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Abstract. The paper is concerned with the large time behavior of solutions to functional
delayed differential equations ẏ(t) = f (t, yt) where f : Ωn 7→ Rn is a continuous map
satisfying a local Lipschitz condition with respect to the second argument and Ωn is an
open subset in R× Cn, Cn := Cn([−r, 0], Rn), r > 0. Criteria on the existence of positive
solutions (different from the well-known published results) and their estimates from
above are derived. The results are illustrated by examples.
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1 Introduction and the problems considered

Let Cn([a, b], Rn) where a, b ∈ R, a < b, R = (−∞,+∞) be the Banach space of continuous
functions mapping the interval [a, b] into Rn. If a = −r < 0 and b = 0, we denote this space
by Cn, that is, Cn := Cn([−r, 0], Rn).

The paper is concerned with the large time behavior of solutions of functional delayed
differential equations

ẏ(t) = f (t, yt) (1.1)

where f : Ωn 7→ Rn is a continuous map that satisfies a local Lipschitz condition with respect
to the second argument (these conditions are tacitly assumed throughout the paper), and Ωn

is an open subset in R× Cn. The paper particularly considers the problem of the existence
of solutions to systems of linear and nonlinear functional delayed differential equations (1.1)
with positive coordinates when t→ ∞.

Let σ ∈ R, A ≥ 0 and y ∈ Cn([σ− r, σ + A], Rn). For each t ∈ [σ, σ + A], we define yt ∈ Cn

by means of the relation yt(θ) = y(t+ θ), θ ∈ [−r, 0]. Whenever it is necessary, we will assume
that the derivatives in (1.1) are right-sided.
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A function y : [σ− r, σ + A)→ Rn, where A > 0, is called a solution (1.1) on [σ− r, σ + A)

if y is continuous on [σ− r, σ + A), continuously differentiable on [σ, σ + A), (t, yt) ∈ Ωn, and
satisfies (1.1) for every t ∈ [σ, σ + A).

For a given σ ∈ R and ϕ ∈ Cn, we say that y(σ, ϕ) is a solution of (1.1) through (σ, ϕ) ∈ Ωn

if there is an A > 0 such that y(σ, ϕ) is a solution of (1.1) on [σ− r, σ + A) and yσ(σ, ϕ) ≡ ϕ.
In view of the above conditions, each element (σ, ϕ) ∈ Ωn determines a unique solution

y(σ, ϕ) of (1.1) through (σ, ϕ) ∈ Ωn on its maximal interval of existence Iσ,ϕ = [σ, a), σ < a ≤
∞ and y(σ, ϕ) depends continuously on initial data [15]. We say, that a solution y(σ, ϕ) of (1.1)
is positive if yi(σ, ϕ)(t) > 0 on [σ− r, σ] ∪ Iσ,ϕ for each i = 1, 2, . . . , n.

The problem of the existence of positive solutions to systems (1.1), or to more general
systems, is a classical one. The results related to the existence of positive solutions and their
properties are published, e.g., in the books [1, 2, 11, 12, 14, 19] and in numerous papers, e.g.,
in [4, 6–8, 10, 13, 16–18, 21].

In the present paper we prove the existence of positive solutions by an approach that, to
the author’s knowledge has not yet been published and is not a direct consequence of any
known results.

Set f (t, yt) := −Fs(t, yt) in (1.1) where Fs(t, yt) = (Fs1(t, yt), . . . , Fsn(t, yt)) and consider a
system

ẏ(t) = −Fs(t, yt). (1.2)

Moreover, set f (t, yt) := −Fe(t, yt), n = 1 in (1.1) and, along with system (1.2), consider a
scalar equation

ẋ(t) = −Fe(t, xt). (1.3)

The paper is organized as follows. In part 2, the main results are formulated and ac-
companied by examples. Particularly, in part 2.1 we investigate the equivalence between the
existence of a positive solution to (1.3) and the existence of a positive solution to (1.2). In
part 2.2, given two different systems (1.2), a statement is proved on the existence of a positive
solution to system if the other system has a positive solution. Part 2.3 applies derived results
to particular systems to obtain some easily verifiable conditions. The proofs of the statements
with the necessary auxiliary information are brought together in part 3.

2 Main results

With Rn
≥0 (Rn

>0) we denote the set of all component-wise nonnegative (positive) vectors v in
Rn, i.e., v = (v1, . . . , vn) with vi ≥ 0 (vi > 0) for i = 1, . . . , n. For u, v ∈ R, we define u ≤ v
if v − u ∈ Rn

≥0; u � v if v − u ∈ Rn
>0; u < v if u ≤ v and u 6= v. By 0n we denote the

n-dimensional null vector (0, . . . , 0).

2.1 Criterion for the existence of positive solutions

A theorem formulated below states that, under given assumptions, the existence of a positive
solution of (1.3) is equivalent to the existence of a positive solution of (1.2). Let Ωn := [t0, ∞)×
Cn and t∗ ≥ t0 be assumed in the following text.

Theorem 2.1. Assume that

Fe(t, ϕ) ≡ Fsi(t, ϕ, . . . , ϕ), , i = 1, . . . , n (2.1)
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for every (t, ϕ) ∈ Ω1, and

Fe(t, ϕ) = Fsi(t, ϕ, . . . , ϕ) = 0, i = 1, . . . , n (2.2)

for every (t, ϕ) ∈ Ω1 where ϕ(θ) = 0, θ ∈ [−r, 0]. Let, moreover,

0 < Fe(t, ϕ∗) < Fe(t, ψ∗) (2.3)

for every (t, ϕ∗) ∈ Ω1, (t, ψ∗) ∈ Ω1 such that 0 < ϕ∗(θ) < ψ∗(θ), θ ∈ [−r, 0), and

0n � Fs(t, ϕ∗) ≤ Fs(t, ψ∗) (2.4)

for every (t, ϕ∗) ∈ Ωn, (t, ψ∗) ∈ Ωn such that 0n � ϕ∗(θ) ≤ ψ∗(θ), θ ∈ [−r, 0).
Then, the existence of a positive solution y = y(t) on [t∗ − r, ∞) of system (1.2) is equivalent with

the existence of a positive solution x = x(t) on [t∗ − r, ∞) of equation (1.3). Moreover, if a positive
solution y = y(t) on [t∗ − r, ∞) of system (1.2) exists, then there exist a positive solution x = x(t) of
equation (1.3) satisfying

x(t) < min{y1(t), y2(t), . . . , yn(t)} (2.5)

on [t∗ − r, ∞).

2.2 A comparison result

In this part, we formulate a comparison result. Put f (t, yt) := −F∗(t, yt) and f (t, yt) :=
−F∗∗(t, yt) in (1.1) where

F∗(t, yt) = (F∗1 (t, yt), . . . , F∗n (t, yt)) ,

F∗∗(t, yt) = (F∗∗1 (t, yt), . . . , F∗∗n (t, yt)) .

Consider two systems

ẏ(t) = −F∗(t, yt), (2.6)

ẏ(t) = −F∗∗(t, yt). (2.7)

The following theorem is of a comparison type and provides conditions sufficient for the
existence of a positive solution of a nonlinear system (2.6) if system (2.7) has a positive solution
and some inequalities hold between their right-hand sides.

Theorem 2.2. Let, for every (t, ϕ∗) ∈ Ωn, (t, ψ∗) ∈ Ωn such that 0n � ϕ∗(θ)� ψ∗(θ), θ ∈ [−r, 0),
we have

0n � F∗(t, ϕ∗)� F∗(t, ψ∗). (2.8)

Let, moreover, system (2.7) has a positive solution y = y∗∗(t) on [t∗− r, ∞) and, for every (t, ψ∗) ∈ Ωn

such that

0� ψ∗s (θ) < min{y∗∗1t (θ), y∗∗2t (θ), . . . , y∗∗nt (θ)}, θ ∈ [−r, 0), s = 1, 2, . . . , n,

we have
F∗i (t, ψ∗) ≤ F∗∗j (t, ψ∗) (2.9)

for every i, j ∈ {1, 2, . . . , n}. Then, system (2.6) has a positive solution y = y∗(t) on [t∗ − r, ∞)

satisfying
y∗i (t) < min{y∗∗1 (t), y∗∗2 (t), . . . , y∗∗n (t)}, i = 1, 2, . . . , n. (2.10)
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Example 2.3. Let us consider a system (2.7)

ẏ1(t) =− F∗∗1 (t, yt) := − (t− r)3

2t2 y3
1(t− r)− (t− r)3

16t2 y3
2(t− r), (2.11)

ẏ2(t) =− F∗∗2 (t, yt) := − (t− r)3

t2 y3
1(t− r)− (t− r)3

8t2 y3
2(t− r). (2.12)

This system has a positive solution

y(t) = y∗∗(t) = (y∗∗1 (t), y∗∗2 (t)) =
(

t−1, 2t−1
)

.

Consider a system (2.6)

ẏ1(t) =− F∗1 (t, yt) := −2(
√

t)y3
1(t− r)− (ln t)y3

2(t− r), (2.13)

ẏ2(t) =− F∗2 (t, yt) := −(ln t)2y3
1(t− r)− (

√
t)y3

2(t− r). (2.14)

Assume t∗ sufficiently large. It is a trivial matter to see that properties (2.8) and (2.9) of
Theorem 2.2 are fulfilled. Therefore, system (2.13), (2.14) has a positive solution

y(t) = y∗(t) = (y∗1(t), y∗2(t))

on [t∗ − r, ∞) satisfying (2.10), i.e.,

y∗i (t) < min{y∗∗1 (t), y∗∗2 (t)} = min{t−1, 2t−1} = t−1, i = 1, 2.

Example 2.4. Consider a system (2.6)

ẏ1(t) =− F∗1 (t, yt) = −Fs1(t, yt) := − (t− r)3

2t2 y3
1(t− r)− (t− r)3

16t2 y3
2(t− r), (2.15)

ẏ2(t) =− F∗2 (t, yt) = −Fs2(t, yt) := − (t− r)3

2t2 y3
1(t− r)− (t− r)3

16t2 y3
2(t− r). (2.16)

Assume t∗ sufficiently large. Apply Theorem 2.2 to systems (2.15), (2.16) and (2.11), (2.12). As
all assumptions are fulfilled, system (2.15), (2.16) has a positive solution

y(t) = y∗(t) = (y∗1(t), y∗2(t))

on [t∗ − r, ∞) satisfying (2.10), i.e.,

y∗i (t) < min{y∗∗1 (t), y∗∗2 (t)} = min{t−1, 2t−1} = t−1, i = 1, 2.

Moreover, between system (2.15), (2.16) and an equation

ẋ(t) = −Fe(t, xt) = −
9
16

(t− r)3

t2 x3(t− r), (2.17)

the following equality (2.1) holds

Fe(t, ϕ) = Fs1(t, ϕ, ϕ) = Fs2(t, ϕ, ϕ)

for every (t, ϕ) ∈ Ω1. Since not only this equality, but all the assumptions of Theorem 2.1
are fulfilled, equation (2.17) has a positive solution x = x(t) on [t∗ − r, ∞) satisfying inequal-
ity (2.5), i.e.,

x(t) < min{y∗1(t), y∗2(t)} < min{y∗∗1 (t), y∗∗2 (t)} < min{t−1, 2t−1} = t−1.
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2.3 Some consequences

In this part, we apply the criteria derived to achieve some results with easily verifiable
assumptions.

2.3.1 A linear case

Consider a linear differential system with delay

ẏ(t) = −C(t)y(h(t)) (2.18)

where C(t) = {cij(t)}n
i,j=1 is an n× n continuous matrix defined on [t0, ∞). Assume that the

elements cij(t) ≥ 0, i, j = 1, . . . , n, the delay h(t) is continuous on [t0, ∞) and

t− r ≤ h(t) < t, t ∈ [t0, ∞). (2.19)

System (2.18) is a particular case of system (1.2) if

Fs(t, ϕ) := C(t)ϕ(h(t)− t). (2.20)

Assume that ∑n
j=1 cij(t) = ∑n

j=1 csj(t), t ∈ [t0, ∞), i, s = 1, . . . , n and denote

c(t) :=
n

∑
j=1

c1j(t).

Together with system (2.18), consider a scalar equation

ẋ(t) = −c(t)x(h(t)), (2.21)

being a special case of equation (1.3) with

Fe(t, ϕ) := c(t)ϕ(h(t)− t). (2.22)

Theorem 2.5. Let cij(t) ≥ 0, i, j = 1, . . . , n be continuous functions on [t0, ∞), let the delay h(t)
be continuous on [t0, ∞) and satisfies (2.19). If, moreover, c(t) > 0, t ∈ [t0, ∞), then the existence
of a positive solution y = y(t) on [t∗ − r, ∞) of system (2.18) is equivalent with the existence of a
positive solution x = x(t) on [t∗ − r, ∞) of equation (2.21). Moreover, a positive solution x = x(t) of
equation (2.21), defined on [t∗ − r, ∞), satisfies

x(t) < min{y1(t), y2(t), . . . , yn(t)}.

Example 2.6. Let us consider system

ẏ1(t) = − c11(t)y1(t− r)− c12(t)y2(t− r),

ẏ2(t) = − c21(t)y1(t− r)− c22(t)y2(t− r)

where 0 < r < ln 2 and

c11(t) =
1

∆(t)

[
1
2

er +
1
2

e−t+2r − 2e−2t+2r
]

,
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c12(t) =
1

∆(t)
(2− er) er,

c21(t) =
1

2∆(t)
(2− er) e−t+r,

c22(t) =
1

∆(t)

[
1
2

er + e−t+r − 2e−2t+2r
]

,

∆(t) =
1
2

e2r +
1
2

e−t+3r − e−2t+4r.

This system has a positive solution y(t) = (y1(t), y2(t)) = (exp(−t), exp(−2t)). It is easy to
see that cij(t) > 0, i, j = 1, 2, on [t∗, ∞), if t∗ is sufficiently large. Moreover,

c(t) = c11(t) + c12(t) = c21(t) + c22(t) =
1

∆(t)

[
1
2

er +

(
2− 3

2
er
)

e−t+r − 2e−2t+2r
]
> 0.

All the assumptions of Theorem 2.5 are valid and, therefore, there exists a positive solution of
the equation

ẋ(t) = −c(t)x(t− r).

satisfying
x(t) < min{y1(t), y2(t)} = min{exp(−t), exp(−2t)} = exp(−2t)

if t∗ is sufficiently large.

2.3.2 Criterion of positivity by a critical constant

It is well-known that a scalar differential equation with delay

ẋ(t) = − 1
er

x(t− r) (2.23)

has two positive linearly independent solutions

x1(t) = exp (−t/r), x2(t) = t exp (−t/r), (2.24)

and, in addition to this, equation
ẋ(t) = −cx(t− r) (2.25)

with a positive coefficient c = const has positive solutions if and only if c ≤ 1/(er) since, for
c > 1/(er), all solutions of (2.25) are oscillating. Therefore, the value c = 1/(er) is, in a sense,
the best possible constant separating the case of the existence of positive solutions from the
case of all the solutions being oscillating (i.e., any solution has infinitely many zero points
with co-ordinates greater than any previously given number). Often, it is called a critical
constant.

We utilize equation (2.23) to give a comparison criterion for the existence of positive solu-
tions to systems of nonlinear equations.

Set f (t, yt) := −Fs(t, yt) in (1.1) and consider a system (1.2), i.e,

ẏ(t) = −Fs(t, yt).

Moreover, set f (t, yt) := −Ls(t, yt) in (1.1) where Ls(t, yt) is a linear functional with respect to
the second argument yt and consider a linear system

ẏ(t) = −Ls(t, yt). (2.26)
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Specify Ls(t, yt) = (Ls1(t, yt), . . . , Lsn(t, yt)) as

Lsi(t, yt) :=
n

∑
j=1

cij(t)yj(t− r), i = 1, 2, . . . , n.

Theorem 2.7. Let, for every (t, ϕ) ∈ Ωn, (t, ψ) ∈ Ωn such that 0n � ϕ(θ)� ψ(θ), θ ∈ [−r, 0),

0n � Fs(t, ϕ)� Fs(t, ψ). (2.27)

Let cij(t), i, j = 1, . . . , n be continuous functions on [t0, ∞) and

n

∑
j=1

cij(t) =
1
er

(2.28)

for every i = 1, 2, . . . , n and let, for every (t, ψ) ∈ Ωn such that

0 < ψk(θ) < exp (−(t + θ)/r), θ ∈ [−r, 0), k = 1, 2, . . . , n, (2.29)

Fsi(t, ψ) ≤ Lsj(t, ψ) (2.30)

for every i, j ∈ {1, 2, . . . , n}. Then, system (1.2) has a positive solution y = y(t) on [t0 − r, ∞) and

yi(t) < exp (−t/r), i = 1, 2, . . . , n. (2.31)

Example 2.8. Assume that t∗ is sufficiently large such that the below inequalities are true. Let
system (1.2) be given as

ẏ1(t) =− Fs1(t, yt) := −t5y6
1(t− r)− ety3

2(t− r), (2.32)

ẏ2(t) =− Fs2(t, yt) := −e2ty4
1(t− r)− y2

2(t− r). (2.33)

where 0 < r. Assume that the auxiliary linear system (2.26) is the following

ẏ1(t) = − Ls1(t, yt) := − 1
2er

y1(t− r)− 1
2er

y2(t− r), (2.34)

ẏ2(t) = − Ls2(t, yt) := − 1
2er

y1(t− r)− 1
2er

y2(t− r). (2.35)

Assumption (2.27) is obviously true. Assumption (2.28) holds as well since cij(t) = 1/(2er),
i, j = 1, 2. For functions described by (2.29) we conclude that (2.30) holds. System (2.34), (2.35)
has a positive solution

y(t) = (y1(t), y2(t)) = (exp (−t/r), exp (−t/r))

as suggested by the first formula (for the solution x1(t) of equation (2.23)) in (2.24). Theo-
rem 2.7 is applicable and system (2.32), (2.33) has a positive solution y = y(t) on [t0 − r, ∞)

satisfying (2.31), i.e.,

yi(t) < exp (−t/r), i = 1, 2.
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3 Proofs and additional material

This part contains proofs of the statements formulated above and the necessary auxiliary
results and material.

In the proofs, we make use of the following result. Let us define vectors

ρ(t) = (ρ1(t), ρ2(t), . . . , ρn(t)),

δ(t) = (δ1(t), δ2(t), . . . , δn(t)),

continuous on [t∗ − r, ∞), where t∗ ∈ R is fixed, and such that ρ(t) � δ(t). Let us, moreover,
define the set

ω := {(t, y) : t ≥ t∗ − r, ρ(t)� y� δ(t)}.

Below, ω denotes the closure of ω, ∂ω its boundary and int ω its interior.

Lemma 3.1. Assume that, for all i = 1, 2, . . . , n and all ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ Cn for which

(t + θ, ϕ(θ)) ∈ ω, θ ∈ [−r, 0) (3.1)

and either
ϕi(0) = δi(t) (3.2)

or
ϕi(0) = ρi(t), (3.3)

we have
(s, y(t, ϕ)(s)) 6∈ ω (3.4)

for all s ∈ (t, t + ε) where ε = ε(t, ϕ) is a sufficiently small positive number. Then, there exists a
solution y = y(t) of the system (1.1) on [t∗ − r, ∞) such that

ρ(t)� y(t)� δ(t) (3.5)

holds.

Proof of Lemma 3.1. First, let us define a retract and a retraction [20, p. 97].

Definition 3.2. If A ⊂ B are any two sets of a topological space and π : B → A is a continuous
mapping from B onto A such that π(p) = p for every p ∈ A, then π is called a retraction of
B onto A. If there exists a retraction of B onto A, A is called a retract of B.

Next, let us define a system of initial functions [5, Definition 4].

Definition 3.3. A system of initial functions pA,ω with respect to the nonempty sets A and ω

where A ⊂ ω ⊂ R×Rn is defined as a continuous mapping p : A→ Cn such that (α) and (β)

below hold.

(α) If z = (t, y) ∈ A ∩ int ω, then (t + θ, p(z)(θ)) ∈ ω for θ ∈ [−r, 0].

(α) If z = (t, y) ∈ A ∩ ∂ω, then (t + θ, p(z)(θ)) ∈ ω for θ ∈ [−r, 0) and (t, p(z)(0)) = z.
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The proof of the lemma is based on the well-known fact that the boundary of an n-
dimensional ball is not its retract (see e.g. [3]). Assuming that a solution y = y(t) of the
system (1.1) on [t∗ − r, ∞) satisfying (3.5) does not exist we show that the set

A := {(t, y) : t = t∗, y ∈ Rn} ∩ ∂ω

is a retract of the set

B := {(t, y) : t = t∗, y ∈ Rn} ∩ω,

which is a contradiction to above-mentioned classical topology statement (note that A is
homeomorphic to the boundary of an n-dimensional ball and B is homeomorphic to an n-
dimensional ball).

Let us construct such a retract. First, we consider a system of initial functions pA,ω defined
by Definition 3.3 (with A := A) and assume, following the outlined scheme of the proof,
that every solution y(t∗, p) defined by an initial function p ∈ pA,ω leaves the set ω. Let
the first point of the intersection of y(t∗, p)(t) with ∂ω be a point t = t∗∗. Then, either
yi(t∗, p)(t∗∗) = δi(t∗∗) or yi(t∗, p)(t∗∗) = ρi(t∗∗) for an index i ∈ {1, 2, . . . , n} and, according
to (3.4), (t, y(t∗, p)(t)) 6∈ ω for t ∈ (t∗∗, t∗∗ + ε) where ε is a positive number. Due to the
continuous dependence of solutions on the initial data, we state that the mapping

M : (t∗, y(t∗, p)(t∗)) 7→ (t∗∗, y(t∗, p)(t∗∗)) ∈ ∂ω

is continuous and, moreover, the points (t∗, y(t∗, p)(t∗)) ∈ ∂ω are fixed points ofM.
Now we show that there exists a continuous mapping N : ∂ω 7→ A such that the points

of A are fixed points of N . Let (t0, y0) = (t, y0
1, y0

2, . . . , y0
n) ∈ ∂ω. Then, there exists an index

i ∈ {1, 2, . . . , n} such that either y0
i = ρi(t0) or y0

i = δi(t0). Define

N := (t0, y0) 7→ (t∗, y00) = (t∗, y00
1 , y00

2 , . . . , y00
n ) ∈ A

where

y00
i := ρi(t∗) +

δi(t∗)− ρi(t∗)
δi(t0)− ρi(t0)

· (y0
i − ρi(t0)), i = 1, 2, . . . , n.

It is easy to see that all the above properties ofN hold. If the property y0
i = ρi(t0) or y0

i = δi(t0)

is true for two different indices, the construction of N remains the same. We finish the proof
with a conclusion that the composite mapping

π := N ◦M : B 7→ A

is the desired retraction of B onto A and our assumption of the non-existence of a solution
y = y(t) of the system (1.1) on [t∗ − r, ∞) satisfying (3.5) is not true.

Remark 3.4. The idea of the proof of Lemma 3.1 goes back to Ważewski [24] (see [22, 23] as
well). In utilizing Lemma 3.1, it is necessary to know how the property (3.4) can be verified.
We give sufficient conditions for the verification when the vectors ρ(t) and δ(t) are continu-
ously differentiable on [t∗, ∞). Let (3.2) hold. We show that condition (3.4) is satisfied if

δ′i(t) < fi(t, ϕ) (3.6)

and if (3.3) is true, then for (3.4) to be true, it is sufficient that

ρ′i(t) > fi(t, ϕ). (3.7)
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Let, e.g., (3.6) hold. Then,
δ′i(t) < fi(t, yt(t, ϕ)) = y′i(t, ϕ)(t)

and, integrating this inequality over the interval [t, s] where t < s < t + ε∗, ε∗ is a small
positive number and taking into account (3.2), i.e., ϕi(0) = yi(t, ϕ)(t) = δi(t), we have

δi(t + s) < yi(t, ϕ)(t + s).

Similarly, one can prove that, if (3.7) and (3.3) hold, then (3.4) holds as well.

3.1 Proof of Theorem 2.1

a) Let x = x(t) be a positive solution of equation (1.3) on [t∗ − r, ∞). Then, the existence on
[t∗ − r, ∞) of a positive solution y = y(t) of system (1.2) is an obvious consequence of (2.1)
because

Fe(t, xt) ≡ Fsi(t, xt, . . . , xt), i = 1, . . . , n

on [t∗, ∞) and
y(t) = (x(t), . . . , x(t)), t ∈ [t∗ − r, ∞)

is a positive solution of system (1.2) on [t∗ − r, ∞).

b) Let y = y(t) be a positive solution of system (1.2) on [t∗ − r, ∞). To prove that there exists a
positive solution x = x(t) of equation (1.3) on [t∗ − r, ∞), we need Lemma 3.1. Set n = 1 (then
i = 1), f1(t, ϕ) := −Fe(t, ϕ), ρ1(t) ≡ 0 and

δ1(t) := min{y1(t), y2(t), . . . , yn(t)}.

Then, for this setting,

ω := {(t, y) : t ≥ t∗ − r, 0 < y < min{y1(t), y2(t), . . . , yn(t)}}.

Verifying (3.7), we get
ρ′1(t)− f1(t, ϕ) = − f1(t, ϕ) = Fe(t, ϕ).

By (3.1), we have ϕ(θ) > 0 for every θ ∈ [−r, 0). Therefore, by (2.3) with ϕ∗ ≡ 0, ψ∗ = ϕ, and
by (2.2), we have

Fe(t, ψ∗) = Fe(t, ϕ) > Fe(t, ϕ∗) = Fe(t, 0) = 0

and (3.7) holds.
Now we show that (3.6) holds as well. Assume first that δ1 is continuously differentiable

on [t∗, ∞).
By (3.1), we have ϕ(θ) < δ1(t + θ) for every θ ∈ [−r, 0). Therefore, by (2.3) with ψ∗(θ) =

δ1(t + θ), θ ∈ [−r, 0), ϕ∗ = ϕ, we have

Fe(t, ϕ∗) = Fe(t, ϕ) < Fe(t, ψ∗) = Fe(t, δ1t).

Then,
δ′1(t)− f1(t, ϕ) = δ′1(t) + Fe(t, ϕ) < δ′1(t) + Fe(t, δ1t). (3.8)

Now we estimate the right-hand side of (3.8). Let, for a given t ≥ t∗, there exist a unique value
of index j ∈ {1, 2, . . . , n} such that

min{y1(t), y2(t), . . . , yn(t)} = yj(t).
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Then, by (2.1) and by (2.4) with ϕ∗ = (yjt, yjt, . . . , yjt), ψ∗ = (y1t, y2t, . . . , ynt),

δ′1(t) + Fe(t, δ1t) = y′j(t) + Fe(t, yjt)

= −Fsj(t, yt) + Fe(t, yjt)

= −Fsj(t, y1t, y2t, . . . , ynt) + Fe(t, yjt)

= −Fsj(t, y1t, y2t, . . . , ynt) + Fsj(t, yjt, yjt, . . . , yjt)

≤ −Fsj(t, yjt, yjt, . . . , yjt) + Fsj(t, yjt, yjt, . . . , yjt) = 0. (3.9)

Finally, from (3.8) and (3.9), we derive

δ′1(t)− f1(t, ϕ) < 0,

i.e., (3.6) holds. Therefore, by Remark 3.4, property (3.4) is true.
Now assume that at a point t ∈ [t∗, ∞), δ1 is not continuously differentiable. Then, for at

least two different indices i = i∗, i = i∗∗, i∗, i∗∗ ∈ {1, 2, . . . , n}, we have

min{y1(t), y2(t), . . . , yn(t)} = yi∗(t) = yi∗∗(t) (3.10)

with y′i∗(t) 6= y′i∗∗(t). Let (3.10) is valid exactly for two indices i∗ and i∗∗. However, at the point
t, both co-ordinates yi∗ , yi∗∗ are continuously differentiable and, for both settings (at the given
point t) δ1(t) := yi∗(t) and δ1(t) := yi∗∗(t), we can verify that (3.8) and (3.9) are valid. This
means that property (3.4) holds again. Similarly we proceed if (3.10) holds for more than two
indices.

From inequality (3.5) in Lemma 3.1, we conclude that there exists a positive solution x =

x(t) of equation (1.3) on [t∗ − r, ∞) satisfying

0 < x(t) < min{y1(t), y2(t), . . . , yn(t)},

i.e. (2.5) holds. �

3.2 Proof of Theorem 2.2

Let y = y∗∗(t) be a positive solution of system (2.7) on [t∗ − r, ∞). To prove that there exists a
positive solution y = y∗(t) of system (2.6) on [t∗ − r, ∞), we use Lemma 3.1.

Set ρ(t) ≡ 0n and and δ(t) = (δ1(t), δ2(t), . . . , δn(t)) where

δi(t) := min{y∗∗1 (t), y∗∗2 (t), . . . , y∗∗n (t)}, i = 1, 2, . . . , n.

Then,

ω :=
{
(t, y) : t ≥ t∗ − r, 0 < yi < min{y∗∗1 (t), y∗∗2 (t), . . . , y∗∗n (t)}, i = 1, 2, . . . , n

}
.

First, verifying (3.7), we obtain

ρ′i(t)− fi(t, ϕ) = − fi(t, ϕ) = F∗i (t, ϕ), i = 1, 2, . . . , n.

Using (2.8), we conclude that

F∗i (t, ϕ) > 0, i = 1, 2, . . . , n
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and (3.7) holds.
Now we show that (3.6) holds as well. Let i ∈ {1, 2, . . . , n} be fixed. Assume that δi is

continuously differentiable on [t∗, ∞).
By (3.1), we have ϕj(θ) < δj(t + θ) for every θ ∈ [−r, 0) and every j ∈ {1, 2, . . . , n}.

Therefore, by (2.8) with ψ∗(θ) = δ(t + θ), θ ∈ [−r, 0), ϕ∗ = ϕ, we have

F∗i (t, ϕ∗) = F∗i (t, ϕ) < F∗i (t, ψ∗) = F∗i (t, δt).

Then,
δ′i(t)− fi(t, ϕ) = δ′i(t) + F∗i (t, ϕ) < δ′i(t) + F∗i (t, δt). (3.11)

Now we estimate the right-hand side of (3.11). Let, for a given t ≥ t∗, there exist a unique
value of index j ∈ {1, 2, . . . , n} such that

δi(t) = min{y∗∗1 (t), y∗∗2 (t), . . . , y∗∗n (t)} = y∗∗j (t).

Then, by (2.9) with ψ∗ = y∗∗t and by (2.8) with ϕ∗ = δt, ψ∗ = y∗∗t ,

δ′i(t) + F∗i (t, δt) = y′∗∗j (t) + F∗i (t, δt)

= −F∗∗j (t, y∗∗t ) + F∗i (t, δt)

≤ −F∗i (t, y∗∗t ) + F∗i (t, δt)

< −F∗i (t, y∗∗t ) + F∗i (t, y∗∗t ) = 0. (3.12)

Finally, from (3.11) and (3.12), we derive

δ′i(t)− fi(t, ϕ) < 0,

i.e., (3.6) holds. Therefore, by Remark 3.4, property (3.4) is valid.
Now assume that at a point t ∈ [t∗, ∞), function δ is not continuously differentiable. Then,

for at least two different indices i = i0, i = i00, i0, i00 ∈ {1, 2, . . . , n}, we have

min{y∗∗1 (t), y∗∗2 (t), . . . , y∗∗n (t)} = y∗∗i0 (t) = y∗∗i00
(t)

with y′i0(t) 6= y′i00
(t). However, at the point t, both co-ordinates yi0 , yi00 are continuously

differentiable and we can proceed similarly to the proof of Theorem 2.1.
From inequality (3.5) in Lemma 3.1, we conclude that there exists a positive solution y =

y∗(t) of system (2.8) on [t∗ − r, ∞) satisfying

0 < y∗i (t) < min{y∗∗1 (t), y∗∗2 (t), . . . , y∗∗n (t)}, i = 1, 2, . . . , n,

i.e. (2.10) holds. �

3.3 Proof of Theorem 2.5

Obviously, each solution x = x(t) (not only a positive one) of (2.21) generates a solution
y = y(t) = (x(t), x(t), . . . , x(t)) of system (2.18). To get an inverse statement for a positive
solution, we apply Theorem 2.1. We start to verify its conditions. The left-hand side of
inequality (2.3) holds since, by (2.22),

Fe(t, ϕ) = c(t)ϕ(h(t)− t) > 0
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for every (t, ϕ) ∈ Ω1 where ϕ(θ) > 0, θ ∈ [−r, 0). The left-hand side of inequality (2.4) is true
as well because, by (2.20),

Fs(t, ϕ) = C(t)ϕ(h(t)− t)� 0n

due to the non-positivity of entries of matrix C(t) and the positivity of c(t) for every (t, ϕ) ∈
Ωn where ϕ(θ)� 0n, θ ∈ [−r, 0). Condition (2.1) obviously holds since

Fe(t, ϕ) = c(t)ϕ(h(t)− t) =
n

∑
j=1

cij(t)ϕ(h(t)− t) = Fsi(t, ϕ, . . . , ϕ)

for every (t, ϕ) ∈ Ω1. The verification of (2.2) is trivial as well as the verification of the
monotony properties (2.3) and (2.4).

Then, by Theorem 2.1, the existence of a positive solution y = y(t) on [t∗ − r, ∞) of sys-
tem (2.18) is equivalent to the existence of a positive solution x = x(t) on [t∗ − r, ∞) of
equation (2.21). �

3.4 Proof of Theorem 2.7

The proof is based on Theorem 2.2. To apply it we consider system (2.6) defined as

ẏ(t) = −F∗(t, yt) := −Fs(t, yt) (3.13)

and system (2.7) defined as

ẏ(t) = −F∗∗(t, yt) := −Ls(t, yt). (3.14)

Condition (2.8) holds due to (2.27). System (3.14) has a positive solution

y = y∗∗(t) = (y∗∗1 (t), y∗∗2 (t), . . . , y∗∗n (t)) = (exp (−t/r), exp (−t/r), . . . , exp (−t/r))

on [t0 − r, ∞) due to (2.28). Moreover, (2.9) holds due to (2.30). Theorem 2.2 is applicable and
system (3.13) has a positive solution y = y(t) on [t0 − r, ∞) such that (2.10) holds, i.e.,

yi(t) := y∗i (t) < exp (−t/r), i = 1, 2, . . . , n.
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