1	Cytolethal distending toxin producing Escherichia coli O157:H43 strain T22 represents a
2	novel evolutionary lineage within the O157 serogroup
3	
4	Domonkos Sváb ¹ , Balázs Bálint ² , Gergely Maróti ³ , István Tóth ^{1*}
5	
6	¹ Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian
7	Academy of Sciences, Budapest, Hungary. E-mail: svab.domonkos@agrar.mta.hu
8	² Seqomics Biotechnology Ltd., Mórahalom. E-mail: balintb@seqomics.hu
9	³ Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences,
10	Szeged. E-mail: marotig@brc.hu
11	
12	Running title: Comparative genomics of CDT-producing E. coli O157:H43
13	
14	Keywords: Escherichia, O157:H43, CDT, LT-II, comparative genomics, phylogeny
15	
16	*Corresponding author: István Tóth, Institute for Veterinary Medical Research, Centre for
17	Agricultural Research, Hungarian Academy of Sciences, H-1143 Budapest, Hungária krt. 21.
18	Hungary. Phone: +36-1-2522455. Fax:+ 36-1-2521069. E-mail: toth.istvan@agrar.mta.hu
19	

20 Abstract

21 Enterohemorrhagic Escherichia coli (EHEC) O157:H7/NM strains are significant foodborne pathogens intensively studied, while other sero- and pathotypes of the O157 serogroup only 22 began to receive more attention. Here we report the first genome sequence of a cytolethal 23 distending toxin (CDT-V) producing E. coli O157:H43 strain (T22) isolated from cattle. The 24 genome consists of a 4.9 Mb chromosome assembled into three contigs and one plasmid of 25 82.4 kb. Comparative genomic investigations conducted with the core genomes of 26 representative E. coli strains in GenBank (n=62) confirmed the separation of T22 from the 27 EHEC and enteropathogenic (EPEC) O157 lineages. Gene content based pangenome analysis 28 revealed as many as 261 T22-specific coding sequences without orthologs in EDL933 EHEC 29 O157 prototypic and two phylogenetically related commensal E. coli strains. The genome 30 sequence revealed 10 prophage-like regions which harbor several virulence-associated genes 31 32 including *cdt* and heat-labile enterotoxin (LT-II) encoding operons. Our results indicate that the evolutionary path of T22 is largely independent from that of EHEC and EPEC 33 34 O157:H7/NM strains. Thus, the CDT-producing T22 E. coli O157:H43 strain represents a unique lineage of E. coli O157. 35

37 **1. Introduction**

38 Enterohemorrhagic Escherichia coli (EHEC) O157:H7/NM strains are significant food-borne zoonotic pathogens causing hemorrhagic colitis (HC) and haemolytic uraemic syndrome 39 (HUS) in human (reviewed by Kaper et al., 2004). Typical EHEC strains produce a set of key 40 virulence factors: one or more types of Shiga toxin (Stx) encoded by lambdoid prophages and 41 intimin adhesin encoded by *eae* gene that is part of LEE pathogenicity island (reviewed by 42 Caprioli et al., 2005). Besides the O157:H7/NM serotypes, EHEC strains have been reported 43 from various other serotypes, as well as members of the O157 serogroup which also represent 44 other pathotypes besides EHEC. E. coli O157 strains harboring eae gene but no stx were 45 categorized as enteropathogenic E. coli (EPEC), such strains were isolated from human and 46 animal sources (Stephan et al., 2004, Tóth et al., 2009). Additionally, atypical O157 strains, 47 which carry none of the key virulence genes were reported (Sváb et al., 2013b; Tóth et al., 48 49 2009). Because of the significance of EHEC and EPEC E. coli O157:H7/NM strains as pathogens, 50 51 several strains had their whole genome sequences published (Eppinger et al., 2013; Wyrsch et 52 al., 2015). However, less attention has been devoted to atypical O157 strains as well as strains with further serotypes exhibiting different H antigens (Hazen et al., 2013). 53 Cattle has been considered as a reservoir of Shiga toxin-producing E. coli (STEC) strains for a 54 long time (Gyles, 2007). Earlier we reported atypical non-sorbitol fermenting E. coli O157 55 strains with H antigens different from H7 isolated from the milk of healthy cattle, several of 56 these strains produced cytolethal distending toxin (CDT-V; Tóth et al, 2009; Taieb et al, 57 2015). These findings indicated that similar O157 strains could be persistent in the animal 58 host, and the constant exchange of mobile genetic elements harboring virulence genes may 59 give rise to new combinations of virulence traits. The emergence of novel pathotypes is a 60 permanent potential epidemiological risk, as it was experienced recently in Germany where 61

62	the largest outbreak of STEC was caused by recombinant enteroaggregative-heamorrhagic E.
63	coli O104:H4 (EAHEC) strains (Ahmed et al., 2012).
64	Earlier, we reported the draft genome of a CDT-V producing atypical E. coli O157:H43 strain
65	(T22, Sváb et al., 2013b). In the current study, our goals were to determine the complete
66	genome of T22 and to investigate its phylogenetic relation to publicly available E. coli
67	genomes. Comparative genomics revealed the unique genotype and phylogenetic position of
68	T22 among <i>E. coli</i> strains.
69	
70	2. Materials and methods
71	
72	2.1 Bacterial strain
73	E. coli strain O157:H43 T22 was isolated from the milk of healthy cattle on a Hungarian dairy
74	farm. See Tóth et al (2009) for further procedure information.
75	
76	2.2 Whole genome sequencing
77	Genomic DNA of E. coli T22 was isolated with GenElute Bacterial Genomic DNA Kit
78	(Sigma-Aldrich) according to the manufacturer's instructions. Clone library was generated
79	using Illumina Nextera Mate Pair Kit (Cat.Num.: FC-132-1001) per the manufacturer's
80	instructions. Re-sequencing was performed on an Illumina MiSeq machine using V2
81	sequencing chemistry. Mate-paired reads were pre-processed following the manufacturer's
82	recommendations (Data Processing of Nextera® Mate Pair Reads on Illumina Sequencing
83	Platforms).
84	

2.3 Assembly, annotation and sequence homology search

86 De novo assembly was performed with CLC Genomic Workbench 8.5.1 (CLC Bio) with

contigs being subsequently arranged into scaffolds using SSPACE 3.0 (Boetzer et al., 2011).

Gaps in scaffolds were closed with Spades v 3.1.1 (Bankevich et al., 2012) together with an

89 in-house R script (unpublished results).

90 Annotation was performed with NCBI PGAAP.

Prophage regions in the genome were identified using PHAge Search Tool (PHAST, Zhou et 91 al, 2011), and their automated annotation was manually curated. Sequence similarity searches 92 were carried out using the publicly available tools of NCBI. Codon usage proportions were 93 determined with the Cusp algorithm from the European Molecular Biology Open Software 94 95 Suit (EMBOSS) package (Rice et al., 2000). The presence of virulence and antimicrobial resistance genes were also checked with Virulence Finder and ResFinder (Kleinheinz et al., 96 2014). Genes encoding secretion systems and associated effectors were investigated with the 97 98 Effective database (Jehl et al., 2011).

99

100 **2.4 Pangenome analysis**

101 Complete genomes (n=62) together with any associated plasmid sequences for representative E. coli and Shigella strains were downloaded from NCBI to assess the phylogenetic position 102 of T22. Downloaded genomes as well as the T22 contigs were annotated using Prokka 1.10 103 (Seeman 2014) to ensure identical gene prediction settings. Get homologues (Contreras-104 Moreira and Vinuesa., 2013) was then applied on the annoted genbank files to identify 105 clusters of orthologous sequences using the COGS clustering algorithm. The obtained 106 pangenome matrix allowed gene content comparison between T22, two closely related 107 commensal strains (IAI1, SE11) as well as the prototypic EHEC O157:H7 EDL933 strain 108 (GenBank no. CU928160.2, AP009240.1and AE005174.2, respectively) 109

111 **2.5** Phylogenetic analysis of the core genes

Get homologues (Contreras-Moreira and Vinuesa., 2013) was used to compute the list of 112 protein coding genes present in all strains (i.e. core genes). Clusters with inparalogues were 113 114 excluded. Core gene DNA sequences were concatenated in the exact same order for each analyzed genome. Concatenated DNA sequences were then aligned using MAFFT (Tabei et 115 al., 2008) with 100 bootstrapped alignment versions concomitantly generated with the 116 "fseqboot" program from the EMBOSS package (Rice et al., 2000). Maximum likelihood 117 phylogenetic trees were calculated from the original as well as from the bootstrapped 118 alignment files using FastTree (Price et al., 2010). Support values based on 100 bootstrap 119 replicates were added with "CompareToBootstrap.pl" script from the FastTree software 120 121 package.

122

123 **3. Results and discussion**

124 **3.1 Basic features of the** *E. coli* **T22 genome**

125 The genome of E. coli O157:H43 strain T22 consists of a 4.9 Mb chromosome, and one 126 circular plasmid (pT22) of 82.4kb (GenBank accession number: LYNF00000000). The general features of the T22 genome are presented in Table 1. The chromosomal architecture 127 of T22 is very similar to a number of other E. coli strains including pathogenic, commensals 128 and K-12 laboratory strains. Another important feature of the chromosome is the high 129 proportion (almost 7%) of prophage sequences. The genome of T22 is assembled into three 130 contigs containing 4,687 coding sequences (CDS), 75 tRNA and 24 rRNA genes. In addition, 131 the plasmid contains 79 protein coding genes. The present resequencing helped to finalize the 132 previously published draft genome data (Sváb et al., 2013b) regarding the sizes of the 133 chromosome and the plasmid of T22 (Table 1). 134

135 The plasmid termed pT22 belongs to the F replicon type, it harbors two genes of a multi-gene

iron-di-citrate transport protein system, and carries a *vapB-vapC* toxin-antitoxin system.

137

138 **3.2 Prophage regions and associated virulence genes**

Because of the significant role of prophages as vectors of virulence genes and their 139 dissemination among EHEC O157 strains, we have paid special attention to the prophages 140 harbored by E. coli T22. PHAST search and the annotation of the genome revealed that the 141 chromosome of E. coli T22 contains 10 prophage regions (Table 2). Similarly to the 142 prototypic EHEC O157:H7 strains (Hayashi et al, 2001; Perna et al, 2001), a great number of 143 144 prophages are identified and some of them also carry genes with virulence potential. The manual curation of the PHAST results revealed that prophages account for 339 kb in the 145 genome, corresponding to almost 7% of the total chromosome length. Regarding the two 146 EHEC O157:H7 prototypic strains their genomes contain higher number of prophages: Sakai 147 carries 12.2% (Hayashi et al, 2001) and EDL933 11% (Perna et al, 2002) prophage sequences. 148 149 The size of these individual prophages varies between 13 to 52 kb and they are dispersed in the genome. The GC content of the prophages is between 45.5% and 52.6% and no codon 150 usage bias can be detected when compared to the whole genome. This indicates adaptation of 151 these prophage elements to the T22 host. The main characteristics of the identified prophages 152 are summarized in Table 2, and Fig. 1 shows their schematic representations. We termed the 153 prophages from T22pp1 to T22pp10. The architectures of the T22 prophages are different, 154 three of them are lambdoid, three prophages are P2-like, and the remaining four are classified 155 according to the closest homologue sequences (Table 2). 156

157 Homologies and their overall structure classify prophages T22pp4, T22pp6 and T22pp7 as

158 P2-like prophages. T22pp6 harbors the operon encoding cytolethal distending toxin V, and

has been characterized earlier (Sváb et al., 2013a).

An important difference between these P2-likeprophages is that while T22pp6 has a P2-type regulatory switch consisting of *c* and *cox* genes, prophages T22pp4 and T22pp7 contain the 186-type switch consisting of *cI* and *cII* regulatory genes indicating that they appear to be more closely related to P2-like prophages of *Salmonella* origin, although P2-like phages are generally hypothesized to be host-specific (Nilsson et al., 2011).

Prophages T22pp8, T22pp9 and T22pp10 show partial homologies to lambdoid prophages,
particularly to Sp8 of the EHEC O157:H7 Sakai strain (Hayashi et al., 2001), in the case of
prophage T22pp8. T22pp9 contains a relatively conserved region, which also occurs in Sp3
and Sp10 of the Sakai strain.

169 T22pp9 also carries the gene cluster with genes encoding heat-labile enterotoxin type IIc1

170 (LT-IIc1). The region containing the toxin genes is situated downstream of the Q

antiterminator gene and also contains the *artAB* operon encoding the ADP-ribosyltransferase

toxin homologue or pertussis-like toxin, first identified in *Salmonella* Typhimurium (Saitoh et

al., 2005), and later in *E. coli* strains, where it was termed *ealAB*, for *E. coli artAB*-like AB

toxin (Jobling, 2016). These two toxin-encoding operons are separated by three phage genes,

encoding a putative membrane protein, a holin, and a hypothetical protein, respectively. It has

already been proposed that LT-II is carried by prophages (Jobling and Holmes, 2012) and in

the case of LT-IIa, a whole prophage genome was determined, and the carriage of a pertussis-

178 like toxin gene cluster was also reported as prophage Rac-SA53 (Jobling, 2016). In T22pp9

the region carrying the LT-II toxin genes are very similar to that found in prophage Rac-

180 SA53, however, most of the remaining structural regions of T22pp9 are significantly

different. The *lt-IIc1* and *ealAB* clusters harbored by T22 are 100% identical to those carried

182 by *E. coli* strain NADC1036 (GenBank KU052040; Jobling, 2016).

Besides the above toxin genes, T22pp9 and alsoT22pp10 carry an attachment invasion protein 183 184 precursor gene, encoding the *lom*-like protein, which is thought to have a role in adhesion (Vica Pacheco et al., 1997), however, no recent studies have explored this function in details. 185 Serum resistance associated lipoprotein Bor (Barondess and Beckwith, 1995) encoding gene 186 is present inT22pp8. This putative virulence factor is encoded by multiple lambdoid 187 prophages found in several pathogenic *E. coli* strains, most notably in Stx-converting phages 188 of EHEC strains (Asadulghani et al., 2009), T22pp1 is integrated into the yecE-yecD site, 189 190 which in some STEC strains contains prophage PhiP27, harboring the stx2e operon (Muniesa et al., 2000; Recktenwald and Schmidt, 2002). Within T22pp1 there are genetic stretches 191 showing strong homology to parts encoding replication and packaging functions of PhiP27, 192 suggesting evolutionary relationship between these prophages. 193 194 T22pp2, being only 11 kb in size, shows remarkable mosaic structure, but only low level homologies to known prophages. T22pp2 is integrated between a prolin tRNA gene and the 195 operon encoding a type I secretion system. There are no reported examples of this insertion up 196 197 to date, but the undisrupted region (prolin tRNA and type I secretion system in tandem) can be observed in the genome of several commensal strains. 198 The T22 prophages are integrated at different sites scattered across the genome, half of them 199 are associated with tRNA genes (Table 2), which is in harmony with the findings of Bobay et 200 201 al., (2013), who reported that prophages are frequently integrated next to tRNA genes.

The typical integration sites of Stx phages (*wrbA*, *yehV*, *sbcB*, *argW*) are intact in T22, with the exception of *yecN-yecD* containing T22pp1 noted above, providing potential integration

sites for Stx phages.

205

206 **3.3 Additional virulence related genes**

Although the prophage pool carried by T22 differs greatly from the prophages carried by

208 typical EHEC O157:H7 strains, these regions also harbor several different (*cdt*, *lt-II*, *lpf*) and

identical (*bor*, *lom*) virulence genes (see 3.2). Additional virulence genes are also present in

the chromosome, representing fimbriae and secretion systems (see below 3.3.1-3.3.2).

211

212 **3.3.1 Fimbriae**

213 The initial PCR investigation of *E. coli* T22 showed that the strain harbors long polar fimbria

214 (Lpf) genes (Tóth et al., 2009), this surface structure described by Torres et al (Torres et al.,

2002) was found to be harbored by a wide variety of pathogenic *E. coli* in the past decade,

and proved to have adhesive functions in EHEC (Lloyd et al., 2012). Subtyping showed that

the *lpf* operon harbored by T22 is of allelic type 2-1 (Sváb and Tóth, 2012), which is a

widespread variant, but not characteristic for typical EHEC or EPEC O157 strains (Torres etal., 2009).

E. coli T22 also carries the full operon of type 1 fimbriae encoded by the *fim* gene cluster,

which is also a widespread virulence factor of pathogenic *E. coli*, especially uropathogenic *E*.

coli (UPEC), where it plays a role in adherence to the urogenital epithelium, and can also be

found in several commensal strains (Martinez et al., 2000).

Both fimbrial operons are integrated into their usual site, which is between the *glm* and *pst*

gene clusters for *lpf2-1*, and between the *yhj* and *gnt* gene clusters for the *fim* operon,

226 respectively.

227

228 **3.3.2 Secretion systems**

229 The T22 genome harbors a full type VI secretion system encoding gene cluster. This structure

is considered to be a remnant of a bacteriophage tail, utilised by *E. coli* in the transport of

various effectors (Leiman et al., 2009). This gene cluster carried by T22 is most similar to that

of ETEC E24377A of human origin and several other pathogenic *E. coli* strains. This variant
was reported and characterized earlier, termed as subtype 2 (T6SS2) in APEC strains (Ma et
al., 2013).

We also identified a truncated version of the type 2 of the type III secretions system (ETT2; 235 (Makino et al., 2003). The yqe, yge, epr and epa gene clusters are present but the whole eiv 236 gene cluster is missing albeit its flanking pseudogenes are present. (Fig. 2). The above gene 237 clusters are integrated between a gene encoding a serine transporter and a glycine tRNA gene. 238 239 This putative secretion system is widespread in pathogenic E. coli, and is thought to have regulatory functions in virulence in general (reviewed by Zhou et al., 2014). 240 T22 fulfils all the criteria of a CDT-producing E. coli (Tóth and Sváb, 2014) as demonstrated 241 in our previous study (Taieb et al, 2015). CDT-V from T22 caused characteristic 242 morphological changes of HeLa cells in tissue culture assays. Cell cycle arrest of eukaryotic 243 244 cells at G2-M2 transition was demonstrated by flow cytometry. In addition, the CDT-induced phosphorylation of histone protein H2AX was observed by immunoblot analysis revealing 245 246 double-stranded DNA damage in the cells (Taieb et al, 2015). Recent studies suggest the 247 distinction of cytolethal distending toxin producing E. coli as a pathotype on its own right, abbreviated as 'CTEC' (Hinenoya et al., 2009; 2014). While not being isolated from human 248 source, and thus not having direct evidence for its pathogenicity, E. coli T22 can be 249 250 categorized as CTEC, while also carrying the gene cluster encoding LT-II and the pertussis-

252

251

253 **3.4 CRISPR regions**

like toxin.

Clustered regularly interspaced palindromic repeats (CRISPR) and the proteins encoded by
the CRISPR-associated genes (Cas) are utilized by various archaea and bacteria (including *E. coli*) as an adaptive immune system against foreign genetic material reviewed in Bondy-

257 Denomy and Davidson (2014). All four CRISPR regions (CRISPR1-4) identified up to date in

E. coli are present. A summary of these regions is shown in Table 3. Thus the T22 genome

contains a presumably functional CRISPR-Cas system. The CRISPR1 is coupled to the gene

260 cluster encoding the Cas genes, which is most similar to the gene cluster carried by ETEC

strain E24377A (Díez-Villaseñor et al., 2010).

262 The spacers in the CRISPR1 array of T22 are identical to those carried by strain hu24 and k8,

isolated from human source (GenBank KF707537.1 and KF707515.1; (Sheludchenko et al.,

264 2015). However, when compared to the repeat regions of typical O157 EHEC strains

265 (Delannoy et al., 2012), no common spacers can be observed.

266 The CRISPR2 region bears an overall similarity to that found in several K-12 and commensal

strains. Comparison with the STEC CRISPR sequence collection deposited by Yin et al.,

268 (2013) revealed that the first and fourth spacer of T22 CRISPR2 are shared with the

corresponding region of strain 0-0846, but no other matching spacers can be found. On the

other hand all spacers of T22 CRISPR1 and CRISPR2 can be found in the corresponding

regions of Shiga toxin-producing (STEC) O113:H21 strains determined by Feng et al., (2014),

and in several *E. coli* reference (ECOR) strains, albeit in different arrangements. Fig. 3 shows

a schematic representation of CRISPR1 and CRISPR2.

274 It is interesting to note that according to Yin et al., a conservation of CRISPR sequences could

be observed between O157 strains carrying the same H antigen (Yin et al., 2013). Recently

the draft genome sequence of porcine ETEC O157:H43 strain DEC7A became available

277 (GenBank AIGA01000043.1, Hazen et al., 2012). However, when comparing the CRISPR1

and CRISPR2 regions of T22 to those of DEC7A, no matching spacers are found.

279 The CRISPR3 and CRISPR4 regions, in harmony with earlier findings (Touchon and Rocha,

280 2010), forms a combined, short, and apparently conserved array, which shows 100% identity

to corresponding regions carried by more than 40 *E. coli* strains according to GenBank, and
without containing any spacers (Toro et al., 2014).

283

284 **3.5 Phylogenetic relations**

To investigate the phylogenetic relationships of *E. coli* T22 to other pathogenic and non-

pathogenic *E. coli* strains, we selected 62 publicly available whole genomes and compared

them by core genome phylogeny. The selected strains represent all the main intestinal

pathotypes as well as extraintestinal (ExPEC), uropathogenic (UPEC) and commensal strains.

289 Representatives of the four species of *Shigella* were also included. The accession numbers of

the genomes are given in Table A1. All the common conserved genes present in these *E. coli*

and *Shigella* genomes were collected. DNA sequence for as many as 1862 common genes

were identified and used in genome comparison analysis (Fig. 4).

The core genome phylogeny placed T22 closest to E24377A ETEC strain of O139:H28

serotype, as well as the EHEC O26:H11 and O111:NM strains. The EHEC O103:H2 strain

was placed on a neighboring branch. These three EHEC strains (designations 11368, 11128

and 120009, respectively) were isolated from sporadic cases of diarrhea (Ogura et al, 2007),

while ETEC E24377A was isolated from drinking water (Tamhankar et al, 2015). The typical

EHEC O157:H7 strains and their ancestors, the O55:H7 strains (Feng et al, 2007) form a

separate group, as well as the recently emerged O104:H4 enteroaggregative-hemorrhagic

300 (EAHEC) strains. These results indicate that T22 belongs to a separate lineage of intestinal

pathogenic strains, divergent from the typical O157 EHEC and also from the recently

302 emerged O104:H4 EAHEC strains. Our phylogenetic analysis also showed that commensal

303 strains like IAI1, SE15 and SMS-3-5 are widely distributed all along the tree. Extraintestinal

304 strains are separate from all the above-mentioned clusters, but they are insterspersed with

305 EPEC and other intestinal and commensal strains. The *Shigella dysenteriae* Sd197 strain was

placed close to the EHEC O157:H7 strains, but far from strains of other *Shigella* species (Fig.4).

Complementary to the phylogenetic relations a further, gene-content based pangenome 308 309 analysis was performed with the genomes of E. coli T22, the commensal E. coli strains IAI1, SE11 and the prototypic EHEC O157:H7 EDL933 strain (GenBank no. CU928160.2, 310 AP009240.1, and AE005174.2, respectively). The former two were chosen because on the 311 whole-genome sequence level they are closest to T22 among the commensal strains, and the 312 EDL933strain was included as prototypic EHEC O157 strain. These analyses revealed 313 3,599CDSs (82% of the T22 CDSs) that are common to all four compared E. coli genomes, 314 315 while 261 CDSs (6%) are T22-specific (Fig. 5. and Table A2). T22-specific genes include the gene cluster encoding CDT, LT-II and EalAB, as well as several plasmid and prophage-316 related structural and regulatory genes in the chromosome. One gene of the O-antigen 317 biosynthesis cluster is also included, which further supports the idea of T22 representing a 318 distinct lineage from other O157 strains, while this gene shows high identity percentage to 319 320 that carried by the strain E. coli PV00-24, and of the O157:H43 serotype (GenBank 321 AB602253.1). This finding also confirms the notion that differences in the O157 biosynthesis genes indicate the separation of lineages within the serogroup (Iguchi et al., 2011). 34 of the 322 261 unique genes are found on the plasmid pT22. These include the iron di-citrate transport 323 system, the F-pilin as well as the *tra* and *trb* gene cluster related to the conjugative transfer. 324 325 The predicted functions and closest homologues of the unique genes are summarized in Table A2. 326 All these results indicate that E. coli T22 represents a distinct evolutionary path from the 327

typical STEC and EHEC members of the O157 serogroup, and being divergent from

enterotoxigenic E. coli (ETEC) strains of O157:H43 serotype, although there is considerably

fewer sequence data available for ETEC O157 strains. In a recent study by Sanjar et al.,

331 (2015) phylogenetic analysis placed the genomes of O157:non-H7 strains, including T22,

apart from typical EHEC and EPEC strains of the serogroup, further suggesting its separate

lineage. In harmony with our results Sanjar et al reported that T22 clustered together with

ETEC strain E24377A, commensal *E. coli* strain IAI1, and also with EHEC strains 11128,

11368 and 120009. Together with the results of the pangenome analysis, these data strongly

support the idea of T22 representing a unique and so far uncharacterized lineage of

337 pathogenic *E. coli* (Fig. 4 and 5).

Since T22 represents a novel patho- and genotype among E. coli O157 strains it is necessary 338 to summarize the relation of T22 to prototypic EHEC O157 strains regarding their 339 phylogenetic markers. Earlier a step-wise evolution model was devised for the emergence of 340 O157:H7/NM EHEC strains (Feng et al., 2007). In this model, the inability to ferment sorbitol 341 is considered a key marker of typical EHEC O157:H7 strains. Interestingly, T22 also shows 342 343 the non-sorbitol-fermenting (NSF) phenotype (Tóth et al., 2009). In a more recent study, conducted with 400 O157 strains including nine of the O157:H43 strains, pulsed field gel 344 345 electrophoresis (PFGE) patterns suggested that the O157 serogroup became divergent according to the different H types (Rump et al., 2015). Out of the nine O157:H43 strains 346 investigated by Rump et al., (2015) only two were NSF, and one of theme lacked all EHEC-347 specific marker genes. Similarly, none of the 13 EHEC-specific marker genes are present in 348 the genome of T22. Because the study was limited to these 13 genes, no further genetic 349 comparison is possible at present between T22 and the O157:H43 strains investigated by 350 Rump et al. (2015). 351

352

353 **3.6 Conclusions**

354 EHEC O157:H7/NM strains are well characterized dangerous zoonotic pathogens, but less

information is available on *E. coli* O157 strains with different virulence genes and H antigen.

 intimin-negative <i>E. coli</i> O157 strain, and the first whole genome of the O157:H43 serotype. Our results show that besides CDT, T22 carries an array of additional virulence genes, including those encoding LT-II toxin as well as the type1 fimbria and Lpf as potential adhesins. The genome contains large amount of prophages, one of them carries the <i>cdt</i> and another the LT-II encoding genes. To our knowledge, no <i>E. coli</i> O157 strain with similar genotype and virulence array has been described up to date in detail. Regarding the phylogenetic relations of T22, our results indicate that it has a unique position among pathogenic and wild-type commensal <i>E. coli</i> strains, representing a separate lineage from the typical EHEC and EPEC O157 strains. The lack of key EHEC virulence genes and the integrity of their typical integration hot spots further support this notion. The unique evolutionary background and genotype of T22 also calls the attention to the continuing emergence of new virulence gene combinations among <i>E. coli</i> of serogroup O157. Acknowledgments This study was supported by the Hungarian Research Fund (OTKA, grant no. K 81 252). References Ahmed, S.A., Awosika, J., Baldwin, C., Bishop-Lilly, K.A., Biswas, B., Broomall, S., Chain P.S.G., Chertkov, O., Chokoshvili, O., Coyne, S., Davenport, K., Detter, J.C., Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henr, M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	356	Here we present the first comprehensive genomic analysis of a CDT-producing, Stx- and
 Our results show that besides CDT, T22 carries an array of additional virulence genes, including those encoding LT-II toxin as well as the type1 fimbria and Lpf as potential adhesins. The genome contains large amount of prophages, one of them carries the <i>cdt</i> and another the LT-II encoding genes. To our knowledge, no <i>E. coli</i> O157 strain with similar genotype and virulence array has been described up to date in detail. Regarding the phylogenetic relations of T22, our results indicate that it has a unique position among pathogenic and wild-type commensal <i>E. coli</i> strains, representing a separate lineage from the typical EHEC and EPEC O157 strains. The lack of key EHEC virulence genes and the integrity of their typical integration hot spots further support this notion. The unique evolutionary background and genotype of T22 also calls the attention to the continuing emergence of new virulence gene combinations among <i>E. coli</i> of serogroup O157. Acknowledgments This study was supported by the Hungarian Research Fund (OTKA, grant no. K 81 252). References Ahmed, S.A., Awosika, J., Baldwin, C., Bishop-Lilly, K.A., Biswas, B., Broomall, S., Chain P.S.G., Chertkov, O., Chokoshvili, O., Coyne, S., Davenport, K., Detter, J.C., Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henr, M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	357	intimin-negative E. coli O157 strain, and the first whole genome of the O157:H43 serotype.
 including those encoding LT-II toxin as well as the type1 fimbria and Lpf as potential adhesins. The genome contains large amount of prophages, one of them carries the <i>cdt</i> and another the LT-II encoding genes. To our knowledge, no <i>E. coli</i> O157 strain with similar genotype and virulence array has been described up to date in detail. Regarding the phylogenetic relations of T22, our results indicate that it has a unique position among pathogenic and wild-type commensal <i>E. coli</i> strains, representing a separate lineage from the typical EHEC and EPEC O157 strains. The lack of key EHEC virulence genes and the integrity of their typical integration hot spots further support this notion. The unique evolutionary background and genotype of T22 also calls the attention to the continuing emergence of new virulence gene combinations among <i>E. coli</i> of serogroup O157. Acknowledgments This study was supported by the Hungarian Research Fund (OTKA, grant no. K 81 252). References Ahmed, S.A., Awosika, J., Baldwin, C., Bishop-Lilly, K.A., Biswas, B., Broomall, S., Chair P.S.G., Chertkov, O., Chokoshvili, O., Coyne, S., Davenport, K., Detter, J.C., Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henry M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	358	Our results show that besides CDT, T22 carries an array of additional virulence genes,
 adhesins. The genome contains large amount of prophages, one of them carries the <i>cdt</i> and another the LT-II encoding genes. To our knowledge, no <i>E. coli</i> O157 strain with similar genotype and virulence array has been described up to date in detail. Regarding the phylogenetic relations of T22, our results indicate that it has a unique position among pathogenic and wild-type commensal <i>E. coli</i> strains, representing a separate lineage from the typical EHEC and EPEC O157 strains. The lack of key EHEC virulence genes and the integrity of their typical integration hot spots further support this notion. The unique evolutionary background and genotype of T22 also calls the attention to the continuing emergence of new virulence gene combinations among <i>E. coli</i> of serogroup O157. Acknowledgments This study was supported by the Hungarian Research Fund (OTKA, grant no. K 81 252). References Ahmed, S.A., Awosika, J., Baldwin, C., Bishop-Lilly, K.A., Biswas, B., Broomall, S., Chain P.S.G., Chertkov, O., Chokoshvili, O., Coyne, S., Davenport, K., Detter, J.C., Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henr, M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	359	including those encoding LT-II toxin as well as the type1 fimbria and Lpf as potential
 another the LT-II encoding genes. To our knowledge, no <i>E. coli</i> O157 strain with similar genotype and virulence array has been described up to date in detail. Regarding the phylogenetic relations of T22, our results indicate that it has a unique position among pathogenic and wild-type commensal <i>E. coli</i> strains, representing a separate lineage from the typical EHEC and EPEC O157 strains. The lack of key EHEC virulence genes and the integrity of their typical integration hot spots further support this notion. The unique evolutionary background and genotype of T22 also calls the attention to the continuing emergence of new virulence gene combinations among <i>E. coli</i> of serogroup O157. Acknowledgments This study was supported by the Hungarian Research Fund (OTKA, grant no. K 81 252). References Ahmed, S.A., Awosika, J., Baldwin, C., Bishop-Lilly, K.A., Biswas, B., Broomall, S., Chain P.S.G., Chertkov, O., Chokoshvili, O., Coyne, S., Davenport, K., Detter, J.C., Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henry M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	360	adhesins. The genome contains large amount of prophages, one of them carries the cdt and
 genotype and virulence array has been described up to date in detail. Regarding the phylogenetic relations of T22, our results indicate that it has a unique position among pathogenic and wild-type commensal <i>E. coli</i> strains, representing a separate lineage from the typical EHEC and EPEC 0157 strains. The lack of key EHEC virulence genes and the integrity of their typical integration hot spots further support this notion. The unique evolutionary background and genotype of T22 also calls the attention to the continuing emergence of new virulence gene combinations among <i>E. coli</i> of serogroup 0157. Acknowledgments This study was supported by the Hungarian Research Fund (OTKA, grant no. K 81 252). References Ahmed, S.A., Awosika, J., Baldwin, C., Bishop-Lilly, K.A., Biswas, B., Broomall, S., Chain P.S.G., Chertkov, O., Chokoshvili, O., Coyne, S., Davenport, K., Detter, J.C., Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henry M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	361	another the LT-II encoding genes. To our knowledge, no E. coli O157 strain with similar
 Regarding the phylogenetic relations of T22, our results indicate that it has a unique position among pathogenic and wild-type commensal <i>E. coli</i> strains, representing a separate lineage from the typical EHEC and EPEC O157 strains. The lack of key EHEC virulence genes and the integrity of their typical integration hot spots further support this notion. The unique evolutionary background and genotype of T22 also calls the attention to the continuing emergence of new virulence gene combinations among <i>E. coli</i> of serogroup O157. Acknowledgments This study was supported by the Hungarian Research Fund (OTKA, grant no. K 81 252). References Ahmed, S.A., Awosika, J., Baldwin, C., Bishop-Lilly, K.A., Biswas, B., Broomall, S., Chain P.S.G., Chertkov, O., Chokoshvili, O., Coyne, S., Davenport, K., Detter, J.C., Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henry M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	362	genotype and virulence array has been described up to date in detail.
 among pathogenic and wild-type commensal <i>E. coli</i> strains, representing a separate lineage from the typical EHEC and EPEC O157 strains. The lack of key EHEC virulence genes and the integrity of their typical integration hot spots further support this notion. The unique evolutionary background and genotype of T22 also calls the attention to the continuing emergence of new virulence gene combinations among <i>E. coli</i> of serogroup O157. Acknowledgments This study was supported by the Hungarian Research Fund (OTKA, grant no. K 81 252). References Ahmed, S.A., Awosika, J., Baldwin, C., Bishop-Lilly, K.A., Biswas, B., Broomall, S., Chain P.S.G., Chertkov, O., Chokoshvili, O., Coyne, S., Davenport, K., Detter, J.C., Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henry M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	363	Regarding the phylogenetic relations of T22, our results indicate that it has a unique position
 from the typical EHEC and EPEC O157 strains. The lack of key EHEC virulence genes and the integrity of their typical integration hot spots further support this notion. The unique evolutionary background and genotype of T22 also calls the attention to the continuing emergence of new virulence gene combinations among <i>E. coli</i> of serogroup O157. Acknowledgments This study was supported by the Hungarian Research Fund (OTKA, grant no. K 81 252). References Ahmed, S.A., Awosika, J., Baldwin, C., Bishop-Lilly, K.A., Biswas, B., Broomall, S., Chain P.S.G., Chertkov, O., Chokoshvili, O., Coyne, S., Davenport, K., Detter, J.C., Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henry M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	364	among pathogenic and wild-type commensal E. coli strains, representing a separate lineage
 the integrity of their typical integration hot spots further support this notion. The unique evolutionary background and genotype of T22 also calls the attention to the continuing emergence of new virulence gene combinations among <i>E. coli</i> of serogroup O157. Acknowledgments This study was supported by the Hungarian Research Fund (OTKA, grant no. K 81 252). References Ahmed, S.A., Awosika, J., Baldwin, C., Bishop-Lilly, K.A., Biswas, B., Broomall, S., Chain P.S.G., Chertkov, O., Chokoshvili, O., Coyne, S., Davenport, K., Detter, J.C., Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henry M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	365	from the typical EHEC and EPEC O157 strains. The lack of key EHEC virulence genes and
 evolutionary background and genotype of T22 also calls the attention to the continuing emergence of new virulence gene combinations among <i>E. coli</i> of serogroup O157. Acknowledgments This study was supported by the Hungarian Research Fund (OTKA, grant no. K 81 252). References Ahmed, S.A., Awosika, J., Baldwin, C., Bishop-Lilly, K.A., Biswas, B., Broomall, S., Chain P.S.G., Chertkov, O., Chokoshvili, O., Coyne, S., Davenport, K., Detter, J.C., Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henry M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	366	the integrity of their typical integration hot spots further support this notion. The unique
 emergence of new virulence gene combinations among <i>E. coli</i> of serogroup O157. Acknowledgments This study was supported by the Hungarian Research Fund (OTKA, grant no. K 81 252). References Ahmed, S.A., Awosika, J., Baldwin, C., Bishop-Lilly, K.A., Biswas, B., Broomall, S., Chain P.S.G., Chertkov, O., Chokoshvili, O., Coyne, S., Davenport, K., Detter, J.C., Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henry M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	367	evolutionary background and genotype of T22 also calls the attention to the continuing
 Acknowledgments This study was supported by the Hungarian Research Fund (OTKA, grant no. K 81 252). References Ahmed, S.A., Awosika, J., Baldwin, C., Bishop-Lilly, K.A., Biswas, B., Broomall, S., Chain P.S.G., Chertkov, O., Chokoshvili, O., Coyne, S., Davenport, K., Detter, J.C., Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henry M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	368	emergence of new virulence gene combinations among E. coli of serogroup O157.
 Acknowledgments This study was supported by the Hungarian Research Fund (OTKA, grant no. K 81 252). References Ahmed, S.A., Awosika, J., Baldwin, C., Bishop-Lilly, K.A., Biswas, B., Broomall, S., Chain P.S.G., Chertkov, O., Chokoshvili, O., Coyne, S., Davenport, K., Detter, J.C., Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henry M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	369	
 This study was supported by the Hungarian Research Fund (OTKA, grant no. K 81 252). References Ahmed, S.A., Awosika, J., Baldwin, C., Bishop-Lilly, K.A., Biswas, B., Broomall, S., Chain P.S.G., Chertkov, O., Chokoshvili, O., Coyne, S., Davenport, K., Detter, J.C., Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henry M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	370	Acknowledgments
 References Ahmed, S.A., Awosika, J., Baldwin, C., Bishop-Lilly, K.A., Biswas, B., Broomall, S., Chain P.S.G., Chertkov, O., Chokoshvili, O., Coyne, S., Davenport, K., Detter, J.C., Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henry M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	371	This study was supported by the Hungarian Research Fund (OTKA, grant no. K 81 252).
 References Ahmed, S.A., Awosika, J., Baldwin, C., Bishop-Lilly, K.A., Biswas, B., Broomall, S., Chain P.S.G., Chertkov, O., Chokoshvili, O., Coyne, S., Davenport, K., Detter, J.C., Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henry M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	372	
 Ahmed, S.A., Awosika, J., Baldwin, C., Bishop-Lilly, K.A., Biswas, B., Broomall, S., Chain P.S.G., Chertkov, O., Chokoshvili, O., Coyne, S., Davenport, K., Detter, J.C., Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henry M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	373	References
 P.S.G., Chertkov, O., Chokoshvili, O., Coyne, S., Davenport, K., Detter, J.C., Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henry M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	374	Ahmed, S.A., Awosika, J., Baldwin, C., Bishop-Lilly, K.A., Biswas, B., Broomall, S., Chain,
 Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henry M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	375	P.S.G., Chertkov, O., Chokoshvili, O., Coyne, S., Davenport, K., Detter, J.C.,
 M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	376	Dorman, W., Erkkila, T.H., Folster, J.P., Frey, K.G., George, M., Gleasner, C., Henry,
 CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M., Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C., 	377	M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo,
Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C.,	378	CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M.,
	379	Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C.,
Teshima, H., van Gieson, E., Verratti, K., Wolcott, M., Xie, G., Sozhamannan, S.,	380	Teshima, H., van Gieson, E., Verratti, K., Wolcott, M., Xie, G., Sozhamannan, S.,
Reitenga, K.G., Rosenzweig, C.N., Shea, A., Shen, X., Strockbine, N., Tarr, C.,	377 378	M., Hill, K.K., Hubbard, K., Insalaco, J., Johnson, S., Kitzmiller, A., Krepps, M., Lo, CC., Luu, T., McNew, L.A., Minogue, T., Munk, C.A., Osborne, B., Patel, M.,
Teshima, H., van Gieson, E., Verratti, K., Wolcott, M., Xie, G., Sozhamannan, S.,	380	Teshima, H., van Gieson, E., Verratti, K., Wolcott, M., Xie, G., Sozhamannan, S.,

381	Gibbons, H.S., Threat Characterization Consortium, 2012. Genomic comparison of
382	Escherichia coli O104:H4 isolates from 2009 and 2011 reveals plasmid, and prophage
383	heterogeneity, including shiga toxin encoding phage stx2. PloS One 7, e48228.
384	doi:10.1371/journal.pone.0048228
385	Asadulghani, M., Ogura, Y., Ooka, T., Itoh, T., Sawaguchi, A., Iguchi, A., Nakayama, K.,
386	Hayashi, T., 2009. The defective prophage pool of Escherichia coli O157: prophage-
387	prophage interactions potentiate horizontal transfer of virulence determinants. PLoS
388	Pathog. 5, e1000408. doi:10.1371/journal.ppat.1000408
389	Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin,
390	V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V.,
391	Vyahhi, N., Tesler, G., Alekseyev, M.A., Pevzner, P.A., 2012. SPAdes: a new genome
392	assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. J.
393	Comput. Mol. Cell Biol. 19, 455-477. doi:10.1089/cmb.2012.0021
394	Barondess, J.J., Beckwith, J., 1995. bor gene of phage lambda, involved in serum resistance,
395	encodes a widely conserved outer membrane lipoprotein. J. Bacteriol. 177, 1247-
396	1253.
397	Bobay, LM., Rocha, E.P.C., Touchon, M., 2013. The adaptation of temperate bacteriophages
398	to their host genomes. Mol. Biol. Evol. 30, 737-751. doi:10.1093/molbev/mss279
399	Boetzer, M., Henkel, C.V., Jansen, H.J., Butler, D., Pirovano, W., 2011. Scaffolding pre-
400	assembled contigs using SSPACE. Bioinforma. Oxf. Engl. 27, 578–579.
401	doi:10.1093/bioinformatics/btq683
402	Bondy-Denomy, J., Davidson, A.R., 2014. To acquire or resist: the complex biological effects
403	of CRISPR-Cas systems. Trends Microbiol. 22, 218–225.
404	doi:10.1016/j.tim.2014.01.007

405	Caprioli, A., Morabito, S., Brugère, H., Oswald, E., 2005. Enterohaemorrhagic Escherichia
406	coli: emerging issues on virulence and modes of transmission. Vet. Res. 36, 289–311.
407	doi:10.1051/vetres:2005002
408	Contreras-Monera, B., Vinuesa, P. 2013. GET_HOMOLOGUES, a versatile software
409	package for scalable and robust microbial pangenome analysis. Appl. Environ.
410	Microbiol. 79, 7696-7701. doi: 10.1128/AEM.02411-13
411	Delannoy, S., Beutin, L., Fach, P., 2012. Use of clustered regularly interspaced short
412	palindromic repeat sequence polymorphisms for specific detection of
413	enterohemorrhagic Escherichia coli strains of serotypes O26:H11, O45:H2, O103:H2,
414	O111:H8, O121:H19, O145:H28, and O157:H7 by real-time PCR. J. Clin. Microbiol.
415	50, 4035–4040. doi:10.1128/JCM.02097-12
416	Díez-Villaseñor, C., Almendros, C., García-Martínez, J., Mojica, F.J.M., 2010. Diversity of
417	CRISPR loci in Escherichia coli. Microbiol. Read. Engl. 156, 1351–1361.
418	doi:10.1099/mic.0.036046-0
419	Eppinger, M., Daugherty, S., Agrawal, S., Galens, K., Sengamalay, N., Sadzewicz, L., Tallon,
420	L., Cebula, T.A., Mammel, M.K., Feng, P., Soderlund, R., Tarr, P.I., Debroy, C.,
421	Dudley, E.G., Fraser, C.M., Ravel, J., 2013. Whole-Genome Draft Sequences of 26
422	Enterohemorrhagic Escherichia coli O157:H7 Strains. Genome Announc. 1,
423	e0013412. doi:10.1128/genomeA.00134-12
424	Feng, P.C.H., Delannoy, S., Lacher, D.W., Dos Santos, L.F., Beutin, L., Fach, P., Rivas, M.,
425	Hartland, E.L., Paton, A.W., Guth, B.E.C., 2014. Genetic diversity and virulence
426	potential of shiga toxin-producing Escherichia coli O113:H21 strains isolated from
427	clinical, environmental, and food sources. Appl. Environ. Microbiol. 80, 4757-4763.
428	doi:10.1128/AEM.01182-14

- 429 Feng, P.C.H., Monday, S.R., Lacher, D.W., Allison, L., Siitonen, A., Keys, C., Eklund, M.,
- 430 Nagano, H., Karch, H., Keen, J., Whittam, T.S., 2007. Genetic diversity among clonal
- 431 lineages within Escherichia coli O157:H7 stepwise evolutionary model. Emerg. Infect.
- 432 Dis. 13, 1701–1706. doi:10.3201/eid1311.070381
- 433 Gyles, C.L., 2007. Shiga toxin-producing Escherichia coli: an overview. J. Anim. Sci. 85,
- 434 E45-62. doi:10.2527/jas.2006-508
- 435 Hayashi, T., Makino, K., Ohnishi, M., Kurokawa, K., Ishii, K., Yokoyama, K., Han, C.G.,
- 436 Ohtsubo, E., Nakayama, K., Murata, T., Tanaka, M., Tobe, T., Iida, T., Takami, H.,
- 437 Honda, T., Sasakawa, C., Ogasawara, N., Yasunaga, T., Kuhara, S., Shiba, T., Hattori,
- 438 M., Shinagawa, H., 2001. Complete genome sequence of enterohemorrhagic
- 439 Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12.

440 DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes 8, 11–22.

- 441 Hazen, T.H., Sahl, J.W., Fraser, C.M., Donnenberg, M.S., Scheutz, F., Rasko, D.A., 2013.
- 442 Draft Genome Sequences of Three O157 Enteropathogenic Escherichia coli Isolates.
 443 Genome Announc. 1. doi:10.1128/genomeA.00516-13
- 444 Hazen, T.H., Sahl, J.W., Redman, J.C., Morris, C.R., Daugherty, S.C., Chibucos, M.C.,
- 445 Sengamalay, N.A., Fraser-Liggett, C.M., Steinsland, H., Whittam, T.S., Whittam, B.,
- 446 Manning, S.D., Rasko, D.A., 2012. Draft genome sequences of the diarrheagenic
- 447 Escherichia coli collection. J. Bacteriol. 194, 3026–3027. doi:10.1128/JB.00426-12
- Hinenoya, A., Naigita, A., Ninomiya, K., Asakura, M., Shima, K., Seto, K., Tsukamoto, T.,
- Ramamurthy, T., Faruque, S.M., Yamasaki, S., 2009. Prevalence and characteristics of
- 450 cytolethal distending toxin-producing Escherichia coli from children with diarrhea in451 Japan. Microbiol. Immunol. 53, 206–215.
- 452 Hinenoya, A., Shima, K., Asakura, M., Nishimura, K., Tsukamoto, T., Ooka, T., Hayashi, T.,
- 453 Ramamurthy, T., Faruque, S.M., Yamasaki, S., 2014. Molecular characterization of

454	cytolethal distending toxin gene-positive Escherichia coli from healthy cattle and
455	swine in Nara, Japan. BMC Microbiol. 14, 97. doi:10.1186/1471-2180-14-97
456	Iguchi, A., Shirai, H., Seto, K., Ooka, T., Ogura, Y., Hayashi, T., Osawa, K., Osawa, R.,
457	2011. Wide distribution of O157-antigen biosynthesis gene clusters in Escherichia
458	coli. PloS One 6, e23250. doi:10.1371/journal.pone.0023250
459	Jehl, MA., Arnold, R., Rattei, T., 2011. Effectivea database of predicted secreted bacterial
460	proteins. Nucleic Acids Res. 39, D591-595. doi:10.1093/nar/gkq1154
461	Jobling, M.G., 2016. The chromosomal nature of LT-II enterotoxins solved: a lambdoid
462	prophage encodes both LT-II and one of two novel pertussis-toxin-like toxin family
463	members in type II enterotoxigenic Escherichia coli. Pathog. Dis. 74.
464	doi:10.1093/femspd/ftw001
465	Jobling, M.G., Holmes, R.K., 2012. Type II heat-labile enterotoxins from 50 diverse
466	Escherichia coli isolates belong almost exclusively to the LT-IIc family and may be
467	prophage encoded. PloS One 7, e29898. doi:10.1371/journal.pone.0029898
468	Kaper, J.B., Nataro, J.P., Mobley, H.L., 2004. Pathogenic Escherichia coli. Nat. Rev.
469	Microbiol. 2, 123–140. doi:10.1038/nrmicro818
470	Kleinheinz, K.A., Joensen, K.G., Larsen, M.V., 2014. Applying the ResFinder and
471	VirulenceFinder web-services for easy identification of acquired antibiotic resistance
472	and E. coli virulence genes in bacteriophage and prophage nucleotide sequences.
473	Bacteriophage 4. doi:10.4161/bact.27943
474	Leiman, P.G., Basler, M., Ramagopal, U.A., Bonanno, J.B., Sauder, J.M., Pukatzki, S.,
475	Burley, S.K., Almo, S.C., Mekalanos, J.J., 2009. Type VI secretion apparatus and
476	phage tail-associated protein complexes share a common evolutionary origin. Proc.
477	Natl. Acad. Sci. U. S. A. 106, 4154–4159. doi:10.1073/pnas.0813360106

478	Lloyd, S.J., Ritchie, J.M., Rojas-Lopez, M., Blumentritt, C.A., Popov, V.L., Greenwich, J.L.,
479	Waldor, M.K., Torres, A.G., 2012. A double, long polar fimbria mutant of Escherichia
480	coli O157:H7 expresses Curli and exhibits reduced in vivo colonization. Infect.
481	Immun. 80, 914–920. doi:10.1128/IAI.05945-11
482	Ma, J., Sun, M., Bao, Y., Pan, Z., Zhang, W., Lu, C., Yao, H., 2013. Genetic diversity and
483	features analysis of type VI secretion systems loci in avian pathogenic Escherichia coli
484	by wide genomic scanning. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet.
485	Infect. Dis. 20, 454–464. doi:10.1016/j.meegid.2013.09.031
486	Makino, SI., Tobe, T., Asakura, H., Watarai, M., Ikeda, T., Takeshi, K., Sasakawa, C., 2003.
487	Distribution of the secondary type III secretion system locus found in
488	enterohemorrhagic Escherichia coli O157:H7 isolates among Shiga toxin-producing E.
489	coli strains. J. Clin. Microbiol. 41, 2341–2347.
490	Martinez, J.J., Mulvey, M.A., Schilling, J.D., Pinkner, J.S., Hultgren, S.J., 2000. Type 1 pilus-
491	mediated bacterial invasion of bladder epithelial cells. EMBO J. 19, 2803–2812.
492	doi:10.1093/emboj/19.12.2803
493	Muniesa, M., Recktenwald, J., Bielaszewska, M., Karch, H., Schmidt, H., 2000.
494	Characterization of a shiga toxin 2e-converting bacteriophage from an Escherichia coli
495	strain of human origin. Infect. Immun. 68, 4850–4855.
496	Nilsson, H., Cardoso-Palacios, C., Haggård-Ljungquist, E., Nilsson, A.S., 2011. Phylogenetic
497	structure and evolution of regulatory genes and integrases of P2-like phages.
498	Bacteriophage 1, 207–218. doi:10.4161/bact.1.4.18470
499	Ogura, Y., Ooka, T., Asadulghani, Terajima, J., Nougayréde, J., Kurokawa, K., Tashiro, K.,
500	Tobe, T., Nakayama, K., Kuhara, S., Oswald, E., Watanabe, H., Hayashi, T., 2007.
501	Extensive genomic diversity and selective conservation of virulence determinants in

- 502 enterohemorrhagic *Escherichia coli* strains of O157 and non-O157 serotypes. Genome
 503 Biol. 8, R138. doi: 10.1186/gb-2007-8-7-r138
- Perna, N.T., Glasner, J.D., Burland, V., Plunkett III, G., 2002. The genomes of Escherichia 504 coli K-12 and pathogenic E. coli, in: Donnenberg, M.S. (Ed.), Escherichia coli. 505 Virulence mechanisms of a versatile pathogen. Elsevier Science, San Diego, pp. 3-53. 506 Perna, N.T., Plunkett, G., Burland, V., Mau, B., Glasner, J.D., Rose, D.J., Mayhew, G.F., 507 Evans, P.S., Gregor, J., Kirkpatrick, H.A., Pósfai, G., Hackett, J., Klink, S., Boutin, 508 A., Shao, Y., Miller, L., Grotbeck, E.J., Davis, N.W., Lim, A., Dimalanta, E.T., 509 Potamousis, K.D., Apodaca, J., Anantharaman, T.S., Lin, J., Yen, G., Schwartz, D.C., 510 Welch, R.A., Blattner, F.R., 2001. Genome sequence of enterohaemorrhagic 511 Escherichia coli O157:H7. Nature 409, 529-533. doi:10.1038/35054089 512 513 Price, M.N., Dehal, P.S., Arkin, A.P., 2010. FastTree 2--approximately maximum-likelihood trees for large alignments. PloS One 5, e9490. doi:10.1371/journal.pone.0009490 514 515 Recktenwald, J., Schmidt, H., 2002. The nucleotide sequence of Shiga toxin (Stx) 2eencoding phage phiP27 is not related to other Stx phage genomes, but the modular 516 genetic structure is conserved. Infect. Immun. 70, 1896–1908. 517 Rice, P., Longden, I., Bleasby, A., 2000. EMBOSS: the European Molecular Biology Open 518 Software Suite. Trends Genet. TIG 16, 276-277. 519 Rump, L.V., Gonzalez-Escalona, N., Ju, W., Wang, F., Cao, G., Meng, S., Meng, J., 2015. 520 Genomic diversity and virulence profiles of historical Escherichia coli O157 strains 521 522 isolated from clinical and environmental sources. Appl. Environ. Microbiol. 81, 569-577. doi:10.1128/AEM.02616-14 523
- 524 Saitoh, M., Tanaka, K., Nishimori, K., Makino, S., Kanno, T., Ishihara, R., Hatama, S.,
- 525 Kitano, R., Kishima, M., Sameshima, T., Akiba, M., Nakazawa, M., Yokomizo, Y.,

526	Uchida, I., 2005. The artAB genes encode a putative ADP-ribosyltransferase toxin
527	homologue associated with Salmonella enterica serovar Typhimurium DT104.
528	Microbiol. Read. Engl. 151, 3089–3096. doi:10.1099/mic.0.27933-0
529	Sanjar, F., Rusconi, B., Hazen, T.H., Koenig, S.S.K., Mammel, M.K., Feng, P.C.H., Rasko,
530	D.A., Eppinger, M., 2015. Characterization of the pathogenome and phylogenomic
531	classification of enteropathogenic Escherichia coli of the O157:non-H7 serotypes.
532	Pathog. Dis. 73. doi:10.1093/femspd/ftv033
533	Seemann, T., 2014. Prokka: rapid prokaryotic genome annotation. Bioinforma. Oxf. Engl. 30,
534	2068–2069. doi:10.1093/bioinformatics/btu153
535	Sheludchenko, M.S., Huygens, F., Stratton, H., Hargreaves, M., 2015. CRISPR Diversity in
536	E. coli Isolates from Australian Animals, Humans and Environmental Waters. PloS
537	One 10, e0124090. doi:10.1371/journal.pone.0124090
538	Stephan, R., Borel, N., Zweifel, C., Blanco, M., Blanco, J.E., 2004. First isolation and further
539	characterization of enteropathogenic Escherichia coli (EPEC) O157:H45 strains from
540	cattle. BMC Microbiol. 4, 10. doi:10.1186/1471-2180-4-10
541	Sváb, D., Horváth, B., Maróti, G., Dobrindt, U., Tóth, I., 2013a. Sequence variability of P2-
542	like prophage genomes carrying the cytolethal distending toxin V operon in
543	Escherichia coli O157. Appl. Environ. Microbiol. 79, 4958–4964.
544	doi:10.1128/AEM.01134-13
545	Sváb, D., Horváth, B., Szucs, A., Maróti, G., Tóth, I., 2013b. Draft Genome Sequence of an
546	Escherichia coli O157:H43 Strain Isolated from Cattle. Genome Announc. 1.
547	doi:10.1128/genomeA.00263-13
548	Sváb, D., Tóth, I., 2012. Allelic types of long polar fimbriae in bovine and human Escherichia
549	coli O157 strains. Acta Vet. Hung. 60, 1–15. doi:10.1556/AVet.2012.001

550	Tabei, Y., Kiryu, H., Kin, T., Asai, K. 2008. A fast structural multiple alignment method for
551	long RNA sequences. BMC Bioinformatics. 9, 33. doi: 10.1186/1471-2105-9-33
552	
553	Tamhankar, A.J., Nerkar, S.S., Khadake, P.P., Akolkar, D.B., Apurwa, S.R., Deshpande, U.,
554	Khedkar, S.U., Stalsby-Lundborg, C. 2015. Draft genome sequence of enterotoxigenic
555	Escherichia coli strain E24377A, obtained from tribal drinking water source in India.
556	Genome Announc. 3, e00225-15. doi: 10.1128/genomeA.00225-15
557	Toro, M., Cao, G., Ju, W., Allard, M., Barrangou, R., Zhao, S., Brown, E., Meng, J., 2014.
558	Association of clustered regularly interspaced short palindromic repeat (CRISPR)
559	elements with specific serotypes and virulence potential of shiga toxin-producing
560	Escherichia coli. Appl. Environ. Microbiol. 80, 1411–1420. doi:10.1128/AEM.03018-
561	13
562	Torres, A.G., Blanco, M., Valenzuela, P., Slater, T.M., Patel, S.D., Dahbi, G., López, C.,
563	Barriga, X.F., Blanco, J.E., Gomes, T.A.T., Vidal, R., Blanco, J., 2009. Genes related
564	to long polar fimbriae of pathogenic Escherichia coli strains as reliable markers to
565	identify virulent isolates. J. Clin. Microbiol. 47, 2442–2451. doi:10.1128/JCM.00566-
566	09
567	Torres, A.G., Giron, J.A., Perna, N.T., Burland, V., Blattner, F.R., Avelino-Flores, F., Kaper,
568	J.B., 2002. Identification and characterization of lpfABCC'DE, a fimbrial operon of

569 enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 70, 5416–5427.

- 570 Tóth, I., Schmidt, H., Kardos, G., Lancz, Z., Creuzburg, K., Damjanova, I., Pászti, J., Beutin,
- 571 L., Nagy, B., 2009. Virulence genes and molecular typing of different groups of
- 572 Escherichia coli O157 strains in cattle. Appl. Environ. Microbiol. 75, 6282–6291.

573 doi:10.1128/AEM.00873-09

- Tóth, I., Sváb, D., 2014. Cell cycle modulating toxins produced by Escherichia coli, in:
 Morabito, S. (Ed.), Pathogenic Escherichia coli. Caister Academic Press, Norfolk, pp.
 117-138.
- 577 Touchon, M., Rocha, E.P.C., 2010. The small, slow and specialized CRISPR and anti-

578 CRISPR of Escherichia and Salmonella. PloS One 5, e11126.

- 579 doi:10.1371/journal.pone.0011126
- Vica Pacheco, S., García González, O., Paniagua Contreras, G.L., 1997. The lom gene of
 bacteriophage lambda is involved in Escherichia coli K12 adhesion to human buccal
 epithelial cells. FEMS Microbiol. Lett. 156, 129–132.
- 583 Wyrsch, E., Roy Chowdhury, P., Abraham, S., Santos, J., Darling, A.E., Charles, I.G.,
- Chapman, T.A., Djordjevic, S.P., 2015. Comparative genomic analysis of a multiple
 antimicrobial resistant enterotoxigenic E. coli O157 lineage from Australian pigs.

586 BMC Genomics 16, 165. doi:10.1186/s12864-015-1382-y

- 587 Yin, S., Jensen, M.A., Bai, J., Debroy, C., Barrangou, R., Dudley, E.G., 2013. The
- 588evolutionary divergence of Shiga toxin-producing Escherichia coli is reflected in
- 589 clustered regularly interspaced short palindromic repeat (CRISPR) spacer
- 590 composition. Appl. Environ. Microbiol. 79, 5710–5720. doi:10.1128/AEM.00950-13
- 591 Zhou, M., Guo, Z., Duan, Q., Hardwidge, P.R., Zhu, G., 2014. Escherichia coli type III
- secretion system 2: a new kind of T3SS? Vet. Res. 45, 32. doi:10.1186/1297-9716-4532
- Zhou, Y., Liang, Y., Lynch, K.H., Dennis, J.J., Wishart, D.S., 2011. PHAST: a fast phage
- search tool. Nucleic Acids Res. 39, W347-352. doi:10.1093/nar/gkr485
- 596

⁵⁹⁷ Web references

- 598 Illumina Inc,
- 599 <u>http://www.illumina.com/documents/products/technotes/technote_nextera_matepair_data_pro</u>
- 600 <u>cessing.pdf</u>, accessed: 8th June 2016

603 Figure legend	603	Figure	legends
-------------------	-----	---------------	---------

60)4
----	----

Figure 1.

606	Schematic representation of prophage regions found in the genome of T22. Arrows filled
607	with the same pattern represent genes of related functions. Note that the size scale of each
608	prophage is in nucleotides and was created individually. The identified toxin-encoding gene
609	clusters are highlighted by brackets. <i>lt-II:</i> heat-labile enterotoxin type II, <i>cdt-V:</i> cytolethal
610	distending toxin type V, ealAB: Escherichia coli ArtAB-like toxin.
611	
612	Figure 2.
613	Comparison of the type 2 type III secretions system (ETT2) gene cluster in T22 with that
614	found in Escherichia coli O157:H7 Sakai. The figure is adapted from the work of Zhou et al
615	(2014) reviewing the ETT2 secretion system, focusing on the gene cluster found in the <i>E. coli</i>
616	O157:H7 Sakai genome. Arrows filled with the same pattern represent genes of the same
617	cluster.
618	
619	Figure 3.
620	Geneticstructure of the CRISPR1 and CRISPR2 (clustered regularly interspaced
621	repeat) regions of T22. Numbered boxes represent the individual spacers, black boxes
622	represent the repeat sequences, the textured bars represent the leader and closing sequences,
623	respectively. Note that in CRISPR1, spacer 2 is present in two copies.
624	

Figure 4.

- 626 Core genome phylogeny of T22 and 58 *E. coli* as well as 4 *Shigella* strains with whole
- 627 genomes available in GenBank. Consensus neighbour-joining supertree based on the
- 628 sequences of 1862common genes.
- 629
- 630
- 631 Figure 5. Comparison of the genetic content of the sequenced *E. coli* O157:H43 strain
- T22 with the EHEC O157:H7 EDL933 strain and the commensal *E. coli* SE11 and IAI1
- 633 strains. The 4 strains share 3599 common genes and 261 specific genes were identified in the
- T22 genome. The T22 specific genes are listed in Table A2.

- 635 Tables
- **Table 1.**

637 Summary of main genomic features of *E. coli* T22.

	Chromosome	Plasmid
Size (bp)	4,875,355	82,444
Predicted coding CDSs	4,687	79
GC %	51	49
Coding regions %	88.5	70
Average CDS length (bp)	905	730
tRNA	75	0
rRNA	24	0

Table 2.

642 Main characteristics of predicted prophage regions of *E. coli* T22.

Designation	Contig	Start	End	Length (nt)	GC %	Assigned type	Upstream flanking gene	Downstream flanking gene	Virulence and fitness related genes	Integrase	Repressor
T22pp1	1	1	32065	32065	49.4	PhiP27-like	unknown	tRNA 5' methoxy-uridine synthase	none identifed	present	
T22pp2	1	385293	398890	13598	48.8	none	proline-tRNA	type I secretion system	none identifed	present	
T22pp3	1	1480783	1531940	51158	49.3	<i>Shigella</i> serotype converting	Met-tRNA	tmRNA binding protein SmpB	none identifed	present	cI and cro
T22pp4	1	1543880	1574799	30920	52	P2-like	ribosomal DNA	Yfi operon	none identifed	present	putative cI
T22pp5	1	1703290	1717745	14456	49	P4-like	sugar efflux transporter B	Ser-tRNA	none identifed	unidentified	
T22pp6	1	2288961	2320124	31164	52.6	P2-like	fieF	cpxP	CDT-V	present	c and cox
T22pp7	1	3712670	3744641	31972	52.2	P2-like	TetR transcriptional regulator	Trk potassium-channel	none identifed	putative int-like protein	cI and cII regulator
T22pp8	1	3888837	3928433	39597	49.9	lambdoid	putative TEGT family transport protein	Ser-tRNA	lipoprotein Bor	unidentified	
T22pp9	2	350924	396041	45118	45.5	lambdoid	cytosine tRNA- synthetase	unknown	Lom-like protein, heat- labile enterotoxin IIc1, <i>E. coli</i> artAB-like AB toxin	present	
T22pp10	3	212066	258765	46700	50.4	lambdoid	putative transport protein	starvation sensing protein rspB	Lom-like protein	unidentified	

Table 3.

646 Main characteristics of CRISPR regions in *E. coli* T22.

	Region	Integration site	Number of spacers	Length of spacers (nt)
	CRISPR1	Cas2 and alkaline phosphatase	12	32*
	CRISPR2	ygcF, ygcE	26	32
	CRISPR3	clpS, aat	0	N/A
	CRISPR4	clpS, aat	0	N/A
647				
648	*One spa	cer in CRISPR1 is 33 nt long	g.	
649				
650				
651				

- 653 **Table A1.**
- 654 **Designations and accession numbers of** *E. coli* and *Shigella* genomes and plasmids used in core genome phylogeny. EAEC:
- 655 enteroaggregative *E. coli*, UPEC: uropathogenic *E. coli*, ExPEC: extraintestinal pathogenic *E. coli*, APEC: avian pathogenic *E. coli*, ETEC:
- 656 enterotoxigenic *E. coli*, MNEC: meningitis associated *E. coli*, AIEC: adherent-invasive *E. coli*, STEC: Shiga toxin producing *E. coli*, EHEC:
- 657 enterohemorrhagic *E. coli*, EPEC: enteropathogenic *E. coli*

Strain	Pathogenity	Accession number	Length	Туре
042	EAEC	NC_017626	5241977	genome
042		NC_017627	113346	plasmid
536	UPEC	NC_008253	4938920	genome
55989	EAEC	NC_011748	5154862	genome
ABU_83972	ExPEC	NC_017631	5131397	genome
ABU_83972		NC_017629	1564	plasmid
APEC_O1	APEC	NC_008563	5082025	genome
APEC_O1		NC_009838	241387	plasmid
APEC_O1		NC_009837	174241	plasmid
APEC_078	APEC	NC_020163	4798435	genome
ATCC_8739	non-pathogenic	NC_010468	4746218	genome
B_REL606	non-pathogenic	NC_012967	4629812	genome
BL21_DE3	non-pathogenic	NC_012971	4558953	genome
BL21_Gold_DE3_pLysS_AG	non-pathogenic	NC_012947	4570938	genome
BW2952	non-pathogenic	NC_012759	4578159	genome
CFT073	UPEC	NC_004431	5231428	genome
clone_D_i14	UPEC	NC_017652	5038386	genome
clone_D_i2	UPEC	NC_017651	5038386	genome

DH1	non-pathogenic	NC_017638	4621430	genome
E24377A	ETEC	NC_009801	4979619	genome
E24377A		NC_009786	79237	plasmid
E24377A		NC_009790	74224	plasmid
E24377A		NC_009788	70609	plasmid
E24377A		NC_009787	34367	plasmid
E24377A		NC_009789	6199	plasmid
E24377A		NC_009791	5033	plasmid
ED1a	commensal	NC_011745	5209548	genome
ETEC_H10407	ETEC	NC_017633	5153435	genome
ETEC_H10407		NC_017724	94797	plasmid
ETEC_H10407		NC_017722	66681	plasmid
ETEC_H10407		NC_017723	5800	plasmid
ETEC_H10407		NC_017721	5175	plasmid
FN649414	ETEC	FN649414	5153435	genome
HS	commensal	NC_009800	4643538	genome
IAI1	commensal	NC_011741	4700560	genome
IAI39	ExPEC	NC_011750	5132068	genome
IHE3034	MNEC	NC_017628	5108383	genome
JJ1886	ExPEC	NC_022648	5129938	genome
JJ1886		NC_022651	110040	plasmid
JJ1886		NC_022650	55956	plasmid
JJ1886		NC_022662	5631	plasmid
JJ1886		NC_022649	5167	plasmid
JJ1886		NC_022661	1552	plasmid
K_12_substr_DH10B	non-pathogenic	NC_010473	4686137	genome
K_12_substr_MDS42	non-pathogenic	NC_020518	3976195	genome
K_12_substr_MG1655	non-pathogenic	NC_000913	4641652	genome
K_12_substr_W3110	non-pathogenic	NC_007779	4646332	genome

KO11FL	non-pathogenic	NC_017660	5021812	genome
KO11FL		NC_016904	103795	plasmid
KO11FL		NC_016903	5360	plasmid
LF82	AIEC	NC_011993	4773108	genome
LY180		NC_022364	4835601	genome
NA114		NC_017644	4971461	genome
Shigella flexneri 2a	Dysentery	NC_004337	4607202	genome
Shigella sonnei Ss046	Dysentery	NC_007384	4825265	genome
Shigella dysenteriae Sd197	Dysentery	NC_007606	4369232	genome
Shigella boydii Sb227	Dysentery	NC_007613	4519823	genome
EDL933	EHEC	NZ_CP008957	5547323	genome
pO157		AF074613.1	92072	plasmid
O103:H2_12009	EHEC	NC_013353	5449314	genome
O103:H2_12009		NC_013354	75546	plasmid
O104:H4_2009EL_2050	EAEC/STEC	NC_018650	5253138	genome
O104:H4_2009EL_2050		NC_018651	109274	plasmid
O104:H4_2009EL_2050		NC_018654	74213	plasmid
O104:H4_2009EL_2050		NC_018652	1549	plasmid
O104:H4_2009EL_2071	EAEC/STEC	NC_018661	5312586	genome
O104:H4_2009EL_2071		NC_018662	75573	plasmid
O104_H4_2009EL_2071		NC_018663	1549	plasmid
O104_H4_2011C_3493	EAEC/STEC	NC_018658	5273097	genome
O104_H4_2011C_3493		NC_018659	88544	plasmid
O104_H4_2011C_3493		NC_018666	74217	plasmid
O104_H4_2011C_3493		NC_018660	1549	plasmid
O111_H_11128	EHEC	NC_013364	5371077	genome
O111_H_11128		NC_013365	204604	plasmid
O111_H_11128		NC_013370	97897	plasmid
O111_H_11128		NC_013366	77690	plasmid

O111_H_11128		NC_013367	8140 plasmid
O111_H_11128		NC_013368	6673 plasmid
O127_H6_E2348_69	EPEC	NC_011601	4965553 genome
O127_H6_E2348_69	EPEC	NC_011603	97978 plasmid
O127_H6_E2348_69	EPEC	NC_011602	6147 plasmid
O157_H7 Sakai	EHEC	NC_002695	5498450 genome
O157_H7	EHEC	NC_002128	92721 plasmid
O157_H7	EHEC	NC_002127	3306 plasmid
O157_H7_EC4115	EHEC	NC_011353	5572075 genome
O157_H7_EC4115		NC_011350	94644 plasmid
O157_H7_EC4115		NC_011351	37452 plasmid
O157_H7_EDL933	EHEC	NC_002655	5528445 genome
O157_H7_EDL933		NC_007414	92077 plasmid
O157_H7_TW14359	EHEC	NC_013008	5528136 genome
O157_H7_TW14359		NC_013010	94601 plasmid
O26_H11_11368	EHEC	NC_013361	5697240 genome
O26_H11_11368		NC_013369	85167 plasmid
O26_H11_11368		NC_013362	63365 plasmid
O26_H11_11368		NC_013363	5686 plasmid
O26_H11_11368		NC_014543	4073 plasmid
O55_H7_CB9615	EPEC	NC_013941	5386352 genome
O55_H7_CB9615		NC_013942	66001 plasmid
O55_H7_RM12579	EPEC	NC_017656	5263980 genome
O55_H7_RM12579		NC_017653	94015 plasmid
O55_H7_RM12579		NC_017657	66078 plasmid
O55_H7_RM12579		NC_017654	12068 plasmid
O55_H7_RM12579		NC_017658	6211 plasmid
O55_H7_RM12579		NC_017655	5954 plasmid
O7_K1_CE10	MNEC	NC_017646	5313531 genome

O7_K1_CE10		NC_017647	54289	plasmid
O7_K1_CE10		NC_017648	5163	plasmid
O7_K1_CE10		NC_017649	4197	plasmid
O7_K1_CE10		NC_017650	1549	plasmid
O83_H1_NRG_857C	AIEC (adherent-invasive)	NC_017634	4747819	genome
O83_H1_NRG_857C		NC_017659	147060	plasmid
P12b	commensal	NC_017663	4935294	genome
PMV_1	ExPEC	NC_022370	4984940	genome
PMV_1		NC_022371	98864	plasmid
S88	MNEC	NC_011742	5032268	genome
S88		NC_011747	133853	plasmid
SE11	commensal	NC_011415	4887515	genome
SE11		NC_011419	100021	plasmid
SE11		NC_011413	91158	plasmid
SE11		NC_011416	60555	plasmid
SE11		NC_011407	6929	plasmid
SE11		NC_011408	5366	plasmid
SE11		NC_011411	4082	plasmid
SE15	commensal	NC_013654	4717338	genome
SE15		NC_013655	122345	plasmid
SMS_3_5	commensal	NC_010498	5068389	genome
SMS_3_5		NC_010488	130440	plasmid
SMS_3_5		NC_010485	8909	plasmid
SMS_3_5		NC_010486	4074	plasmid
SMS_3_5		NC_010487	3565	plasmid
T22_genome_and_plasmid		LYNF00000000	4957799	genome and plasmid
UM146	AIEC (adherent-invasive)	NC_017632	4993013	genome
UM146		NC_017630	114550	plasmid
UMN026	UPEC	NC_011751	5202090	genome

UMN026		NC_011749	122301	plasmid
UMN026		NC_011739	33809	plasmid
UMNK88	ETEC	NC_017641	5186416	genome
UMNK88		NC_017645	160573	plasmid
UMNK88		NC_017642	90868	plasmid
UMNK88		NC_017639	81883	plasmid
UMNK88		NC_017640	81475	plasmid
UMNK88		NC_017643	65549	plasmid
UTI89	UPEC	NC_007946	5065741	genome
UTI89		NC_007941	114230	plasmid
W	non-pathogenic	NC_017664	4897452	genome
W		NC_017637	102536	plasmid
W		NC_017636	5360	plasmid
Xuzhou21	EHEC	NC_017906	5386223	genome
Xuzhou21		NC_017907	92728	plasmid
Xuzhou21		NC_017903	37785	plasmid

Table A2.

T22-specific genes when compared to the genetic content of *E. coli* EDL933, SE11, and IAI1. Note that four genes are present in two copies.

Description	Contig	Start	Stop	Strand	Closest homologue(s)	Identity (%)	GenBank no.
hypothetical protein	1	4993	5334	-	<i>E. coli</i> H1827/12	340/342 (99%)	CP013031.1
Caudovirus prohead protein	1	9580	10230	-	<i>E. coli</i> UMNK88, conserved hypothetical protein	646/651 (99%)	CP002729.1
hypothetical protein	1	11449	11631	-	<i>E. coli</i> UMNK88, conserved hypothetical protein	176/183 (96%)	CP002729.1
phage terminase small subunit	1	13400	13882	-	Present in more than 10 <i>E. coli</i> strains, terminase	479/483 (99%)	
hypothetical protein	1	17155	17643	-	E. coli 1303, hypothetical protein	487/489 (99%)	CP009166.1
hypothetical protein	1	21195	22103	-	<i>E. coli</i> CFSAN029787, DNA binding protein	896/909 (99%)	CP011416.1
Ash protein family peptidase	1	22320	23180	-	E. coli GB089, peptidase	823/843 (98%)	CP013663.1
hypothetical protein	1	23198	23407	-	<i>E. coli</i> 2012C-4227, hypothetical protein	210/210 (100%)	CP013029.1
ORF6 domain protein	1	23493	24260	-	E. coli 08-00022, antirepressor	765/769 (99%)	CP013662.1
hypothetical protein	1	24357	24476	+	<i>E. coli</i> 08-00022, hypothetical protein	120/120 (100%)	CP013662.1
HTH type transcriptional regulator	1	24770	25459	+	<i>E. coli</i> O157:H7 FRIK944, transcriptional regulator	646/648 (99%)	CP016625.1
transcriptional repressor	1	25606	26058	+	<i>E. coli</i> CFSAN029787, DNA binding protein	424/432 (98%)	CP011416.1
hypothetical protein	1	27358	27453	-	E. coli GB089, hypothetical protein	96/96 (100%)	CP013663.1
putative hydrolase	1	109272	109700	-	Present in more than 10 <i>E. coli</i> strains, metal-dependent phosphohydrolase E. <i>coli</i> O145:H28 str. RM12581,	429/429 (100%)	
invasin	1	126526	127458	+	adherence invasion outer membrane protein Presen in more than 10 <i>E. coli</i>	837/837 (99%)	CP007136.1
hypothetical protein	1	147204	147320	+	strains, two-component sensor hisditine kinase	117/117 (100%)	

rbsK	1	147516	148730	+	Present in more than 10 <i>E. coli</i> strains, ribokinase	1213/1215 (99%)	
rbsK	1	147516	148730	+	Present in more than 10 <i>E. coli</i> strains, ribokinase	1213/1215 (99%)	
hypothetical protein	1	148744	149502	+	<i>E. coli</i> UMNK88, conserved hypothetical protein	759/759 (100%)	CP002729.1
hypothetical protein	1	148744	149502	+	<i>E. coli</i> UMNK88, conserved hypothetical protein	759/759 (100%)	CP002729.1
hypothetical protein	1	149559	150167	+	Present in more than 10 E. coli strains, hypothetical protein	609/609 (100%)	
hypothetical protein	1	150261	150524	+	Present in more than 10 E. coli strains, hypothetical protein	264/264 (100%)	
hypothetical protein	1	150527	151561	-	Present in more than 10 <i>E. coli</i> strains, phosphotriesterase	1035/1035 (100%)	
transposase	1	152213	153592	-	Present in more than 10 <i>E. coli</i> strains, transposase	1378/1380 (99%)	
hypothetical protein	1	153876	154286	-	Present in more than 10 <i>E. coli</i> strains, two-component sensor histidine kinase	411/411 (100%)	
hypothetical protein	1	154274	154675	-	Present in more than 10 E. coli strains, hypothetical protein	402/402 (100%)	
hypothetical protein	1	154935	155504	-	<i>E. coli</i> SEC540, hypothetical protein	570/570 (100%)	CP013962.1
hypothetical protein	1	155704	155904	-	Present in more than 10 E. coli strains, hypothetical protein	201/201 (100%)	
hypothetical protein	1	157331	157933	+	Present in more than 10 E. coli strains, hypothetical protein	603/603 (100%)	
hypothetical protein	1	162772	163923	+	Present in more than 10 E. coli strains, hypothetical protein	1152/1152 (100%)	
hypothetical protein	1	169598	170281	+	E. coli EC590, hypothetical protein	684/684 (100%)	CP016182.1
hypothetical protein	1	170297	170707	+	Present in more than 10 E. coli strains, hypothetical protein	411/411 (100%)	
propanediol utilization protein pduV	1	174754	174978	+	E. coli EC590	225/225 (100%)	CP016182.1
putative transporter component	1	180514	180699	-	<i>E. coli</i> O157:H43 PV00-24 O- antigen biosynthesis cluster, pseudogene, C-terminal part of	186/186 (100%)	AB602253.1

YeeE

hypothetical protein	1	386651	386893	+	<i>E. coli</i> 08-00022, hypothetical protein	231/243 (95%)	CP013662.1
hypothetical protein	1	387808	387987	-	E. coli ZH063, hypothetical protein	178/180 (99%)	CP014522.1
hypothetical protein	1	388719	389171	+	E. coli FHI29	388/402 (97%)	LM995858.1
hypothetical protein	1	389173	389406	+	Present in more than 10 <i>E. coli</i> strains, hypothetical protein	225/234 (96%)	
Poxvirus D5 protein	1	389708	391462	+	E. coli GB089, DNA primase	1722/1725 (99%)	CP013663.1
prophage CP4-57 regulatory protein	1	394122	394466	+	<i>E. coli</i> GB089, AlpA family transcriptional regulator	252/307 (82%)	CP013663.1
hypothetical protein	1	430123	430536	-	Present in more than 10 <i>E. coli</i> strains, hypothetical protein	414/415 (99%)	
mrpA	1	681130	681960	+	E. coli S51, hydantoin racemase	831/831 (100%)	CP015995.1
hydrogenase 4 subunit D	1	681993	682361	+	<i>E. coli</i> ACN001, ACN002, YD786, FHI65, FHI98, APEC 078, hydrogenase 4 subunit D	369/369 (100%)	CP007491.1 CP013112.1 CP007442.1 LM996539.1 LM997368.1 CP004009.1
hycG	1	686817	687338	+	<i>E. coli</i> SEC470, formate hydrogenylase	522/522 (100%)	CP013962.1
fhlA1	1	688010	688960	+	E. coli S51, hydrogenase	951/951 (100%)	CP015995.1
fh1A2	1	688967	690022	+	E. coli S51, hydrogenase	1056/1056 (100%)	CP015995.1
hypothetical protein	1	832127	832288	+	Present in more than 10 E. coli strains, hypothetical protein	162/162 (100%)	
hypothetical protein	1	1062900	1063769	-	E. coli CI5, membrane protein	870/870 (100%)	CP011018.1
Oligogalacturonate-specific porin KdgM precursor	1	1063783	1064478	-	E. coli CI5, porin	696/696 (100%)	CP011018.1
hypothetical protein	1	1064613	1065737	-	<i>E. coli</i> S51, 3-octaprenyl-4- hydroxybenzoate carboxy-lyase	1125/1125 (100%)	CP015995.1
rbsK2	1	1065767	1066681	-	E. coli S51, carbohydrate kinase	915/915 (100%)	CP015995.1
glucosaminefructose-6-phosphate aminotransferase	1	1066686	1067684	-	<i>E. coli</i> CI5, porin, iron dicitrate transport regulator FecR	999/999 (100%)	CP011018.1

ADP-ribosylglycohydrolase

ADP-ribosyl-glycohydrolase	1	1067684	1068760	+	<i>E. coli</i> S51, ADP-ribosyl- glycohydrolase <i>E. coli</i> CI5, porin.	1077/1077 (100%)	CP015995.1
HTH-type transcriptional repressor DasR	1	1068774	1069526	-	iron dicitrate transport regulator FecR	999/999 (100%)	CP011018.1
					ADP-ribosylglycohydrolase		
yicJ	1	1069813	1071144	+	E. coli CI5, permease	1332/1332 (100%)	CP011018.1
hypothetical protein	1	1273239	1273337	+	<i>E. coli</i> E24377A	99/99 (100%)	CP000800.1
lsrK	1	1369620	1370141	+	E. coli Co6114, hypothetical protein	522/522 (100%)	CP016034.1
hypothetical protein	1	1484487	1486739	-	<i>E. coli</i> O104:H4 str. C227-11, hypothetical protein	2253/2253 (100%)	CP011331.1
hypothetical protein	1	1488390	1489169	-	<i>E. coli</i> H1827/12, hypothetical protein	778/780 (99%)	CP013031.1
hypothetical protein	1	1490344	149055	-	E. coli H1827/12, integrase	207/207 (100%)	CP013031.1
hypothetical protein	1	1490610	1490825	-	<i>E. coli</i> H1827/12, hypothetical protein	213/216 (100%)	CP013031.1
hypothetical protein	1	1490822	1491184	-	E. coli Co6114, hypothetical protein	360/363 (99%)	CP016034.1
hypothetical protein	1	1491175	1491711	-	E. coli FHI75	526/535 (98%)	LM996644.1
hypothetical protein	1	1491840	1492664	-	<i>E. coli</i> H1827/12, hypothetical protein	817/825 (99%)	CP013031.1
hypothetical protein	1	1492730	1493092	-	<i>E. coli</i> H1827/12, hypothetical protein	362/363 (99%)	CP013031.1
hypothetical protein	1	1493530	1493775	-	E. coli GB089, phage tail protein	246/246 (100%)	CP013663.1
hypothetical protein	1	1493693	1493989	-	E. coli GB089, phage tail protein	297/297 (100%)	CP013663.1
helix-turn-helix type protein	1	1495057	1495317	+	<i>E. coli</i> FORC_028, phage DNA binding protein	261/261 (100%)	CP012693.1
hypothetical protein	1	1495310	1495861	+	<i>E. coli</i> FORC_028, phage DNA binding protein	550/552 (99%)	CP012693.1
hypothetical protein	1	1495858	1496196	+	<i>E. albertii</i> KF1, hypothetical protein <i>E. coli</i> CI5.	339/339 (100%)	CP007025.1
Bacterial regulatory proteins, gntR family	1	1496206	1497147	+	GntR family transcriptional regulator	752/753 (99%)	CP011018.1
PerC transcriptional regulator	1	1497150	1497638	+	Shigella phage Sfv, hypothetical	486/489 (99%)	KC814930.1

					protein		
DNA N-6-adenine methylase	1	1497638	1498291	+	E. coli H1827/12, metyhltransferase	646/654 (99%)	CP013031.1
lexA	1	1498288	1498614	+	<i>E. coli</i> O177:H21, LexA family transcriptional regulator <i>E. coli</i> O157:H7 FRIK944,	326/372 (99%)	CP016546.1
rusA	1	1498611	1499000	+	crossover junction endodeoxyribonuclease	351/365 (96%)	CP009166.1
KilA-N domain protein	1	1499020	1499817	+	<i>Shigella</i> phage SfIV, replication protein	939/942 (99%)	KC814930.1
hypothetical protein	1	1499825	1500814	+	<i>E. coli</i> K15-KW01, hypothetical protein	967/990 (98%)	CP016358.1
hypothetical protein	1	1501233	1501682	-	APEC O78, hypothetical protein	447/450 (99%)	CP004009.1
hypothetical protein	1	1501704	1502645	-	APEC O78, hypothetical protein	936/942 (99%)	CP004009.1
hypothetical protein	1	1504293	1505051	+	none		
phage terminase	1	1505607	1506101	+	<i>E. coli</i> UMNK88, phage terminase small subunit	491/495 (99%)	CP002729.1
hypothetical protein	1	1507843	1508025	+	Salmonella Anatum, hypothetical protein	181/183 (99%)	CP014659.1
Caudovirus prohead protein	1	1509244	1509894	+	Present in more than 10 <i>E. coli</i> strains, primosome assembly protein PriA	650/651 (99%)	
hypothetical protein	1	1511164	1511364	+	<i>E. coli</i> H1827/12, hypothetical protein	201/201 (100%)	CP013031.1
hypothetical protein	1	1512072	1512578	+	Present in more than 10 E. coli strains, hypothetical protein	504/507 (99%)	
hypothetical protein	1	1512575	1513135	+	E. coli FHI42	554/561 (99%)	LK999942.1
phage tail tube protein	1	1514794	1515150	+	E. coli FHI89	357/357 (100%)	LM997040.1
hypothetical protein	1	1515150	1515419	+	<i>E. coli</i> H1827/12, hypothetical protein	270/270 (100%)	CP013031.1
phage related minor protein	1	1515561	1517384	+	Enterobacteria phage SfI, tail protein	1806/1821 (99%)	JX509734.1
hypothetical protein	1	1525165	1525935	+	E. coli O157:H16 strain Santai	409/415 (99%)	CP007592.1
Phage Tail Collar Domain protein	1	1526973	1527446	-	<i>E. coli</i> MG1655 phage tail protein, 61% coverage	225/238 (95%)	CP012868.1
Type-2 restriction enzyme EcoRII	1	1530732	1531940	-	<i>E. coli</i> G749, restriction endonuclease	1204/1209 (99%)	CP014488.1

phage P2 gpU	1	1545440	1545925	-	E. coli SF-468 phage tail protein	486/486 (100%)	CP012625.1
phage tail protein	1	1548528	1548863	-	E. coli SF-468 hypothetical protein	336/336 (100%)	CP012625.1
phage tail tube protein	1	1548927	1549445	-	E. coli SF-468 phage tail protein	519/519 (100%)	CP012625.1
Caudovirales tail fiber	1	1550771	1551367	-	E. coli SF-468 phage tail protein	491/599 (82%)	CP012625.1
Phage Tail Collar Domain protein	1	1551367	1552380	-	<i>E. col</i> i SF-468, phage tail protein, 74% coverage	675/760 (89%)	CP012625.1
phage tail protein	1	1552377	1552985	-	Serratia marcescens SM39, putative phage baseplate assembly protein	579/609 (95%)	AP013063.1
baseplate wedge subunit	1	1553893	1554240	-	Salmonella Weltevreden C2346, baseplate assembly protein	333/348 (96%)	LN890520.1
hypothetical protein	1	1555009	1555734	+	none		
phage virion protein	1	1555809	1556258	-	Salmonella phage SEN1, tail completion protein	400/453 (88%)	KT630644.1
P2 phage tail completion	1	1556251	1556718	-	Serratia marcescens SM39, putative phage tail completion protein R	464/468 (99%)	AP013063.1
hypothetical protein	1	1556681	1556839	-	E. coli SF-468 phage lysis protein	154/159 (97%)	CP012625.1
phage lysis regulatory protein, LysB family	1	1556826	1557239	-	<i>E. coli</i> SF-468, phage lysis protein, partially covering the original	387/414 (93%)	CP012625.1
phage lysozyme	1	1557236	1557733	-	<i>E. coli</i> SF-468 lysozyme	477/498 (96%)	CP012625.1
Phage holin family 2	1	1557720	1558016	-	E. coli SF-468, holin	296/297 (99%)	CP012625.1
phage tail protein	1	1558020	1558223	-	E. coli SF-468 phage tail protein	201/204 (99%)	CP012625.1
phage head completion protein	1	1558223	1558732	-	<i>E. coli</i> SF-468 phage head completion/stabilization protein	505/510 (99%)	CP012625.1
terminase endonuclease	1	1558826	1559575	-	Bacteriophage 186, R protein	733/750 (98%)	U32222.1
capsid scaffolding protein	1	1560723	1561577	-	<i>E. coli</i> SF-468 precorrin-8W decarboxylase	825/855 (97%)	CP012625.1
hypothetical protein	1	1564596	1565345	-	none		
hypothetical protein	1	1565348	1566175	-	none		
					Present in more than 10 Salmonella		
hypothetical protein	1	1566822	1567253	+	Newport strains, hypothetical protein	406/432 (92%)	
hypothetical protein	1	1567322	1567531	-	<i>E. coli</i> SF-468	202/210 (96%)	CP012625.1
hypothetical protein	1	1567965	1568147	-	E. coli SF-468, TumA	182/183 (99%)	CP012625.1
bacteriophage replication protein	1	1568261	1570390	-	E. coli SF-468, replication protein	2042/2130 (96%)	CP012625.1
hypothetical protein	1	1570706	1570933	-	E. coli PCN033, hypothetical	214/228 (94%)	CP006632.1

					protein		
hypothetical protein	1	1571000	1571338	-	Salmonella Typhimurium D23580, predicted phage protein	330/339 (97%)	FN424405.1
hypothetical protein	1	1571302	1571502	-	Salmonella Weltevreden C2346, bacteriophage protein	183/201 (91%)	LN890520.1
Phage regulatory protein CII (CP76)	1	1571510	1572019	-	Salmonella Weltevreden str. 1655, hypothetical protein	460/510 (90%)	CP014996.1
hypothetical protein	1	1572052	1572423	-	Salmonella Weltevreden 1655, Cro/CI family transcriptional regulator	344/372 (92%)	CP014996.1
Bacteriophage CI repressor helix-turn-helix domain protein	1	1572544	1573380	+	<i>Kluyvera intermedia</i> strain CAV1151, ornithine decarboxylase repressor	757/837 (90%)	CP011602.1
hypothetical protein	1	1573389	1573727	+	Salmonella phage SEN1, hypothetical protein	303/337 (90%)	KT630644.1
hypothetical protein	1	1706665	1707120	-	<i>Salmonella</i> Typhimurium CDC 2011K-1702, hypothetical protein	456/456 (100%)	CP014967.1
hypothetical protein	1	1707113	1707400	-	Salmonella Typhimurium CDC 2011K-1702, derepression protein	288/288 (100%)	CP014967.1
DNA binding transcription regulator	1	1709530	1710030	+	E. coli FHI72	501/501 (100%)	LM996868.1
hypothetical protein	1	1711102	1712391	+	E. coli FHI28	1288/1290 (99%)	LM995781.1
hypothetical protein	1	1712493	1713866	-	E. coli FHI28	1374/1374 (100%)	LM995781.1
hypothetical protein	1	1929013	1929384	+	E. coli FAP1, hypothetical protein	372/372 (100%)	CP009578.1
phage tail protein	1	2293510	2293785	-	E. coli GB089, hypothetical protein	270/276 (98%)	CP013663.1
hin2	1	2295718	2296212	-	E. coli LY180, DNA invertase	480/499 (96%)	CP006584.1

Phage Tail Collar Domain protein	1	2296362	2296850	+	<i>E. coli</i> UMNK88, phage tail fiber protein and hypothetical protein (2 genes)	454/455 (99%), 93% coverage	CP002729.1
hypothetical protein	1	2297888	2298124	-	<i>E. coli</i> O157:H7 FRIK944, phage tail protein	237/237 (100%)	CP016625.1
hypothetical protein	1	2303027	2303185	+	E. coli G749, phage lysis protein	158/159 (99%)	CP014488.1
phage lysis regulatory protein, LysB family	1	2303172	2303597	-	E. coli G749, protein lysB	424/426 (99%)	CP014488.1
hypothetical protein	1	2303585	2304010	-	E. coli G749, protein lysA	424/426 (99%)	CP014488.1
Phage holin family 2	1	2304522	2304803	-	Present in more than 10 <i>E. coli</i> and phages, and also <i>E. albertii</i> strains, phage holin	282/282 (100%)	
Cytolethal distending toxin subunit A precursor	1	2312111	2312887	+	<i>cdtA</i> , present in more than 10 <i>E. coli</i> strains and phages	777/777 (100%)	
Deoxyribonuclease CdtB	1	2312884	2313693	+	cdtB, E. coli strain B21	810/810 (100%)	AB839657.1
Cytolethal distending toxin subunit C	1	2313708	2314253	+	<i>cdtC</i> , present in 6 <i>E</i> . <i>coli</i> strains besides T22	234/234 (100%)	
hypothetical protein	1	2316616	2316891	-	E. coli G749, hypothetical protein	274/276 (99%)	CP014488.1
DksA-like zinc finger protein	1	2316888	2317112	+	<i>E. coli</i> MNCRE44, hypothetical protein	223/225 (99%)	CP010876.1
hypothetical protein	1	2317112	2317414	-	<i>E. coli</i> O177:H21, hypothetical protein	295/303 (97%)	CP016546.1
hypothetical protein	1	2317414	2317638	-	E. coli S51, hypothetical protein	224/225 (99%)	CP015995.1
hypothetical protein	1	2317702	2318202	-	Present in 10 <i>E. coli</i> strains, replication gene B protein	501/501 (100%)	

Regulatory phage protein cox	1	2318372	2318644	-	Present in more than 10 <i>E. coli</i> and also <i>Shigella</i> strains and phages, <i>cox</i>	273/273 (100%)	
L-rhamnose operon transcriptional activator RhaR	1	2327137	2327736	-	<i>E. coli</i> O177:H21, transcriptional regulator	599/600 (99%)	CP016546.1
L-rhamnose operon transcriptional activator RhaR	1	2327703	2327987	-	<i>E. coli</i> O177:H21, transcriptional regulator	283/285 (99%)	CP016546.1
htrC	1	2410164	2410493	-	<i>E. coli</i> 268-78-1, stationary phase growth adaptation protein	329/330 (99%)	CP014092.1
hypothetical protein	1	2483320	2483826	+	E. coli FAP1, hypothetical protein	506/507 (99%)	CP009578.1
hypothetical protein	1	2483823	2484032	+	Present in more than 10 <i>E. coli</i> strains, hypothetical protein	209/210 (99%)	
Type I restriction enzyme EcoR124II R protein	1	2713494	2716610	-	<i>E. coli</i> CI5, DEAD/DEAH box helicase	3117/3117 (100%)	CP011018.1
Type I restriction enzyme specificity protein MPN_089	1	2716732	2717898	-	<i>E. coli</i> CI5, restriction endonuclease subunit S	1167/1179 (99%)	CP011018.1
putative type 1 restriction endonuclease	1	2717895	2719451	-	<i>E. coli</i> CI5, restriction endonuclease, M subunit	1557/1557 (100%)	CP011018.1
hypothetical protein	1	2720660	2721055	+	<i>E. coli</i> CI5, S- adenosylhomocysteine hydrolase	396/396 (100%)	CP011018.1
hypothetical protein	1	2721048	2721995	+	E. coli CI5, hypothetical protein	948/948 (100%)	CP011018.1
putative restriction endonuclease	1	2722597	2723247	+	E. coli CI5, HNH endonuclease	651/651 (100%)	CP011018.1
rhsC	1	3094034	3095224	+	E. coli ec45	1190/1191 (99%)	AH006361.2
hypothetical protein	1	3124086	3124361	-	<i>E. coli</i> 2011C-3911, hypothetical protein (partial coverage)	166/166 (100%)	CP015240.1
hypothetical protein	1	3412180	3412890	-	none		
hypothetical protein	1	3560553	3560708	+	Present in more than 10 <i>E. coli</i> strains, hypothetical protein	154/154 (100%)	
hypothetical protein	1	3713911	371410	-	Present in more than 10 <i>E. coli</i> strains, integrase	192/192 (100%)	
Bacteriophage CI repressor helix-turn-helix domain protein	1	3714118	3714687	-	Present in 9 <i>E. albertii, Salmonella</i> and <i>E. coli</i> strains, phage repressor protein	329/330 (99%)	
Phage regulatory protein CII (CP76)	1	3715067	3715576	+	Present in 7 <i>Salmonella</i> and 1 <i>E. coli</i> strain, hypothetical protein	509/510 (99%)	

hypothetical protein	1	3715751	3715975	+	<i>E. coli</i> RS218, hypothetical protein (partial coverage)	224/225 (99%)	CP007149.1
hypothetical protein	1	3715998	3716339	+	Salmonella Typhi B/SF/13/03/195, hypothetical protein	342/342 (100%)	CP012151.1
hypothetical protein	1	3716407	3716640	+	Present in more than 10 E. coli and E. albertii strains, hypothetical	233/234 (99%)	
DksA-like zinc finger protein	1	3716640	3716867	+	<i>E. coli</i> MNCRE44, hypothetical protein	223/225 (99%)	CP010876.1
dam1	1	3716864	3717721	+	<i>E. coli</i> MS6198, DNA adenine methylase	855/858 (99%)	CP015834.1
hypothetical protein	1	3720286	3720474	+	<i>E. coli</i> MS6198, hypothetical protein	189/189 (100%)	CP015834.1
hypothetical protein	1	3720823	3721722	-	none		
terminase ATPase subunit	1	3723153	3723860	-	Klebsiella pneumoniae Kp52.145, unnamed protein product	601/729 (82%)	FO834906.1
hypothetical protein	1	3729098	3729313	+	APEC IMT5155, putative secretory protein	216/216 (100%)	CP005930.1
hypothetical protein	1	3729808	3730185	+	Present in more than 10 E. coli strains, putative membrane spanning protein	378/378 (100%)	
phage lysis regulatory protein, LysB family	1	3730182	3730610	+	<i>E. coli</i> FHI40, P12b, S88, putative regulatory protein	429/429 (100%)	LM996157.1 CP002291.1 CU928161.2
hypothetical protein	1	3734069	3735205	+	<i>E. coli</i> W, putative variable tail fiber protein	1049/1060 (99%)	CP002967.1
Caudovirales tail fiber	1	3735502	3735909	+	E. coli O157:H16 strain Santai	400/408 (98%)	CP007592.1
phage tail protein E	1	3739247	3739549	+	E. coli GB089, hypothetical protein	270/276 (98%)	CP013663.1
phage-related minor protein	1	3739676	3742753	+	<i>E. albertii</i> , NIAH_Bird_3, predicted tail tape measure protein	2994/3078 (98%)	AP014855.1
cell division protein ftsK	1	3789945	3794051	+	E. coli S51 DNA translocase FtsK	4107/4107 (100%)	CP015995.1
exonuclease	1	3890143	3890598	-	E. coli 2012C-4227, exonuclease	451/456 (99%)	CP013029.1
hypothetical protein	1	3892498	3892932	+	<i>E. coli</i> EDL933-1, hypothetical protein	246/273 (90%)	CP015855.1
hypothetical protein	1	3895574	3896368	+	E. coli FAP1, hypothetical protein	327/345 (95%), 43% coverage	CP009578.1
hypothetical protein	1	3897033	3897311	-	APEC O78, putative SinR-like	271/279 (97%)	CP004009.1

hypothetical protain 1 3807364 2807543 ADEC 078 hypothetical protain $170/180(00\%)$	CD004000 1
$\frac{1}{19/100} (99\%)$	CP004009.1
hypothetical protein 1 3898032 3898724 - APEC O78, hypothetical protein 679/693 (98%)	CP004009.1
hypothetical protein 1 3899054 3899845 - none	
hypothetical protein 1 3899845 3900063 - none	
hypothetical protein 1 3900675 3901325 + <i>E. coli</i> CFSAN004177, hypothetical protein 647/651 (99%)	CP014670.1
transcriptional repressor 1 3901306 3902409 + <i>E. coli</i> CFSAN004177, DNA binding protein 1094/1104 (99%)) CP014670.1
hypothetical protein 1 3905607 3905843 + Present in 8 <i>E. coli</i> strains, hypothetical protein 233/237 (98%)	
hypothetical protein 1 3907964 3908242 + none	
hypothetical protein 1 3908846 3908983 + <i>E. coli</i> GB089, TciA 105/113 (93%), 84% co	overage CP013663.1
hypothetical protein 1 3909685 3910077 + <i>E. coli</i> 08-00022, holin 320/386 (83%)	CP013662.1
hypothetical protein 1 3910067 3910345 + none	
putative peptidoglycan 1 3910347 3910892 + <i>E. coli</i> SA53, putative phage lysozyme 466/528 (88%)	JQ031711.1
hypothetical protein 1 3910958 3911059 + <i>E. coli</i> 06-00048, hypothetical protein 93/100 (93%)	CP015229.1
hypothetical protein 1 3911016 3911240 - none	
phage minor tail protein 1 3926222 3926920 + $E. coli FORC_028$, phage minor tail protein $682/699$ (98%)	CP012693.1
hypothetical protein243576+Present in more thane 10 E. coli strains, hypothetical protein484/523 (93%)	
hypothetical protein 2 537 1757 + <i>E. coli</i> strain 06-00048, hypothetical protein 491/551 (89%), 45% co	overage CP015229.1
fhuE12119324120055-Present in more thane 10 E. colistrains, putative OMR family iron- siderophore receptor precursor732/732 (100%)	
fhuE22120072121535Present in more thane 10 E. colifhuE22120072121535-strains, ferric-rhodoturic acid / ferric1442/1464 (98%)coprogen receptor FhuE)
ycfZ 2 140940 141278 - <i>E. coli</i> S51, hypothetical protein 339/339 (100%)	CP015995.1
hypothetical protein2330803330985-Present in more than 10 E. coli strains, oxydoreductase183/183 (100%)	

rcbA	2	352476	352760	-	Present in more thane 10 E. coli strains, hypothetical protein	262/283 (93%)	
RecT family protein	2	352914	353966	-	<i>Salmonella</i> Typhi CT18, hypothetical prophage protein	1014/1053 (96%)	AL513382.1
recE	2	353978	357100	-	E. coli SEC470, exonuclease VIII	2964/3125 (95%)	CP013962.1
					Present in more thane 10 E. coli		
hypothetical protein	2	358444	358872	+	strains, superinfection exclusion protein B	414/429 (97%)	
hypothetical protein	2	359156	359434	-	none		
dnaT	2	360753	362042	+	<i>E. coli</i> GB089, phage replisome organizer	578/591 (98%), 45% coverage	CP013663.1
hypothetical protein	2	363273	363695	+	E. coli LY180, hypothetical protein	376/423 (89%)	CP006584.1
hypothetical protein	2	364014	365039	+	none		
hypothetical protein	2	365451	366428	+	<i>Edwardsiella piscicida</i> C07-087, hypothetical protein	879/977 (90%)	CP004141.1
hypothetical protein	2	366472	366651	+	UPEC 26-1, two-component sensor histidine kinase	155/174 (89%)	CP016497.1
hypothetical protein	2	366669	367541	+	UPEC 26-1, hypothetical protein	825/872 (95%)	CP016497.1
hypothetical protein	2	367931	369439	-	none		
hypothetical protein	2	369989	370093	+	E. coli 55989	90/105 (86%)	CU928145.2
					E. coli strain NADC1036, putative		
NAD-dependent ADP-ribosyltransferase	2	372850	373575	+	pertussis-like toxin catalytic subunit, <i>ArtAB</i> subunit A	726/726 (100%)	KU052040.1
auktilaan antotaalin aukumit D lilan matain	2	272659	274101		<i>E. coli</i> strain NADC1036, putative	426/426 (100%)	KU052040 1
submase cytotoxin subunit B-like protein	2	5/3038	374101	+	subunit, <i>ArtAB</i> subunit B	420/420 (100%)	KU052040.1
hypothetical protein	2	374422	374814	+	E. coli SA31, holin	393/393 (100%)	KU052039.1
hypothetical protein	2	374804	375082	+	E. coli NADC1036	278/279 (99%)	KU052040.1
putative peptidoglycan	2	375084	375629	+	E. coli NADC1036, endolysin	546/546 (100%)	KU052040.1
Heat-labile enterotoxin IIB, A chain precursor	2	375705	376484	+	<i>E. coli</i> NADC1036, LT-IIc subunit A	780/780 (100%)	KU052040.1
hypothetical protein	2	376956	377063		E. coli 357900	108/108 (100%)	JQ031705.1
Ash family protein	2	388187	388729	+	<i>E. coli</i> O177:H21, Ash family protein	484/555 (87%)	CP016546.1
hypothetical protein	2	389561	389722	+	none		
ail	2	389880	390416	+	none		

hypothetical protein	3	31734	32228	+	E. coli S51, hypothetical protein	494/495 (99%)	CP015995.1
transposase DDE domain	3	94564	95202	+	E. coli S51, hypothetical protein	639/639 (100%)	CP015995.1
ynjI	3	449922	450659	-	E. coli S51, hypothetical protein	738/738 (100%)	CP015995.1
putative autotransporter	pT22	540	2738	-	pVir68 plasmid, hypothetical protein	2145/2196 (98%)	CP001162.1
Glycosyltransferase TibC	pT22	5686	6906	-	<i>E. coli</i> pVir68 plasmid, hypothetical protein	1208/1221 (99%)	CP001162.1
hypothetical protein	pT22	18205	18570	-	<i>E. coli</i> 53638 plasmid p53638_226, transposase	360/365 (99%)	CP001064.1
hypothetical protein	pT22	18551	18823	-	<i>Shigella sonnei</i> FORC_011 plasmid pFORC11.1, hypothetical protein	273/273 (100%)	CP010830.1
fec operon regulator FecR	pT22	21437	22390	-	<i>E. coli</i> VR50, iron-dicitrate trasmembrane sensor protein RNA	951/954 (99%)	CP011134.1
putative RNA polymerase sigma factor FecI	pT22	22387	22908	-	<i>E. coli</i> ST540, RNA polymerase sigma factor FecI	519/522 (99%)	CP007391.1
tyrosine recombinase xerC	pT22	23593	24189	+	<i>E. coli</i> 210205630 tyrosine recombinase xerC	897/897 (100%)	CP015912.1
Iron-sulfur cluster ParA-like protein	pT22	26348	26980	+	Shigella sonnei FDAARGOS 90 unnamed plasmid 1, hypothetical protein	618/633 (98%)	CP014096.1
hypothetical protein	pT22	26980	27354	+	<i>E. coli</i> S51 plasmid pS51_1, hypothetical protein	365/375 (97%)	CP015996.1
DinI-like family protein	pT22	29047	29226	-	<i>E. coli</i> plasmid pCoo, p53638_75	236/240 (98%)	AY536429.1 CR942285.1 CP001065.1
plasmid SOS inhibition protein psiA	pT22	29791	30024	+	<i>E. coli</i> UMNK88 plasmid pUMNK88, SOS inhibition protein psiA	232/232 (100%)	CP002732.1
plasmid SOS inhibition protein psiA	pT22	30040	30510	+	<i>E. coli</i> UMNK88 plasmid pUMNK88, SOS inhibition protein psiA	471/471 (100%)	CP002732.1
hypothetical protein	pT22	31168	31809	+	<i>E. coli</i> ECC-1470 plasmid pECC- 1470_100	617/643 (96%)	CP010345.1
hypothetical protein	pT22	31844	32131	+	Present in more than 10 E. coli strains, hypothetical protein	283/288 (98%)	

conjugal transfer transcriptional regulator TraJ	pT22	34861	35502	+	Shigella dysenteriae p80-547, E. coli pECC-1470_100, p1303_109, pEB2, pVir68, pMAR2 hypothetical protein	642/643 (99%)	KT754160.1 CP010345. CP009167. CP006000.1 CP001162.1 FM180569.1
	T 22	25640	25067		Found in 10 E. coli plasmids, IncF	220/220 (100%)	
Relaxosome protein Tra Y	p122	35640	35867	+	plasmid conjugative transfer protein TraY	228/228 (100%)	
F-pilin	pT22	35901	36266	+	E. coli pEB2, pilin subunit	364/366 (99%)	CP006000.11
conjugal transfer protein TraP	pT22	39312	39902	+	TraP, found in more than 10 <i>E. coli</i> plasmids	589/591 (99%)	
conjugal transfer protein	pT22	39889	40086	+	Present in more than 10 <i>E. coli</i> strains, conserved hypothetical protein	198/198 (100%)	
conjugal transfer protein TrbG	pT22	40098	40349	+	TrbG, found in 9 E. coli plasmids	252/252 (100%)	
hypothetical protein	pT22	41210	41314	+	E. coli ECwhn14 plasmid pECwhn14	105/105 (100%)	CP012197.1
conjugal transfer protein TrbE	pT22	48484	48741	+	conjugal transfer proteinTrbE, found in more than 10 <i>E. coli</i> plasmid	254/258 (98%)	
conjugal transfer protein	pT22	49493	49840	+	<i>E. coli</i> MRSN388634 plasmid pMR0516mcr, trbA	345/348 (99%)	KX276657.1
hypothetical protein	pT22	49842	50117	-	<i>E. coli</i> 1303, p1303_109, hypothetical protein	276/276 (100%)	CP009167.1
conjugal transfer pilin chaperone TraQ	pT22	50198	50482	+	TraQ, p1303_109	285/285 (100%)	CP009167.1
conjugal transfer protein TrbJ	pT22	51004	51285	+	TrbJ, p1303_109	282/282 (100%)	CP009167.1
conjugal transfer protein TrbF	pT22	51272	51664	+	TrbF, p1303_109	393/393 (100%)	CP009167.1
conjugal transfer entry exclusion protein TraS	pT22	55870	56391	+	TraS, found in more than 10 <i>E. coli</i> plasmid	520/522 (99%)	
hypothetical protein	pT22	68039	68242	+	<i>E. coli</i> FAM22871 plasmid pFAM22871_1, yigA	204/204 (100%)	KU355873.1
small toxic polypeptide	pT22	70154	70360	+	<i>E. coli</i> 1303, p1303_109, modulation of SrnB protein	207/207 (100%)	CP009167.1

hypothetical protein	pT22	72033	72185	-	Present in more than 10 <i>E. coli</i> and <i>Salmonella</i> plasmids	153/153 (100%)	
hypothetical protein	pT22	73161	73250	-	pVir68 plasmid and <i>E. coli</i> 1303 p1303_109	90/90 (100%)	CP001162.1 CP009167.1
eamA	pT22	74555	75502	-	pVir68 plasmid, pagO	945/948 (99%)	CP001162.1
rob1	pT22	80673	81509	-	pVir68 plasmid, hypothetical protein	827/838 (99%)	CP001162.1

678 <mark>Fi</mark>