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Abstract

We consider the internal rate of return (IRR) decision rule in capital budgeting problems
with fuzzy cash flows. The possibility distribution of the IRR at any » > 0, is defined to be the
degree of possibility that the (fuzzy) net present value of the project with discount factor r equals
to zero. Generalizing our earlier results on fuzzy capital budegeting problems [5] we show that
the possibility distribution of the IRR is a highly nonlinear function which is getting more and
more unbalanced by increasing imprecision in the future cash flow. However, it is stable under
small changes in the membership functions of fuzzy numbers representing the lingusitic values
of future cash flows.
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1 Introduction

Many decision making problems concern projects in which the cost and benefits accrue over a number
of years. In this paper we consider only cases in which the costs and benefits are entirely monetary,
such as the capital budegeting or capital investment decisions arising in commerce and industry.
Authors consider two kinds of decision problems in capital budgeting: accept-or-reject and ranking.
In accept-or-reject decisions, each project is considered independently of all other projects. Thus a
portfolio of accepted projects is built up from several independent decisions. In ranking decisions, all
the available projects are compared and ranked in order of favourability with the intention of adopting
a single project: the most favourable. It should be noted that it is often important to include a null
project representing the status quo; all the projects may be unfavourable compared with the alternative
of adopting none of them (if this is possible). Several decision rules have been suggested [1, 6, 9]
to help decision makers rank projects which involve timestreams of costs and benefits, such as the
payback period, accounting rate of return (ARR), internal rate of return (IRR) and net present value
(NPV).

We shall briefly describe just the IRR decision rule. Let {ag, a1, ..., a,} be a given net cash flow of
a project a over n periods. We assume that ag < 0 as the project starts with an initial investment. The
IRR, denoted by r**, is defined to be the value of r such that the NPV of the project is zero. Thus
find the IRR of a we need to solve

S(a,r) = 4 9 I
(a,r).—a0+1+r+~--+(1+T)n— (D

It is well-known that, if there is reinvestment in a project (a; < 0 for some ¢ > 1) then its IRR may
become ill-defined, i.e. equation (1) may have more than one solution. If the IRR of a project is
ill-defined, it is not a suitable criterion to use in either accept-or-reject or ranking decisions. Suppose,
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however, that no project considered involves any reinvestment. Then NPV is a strictly monotone
decreasing function of r and the equation (1) has a unique solution, moreover, the discount rate r can
be interpreted in strictly financial terms as an interest rate. Now in an accept-or-reject decision it is
clear that, if the market rate of interest is 7¢, the project should be accepted if »** > ry because this
implies the that NPV at rg is positive. In comparing two projects, the one with the higher IRR should
be preferred.

2 IRR with fuzzy cash flows

More often than not future cash flows (and interest rates) are not known exactly, and we have to
work with their estimations, such as "around 5, 000 in the next few years’ (or ’close to 3 %’). Fuzzy
numbers appear to be an adequate tool to represent imprecisely given cash flows [3, 4, 7, 13, 14].

Definition 2.1 A fuzzy number A is a fuzzy set of the real line with a normal, (fuzzy) convex and

continuous membership function of bounded support. The family of fuzzy numbers will be denoted by
F.

A fuzzy set A is called a symmetric triangular fuzzy number with center a and width o > 0 if its
membership function has the following form

o — 1]

1- ifla—t| <a

A(t) =
0 otherwise

and we use the notation A = (a,«). If @ = 0 then A collapses to the characteristic function of
{a} C IR and we write A = a.

We will use symmetric triangular fuzzy numbers to represent the values of the linguistic variable [16]
cash.

If A = (a,a) and B = (b, 3) are fuzzy numbers of symmetric triangular form and A € IR then
A+ B, A — B and \A are defined by the extension principle in the usual way:

A+B=(a+b,a+p), A—B=(a—b,a+p), M=\, |Na).

Furthermore, if A; = (a;, ;) and \; = 1/(1 + )%, i =0,1,...,n, then we get

n
Ai al ap, aq a,
A = - I L P
AP ] (ot i e 2 i ) ©

Let A and B € F be fuzzy numbers. The degree of possibility that the proposition A is equal to B”
is true denoted by Pos[A = B] and defined by the extension principle as

Pos[A = B] = ilell%min{A(x), B(x)} = (A — B)(0), 3)

The Hausdorff distance of A and B, denoted by D(A, B), is defined by [12]

D(A,B) = s ma {ar(6) — br(6)],ax(6) ~ bo(6)]}

where [a1(6), a2(0)] and [b1(0), b2(0)] denote the O-level sets of A and B, respectively. For example,
if A= (a,«) and B = (b, «) are fuzzy numbers of symmetric triangular form with the same width

«a > 0 then
D(A,B) = |a —b|.



Lemma 2.1 [10] Let 5 > 0 be a real number, and let A = (a,«) and B = (b, 3) be symmetric
triangular fuzzy numbers. Then from the inequality D(A, B) < ¢ it follows that

sup |A(1) ~ B(t)| < ma {j g} | @

Let {Ao = (ap, ), A1 = (a1,01), ..., An = (an, )} be a given net fuzzy cash flow of a project
A over n periods. By replacing the crisp cash flow values with fuzzy numbers in (1) we get

A A
e 5)

Ag 4+ — 4.
0+1+7“ (1+r)m

where the equation is defined in possibilistic sense, and 0 denotes the characteristic function of zero.
That is, the fuzzy solution [2] of (5) is computed by

pur(r) = Pos o +§:;(1j‘:): o] = (49 +§:;<1f)) ).

for each r > 0. Using the definition of possibility (3) and representation (2) we find

|S(a,r)|
1 - ————= if|S(a,r)| < S(a,r),
prrr(r) = S(a,r)
0 otherwise
where we used the notations
al an a1 (6773
S — 44" g = e
(a,r) a0+1+r+ +(1+r)"’ (1) a0+1+r+ +(1+7*)”

We assume that ag < 0 (the project starts with an initial investment), ag < a1 + - - - + a,, (the project
is at least as good as the null project), and a; > 0, ¢ = 1,...,n, (no reinvestment). In this case we
always get quasi-triangular fuzzy numbers for IRR in JRar and equation (5) has a unique maximizing
solution, r*, such that,

prrr(r*) = max urrr(r) = 1,
r>0

and * coincides with **, which is the internal rate of return of the (crisp) projecta = (ag, a1, ..., an).
Really, if > 0 then prrr(r) = 1if and only if S(a,r) = 0.
As an example consider a 4-year project

A= {(_5’ a)’ (37 a)v (47 a)v (6,0&), (107 a)}7

with fuzzy IRR,
’ TR A S L
R L4r)?2 " (1473 " (1+0)t
- +r (147 (1+7) (1+47) if |S(a,7)| < S(a,r),
pirr(r) = 1 L ! !
al|ll+ + 2 + 3 + 4
L+r o (T4 (1+7)3 (147)
0 otherwise

It is easy to compute that 7R (0.781) = 1 for all &« > 0, so the maximizing solution to possibilistic
equation (5) is independent of a.

However, the possibility distribution of the IRR is getting more and more unbalanced as the widths
of the fuzzy numbers are growing. This means that when comparing the fuzzy IRR with the market



interest rate r in an accept-or-reject decision, the defuzzified value of ;rr will definitely differ from
r* whenever the process of defuzzification takes into account all points with positive membership
degrees (and not only the maximizing point).

For example, all projects in Figs.1-3, have the same maximizing solution r* = 0.781, but if we
employ the center-of-gravity method then the defuzzified value of the project withag = a; = --- =
an, = b is around 0.84, which is esentially bigger (in terms of rates of return) than 0.781.

In ranking decisions we have to compare possibility distributions of a non-symmetric quasi-triangular
form.

3 Sensitivity analysis in fuzzy capital budgeting

Consider two projects A = {Ag, A1,..., A,} and A% = {AJ AS, ... A%} with fuzzy cash flows
A; = (a;, ;) and A? = (af, ®;),i=0,1,...,n. The fuzzy IRR of project A%, denoted by ,u?RR, is
computed by

u?RR(T) = Pos [Ag + ; A+ ) = O} = (Ag + ; i+ r)l> (0).

for each r > 0. Using the definition of possibility (3) and representation (2) we find

S(al,r
5 1—7| ( ) if’S(aE,Tﬂ < S(a, ),
1irr(r) = S(a,r)
0 otherwise
where we used the notation
1 4
a a
S(ad.r) = al L .y __m
@)=+ Tt T e

Let 7**(0) denote the IRR of the crisp project a® = (aj, ag, ..., al). That is,

r'n

ad ad

§ k% _ 0 S L ——
S(a’,r (5))—a0+1+r**(5)+ +(1+r**(5))" 0 (6)

In the following we suppose that #**(¢) is the only solution to equation (6), i.e. ag < 0 and af >0
fort=1,...,n.
The next theorem shows that if the centers of fuzzy numbers A; and A? in projects A and A° are close

to each others, then there can only be a small deviation in the possibility distributions of their fuzzy
IRR.

Theorem 3.1 Let § > 0 be a real number. If

max{|ag — agl, la; — a‘ls\, ooy lan — ai|} <4
then
. )
max |1 re(r) — ppe(r)| < min {1, } (7)
r>0 Olyax
where
Omax = max{ag, a1,...,0,}

UIrRr and u? Rrp are the possibility distributions of IRR of projects A and AS, respectively.



Proof. It is sufficient to show that

lnirr(r) — M?RR(TN =

Pos{AoJrZH) 0} Pos[A‘;—l—Zlii) oH:
(oSt (Edoleml ] o

for any r > 0, because (7) follows from (8). Using representation (2) and applying Lemma 2.1 to

n A,
Ap + Zl m = (S(a,r),S(a,r)),

and
Z 5

we find

( o+z 1+ 0+Z 1+r > |(S(a,r) = (S(a®,7)| =

9 19
al an 5 ai ay,
R T L oL )<
a0+1+r+ +(1+r)” (ao—i- r+ + )n>’_

X |ay —a‘f!—i—

|ag

for any » > 0, and

1
— X
(L+r)"

(1ilr)i> ( Zn;1+r> ’5

(+ S avar)o- (84 )] <

(n+1)6 (n+1)4 0
max < max = .
oo +og -+ ap (n+ 1) max{ag, a1, ...,an} O'max

Which ends the proof.
Theorem 3.1 can also be extended to fuzzy cash flows with arbitrary (continuous) fuzzy numbers.

(

sup
teR

Theorem 3.2 Let § > 0 be a real number. If
max{D(Ag, AJ), D(A1, AS),..., D(A,, A°)} <§

then
max | pa(r) — pige(r)| < min{l, w(6)}.

where w(6) denotes the maximum of moduli of continuity of all the fuzzy numbers in projects A and
A% at point 6.

The proof of this theorem is carried out analogously to the proof of Theorem 3.1 in [8].



4 Concluding remarks

In this paper we have shown that the fuzzy IRR has a stability property under small changes in the
membership functions representing the fuzzy cash flows. Nevertheless, the behavior of the maximiz-
ing solution, r*(§), of possibilistic equation

5 " A?
A L =0
°+;(1+r)z ’

towards small perturbations in the membership functions of the fuzzy coefficients can be very fortu-

itous. That is, the distance
[r* —r*(0)],

(which coincides with |7** —r**(§)], the distance between the internal rates of returns of crisp projects
a = (ag,as,...,a,) and a® = (al,as,...,ad)if A; = (a;, ;) and A = (al,0;), i =0,1,...,n)
can be very big even for very small §.

In this manner, the fuzzy model can be considered as a well-posed extension [11, 15] of the (generally)
ill-posed crisp internal rate of return decision rule.

If the fuzzy numbers in projects A and A% are not strictly unimodal (for example trapezoidal) then
the set of maximizing solutions of the fuzzy IRR is a segment of the real line. In this case any
IRR obtained from a crisp project, in which the future cash values are chosen from the cores of the
corresponding fuzzy numbers, belongs to the core of the fuzzy IRR.
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