R → R the time-fractional derivative of order

0 < β ≤ 1 is defined as

∂βf(t)

∂tβ
:= lim

N→∞

{

N
∑

k=0

(

β

k

)

(−1)k f(t − kh)

hβ

}

provided that the limit exists.
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With this, we investigate the following problem:

∂βu

∂tβ
= (−u · ∇)u −∇p + ν∆u

∇ · u = 0,

(2.5)

which will be equipped with appropriate boundary conditions.
Our numerical method follows the approach in [2] and based on the semidis-

cretization of (2.5):

Dτ,β~u + Lh(~u)~u + gradhp = 0,

divh~u = 0,
(2.6)

where for the time step τ = t
N we use

Dτ,βf(t) =

N
∑

k=0

(

β

k

)

(−1)k f(t − kτ)

τβ
.

Starting again from the initial values ~u0 and p0 the n-th time step to solve (2.6)
numerically consists of the following:

1. Solve equation (2.7) for ~w:

~w −
∑n

k=1

(

β
k

)

(−1)k+1~un−k

τβ
+ Lh(~un)~w + gradhpn = 0. (2.7)

2. Solve the following equation for q:

divhgradhq =
1

τβ
div~w.

3. Compute the pressure values pn+1 = q + pn.
4. Compute the velocity vector ~un+1 = ~w − τβgradhq.

Computing with this algorithm for several values of β we are looking for the minimal
right-hand side. This corresponds to the quasi steady-state solution.

3. Numerical experiments.

3.1. Discretization operators. We use here the notation u = (u, v)T for the
velocity field both at the continuous and the discrete level. Following the method in
[2], we use an equidistant staggered grid, where we compute on different grid points
which are associated to u, v and p, respectively, see Fig. 3.1. For simplicity we give
the details of the discretization only for the horizontal velocity components in the grid
points associated to u; for further details we refer to [2].

Spatial discretization operators. We approximate the pressure term ∂p
∂x using the

operator gradh as follows:

∂p

∂x

∣

∣

∣

i,j+1/2
≈

(

gradhp
)

i,j+1/2
:=

1

h

(

pi+1/2,j+1/2 − pi−1/2,j+1/2

)

.

The viscous term ∆u is discretized with the operator ∆h in the following way.

∆u
∣

∣

∣

i,j+1/2
≈

(

∆hu
)

i,j+1/2
:=

1

h2

(

ui+1,j+1/2 − 2ui,j+1/2 + ui−1,j+1/2

)

+
1

h2

(

ui,j+3/2 − 2ui,j+1/2 + ui,j−1/2

)

.



ALGORITMY 2016 5

Fig. 3.1. Staggered grid in the computations. Grid points with “−” are indexed by (i, j + 1/2)
and associated to u; those with “|” are indexed by (i + 1/2, j) and associated to v and those with

“•” are indexed by (i + 1/2, j + 1/2) and associated to p.

In the discretization of the convective term (u · ∇)u we discuss its horizontal
component u∂u

∂x + v ∂u
∂y . This is approximated with operator Dh(u) defined as follows:

u
∂u

∂x
+ v

∂u

∂y

∣

∣

∣

i,j+1/2
≈

(

Dh(u)u
)

i,j+1/2
:=

1

h

[(ui+1,j+1/2 + ui,j+1/2

2

)2

−
(ui−1,j+1/2 + ui,j+1/2

2

)2]

+
1

h

[(vi−1/2,j+1 + vi+1/2,j+1

2

)(ui,j+1/2 + ui,j+3/2

2

)

−
(vi−1/2,j + vi+1/2,j

2

)(ui,j+1/2 + ui,j−3/2

2

)]

.

We finally we approximate the divergence operator in the points associated to p

as follows:

divu
∣

∣

∣

i+1/2,j+1/2
≈

(

divhu
)

i+1/2,j+1/2
:=

1

h

(

ui+1,j+1/2 − ui,j+1/2

)

+
1

h

(

vi+1/2,j+1 − vi+1/2,j

)

.

3.2. Parameters in the simulation. We test our models on a classical Back-
ward Facing Step benchmark problem. For this we use the real measurements of
the works [9], [10], [14], [15] and we also compare our simulation results with other
numerical predictions in [10],[11], [12],[13]. The geometric setup of this problem is
shown in Fig. 3.2.

In the model problem, the fluid flows into the channel at the upper left side
and it flows out at the right-hand side. The Reynolds number based on the hydraulic
diameter of the inlet channel is ReD = 4hvmax

3ν , where D means the hydraulic diameter
of the inlet channel D = 2h. With these the exact boundary conditions are the
following:

1. x = −l, y ∈ [H−h, h] (inflow section): vy = 0 and vx = − 4(H−y)(H−h−y)
h2 vmax

2. x = L − l (outflow section): ∂vx

∂x =
∂vy

∂x = 0 and p = 0,

3. on the remaining part of the boundary: vx = vy = 0.
We also used a short inlet channel. Whenever the problem seems to be easy, many
recent calculations result in an inaccurate prediction of certain well-measurable quan-
tities, such as the location of the so-called reattachment lengths r, s and rs. For a
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Fig. 3.2. The Backward Facing Step problem: a flow is investigated in the composition of two

rectangular channels. The diameter h of the inlet channel is smaller that the diameter H of the

outlet channel. Non-slip boundary conditions are applied at the solid walls.

Fig. 3.3. Reattachment lengths r, s and rs. The subdomains of the computational domain with

vx < 0 are shaded.

Table 3.1

Numerical results for time–fractional Navier–Stokes equations, SST=Shear Stress Modell,

DNS=Direct Numerical Simulation, SA=Spalart–Allmaras model, k–ǫ=k–ǫ-model, ER=Expansion

ratio H/h

Re ER Measured Numerical simulations Our β
r/S result

2425 1.66 9.2 [10] SST 9.4, SA 8.54, RNG k–ǫ 6.93, k–ǫ 6.3 [10] 8.2 0.75
2976 1.66 7.6 [10] SST 7.89, SA 6.93, RNG k–ǫ 5.98, k–ǫ 5.1 [10] 7.6 0.7
3615 1.66 6.45 [10] SST 6.57, SA 5.89, RNG k–ǫ 5.32, k–ǫ 4.2 [10] 6.5 0.65
5000 1.2 6.0 [14] DNS 6.0 [11] 5.9 0.55
8000 1.942 8.0 [9] k–ǫ 6.8 [12] 7.52 0.75

132000 1.5 7.0 [15] k–ǫ 5.8 [15] 6.6 0.75

visualization of these we refer to Fig. 3.3 and a typical simulation result with the
computed velocity field is shown in Fig. 3.4.

We have chosen in every test case the time step τ = 1.25 · 10−3, the kinematic
viscosity ν = 2

30 , the step height and the inlet channel length S = 0.5 and the grid
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Table 3.2

Numerical results for hyperviscous Navier–Stokes equations, SST=Shear Stress Modell,

DNS=Direct Numerical Simulation, SA=Spalart–Allmaras model, k–ǫ=k–ǫ-model, ER=Expansion

ratio H/h

Re ER Measured Numerical simulations Our α
r/S result

2425 1.66 9.2 [10] SST 9.4, SA 8.54, RNG k–ǫ 6.93, k–ǫ 6.3 [10] 9.0 2.2
2976 1.66 7.6 [10] SST 7.89, SA 6.93, RNG k–ǫ 5.98, k–ǫ 5.1 [10] 6.7 2.45
3615 1.66 6.45 [10] SST 6.57, SA 5.89, RNG k–ǫ 5.32, k–ǫ 4.2 [10] 6.0 2.6
5000 1.2 6.0 [14] DNS 6.0 [11] 6.06 2.45
8000 1.942 8.0 [9] k–ǫ 6.8 [12] 8.4 1.8

132000 1.5 7.0 [15] k–ǫ 5.8 [13] 6.6 1.7

parameter h = 0.05. The main channel length was L − l = 10, except of the case
Re = 5000, where we used a shorter channel length L−l = 5. The optimal parameters
α and β were selected using the result of consecutive simulations.

Note that in the hyperviscosity model the increasing of the values α always make
the scheme more stable. At the same time, too large values of this value result in the
decreasing of the reattachment length and make the simulation results unrelaible. We
found that optimal values of α fall in the range (1.7, 2.6) for large Reynolds numbers.
At the same time, the results were not much sensitive to this parameter in the above
range.

We have similar experience by choosing the optimal parameters β. Small values
of β can result in unstable simulations for large Reynolds numbers. At the same time,
the result for the reattachment lengths is only realistic if β is below the threshold 0.8.
In contrast to the above parameter, the results are rather sensitive to the variation of
β, we found that these parameters should lie in the range (0.55, 0.75).

We found also that an optimal choice of α and β does not significantly depend
on the Reynolds number, which is a favorable property.

Our results using the time-fractional Navier–Stokes equations are summarized in
Table (3.1) and the results using the hyperviscous model can be found in Table (3.2).
Note that Reynolds numbers can be calculated differently: the Reynolds numbers in
the tables are the original values in the corresponding articles. Table (3.3) shows how
to switch these values to ReD in our calculations. Our simulation results are in a
good agreement with measured data in the sense that the relative error rate in the
main reattachment length r is within 10%.

Table 3.3

Converting the different Reynolds numbers to ReD, which is used in our simulations and based

on the hydraulic diameter of the inlet channel

Re ReD

in the articles
2425 4850
2967 5952
3615 7230
5000 26666
8000 8000

132000 533333

Conclusion. We investigated two modifications of the two-dimensional incom-
pressible Navier–Stokes equations. Firstly, the Laplacian operator was replaced with
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a fractional Laplacian, while in the second model a fractional time derivative was
used. Both models were tested on the classical Backward Facing Step benchmark
problem with different expansion ratios. We found that the fractional parameters can
be tuned so that the simulation results are in a good accordance with real measure-
ments regarding the main reattachment length r. In each case, the relative error rate
for this quantity is below 10%. Since these approaches lead to an accurate simulation
of single vortices, we can hope that are useful for the simulation of turbulent flows.
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