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from marine tubificid oligochaetes, with a discussion on the validity of the tetraspora 
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Abstract Ten new types of sphaeractinomyxon actinospores are morphologically and 

molecularly described from the coelomic cavity of two marine oligochaete hosts, 

Limnodriloides agnes Hrabě, 1967 and Tubificoides pseudogaster (Dahl, 1960), from Aveiro 
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estuary, Portugal. The smallest sphaeractinomyxon type measured 17 µm (length) × 19 µm 

(width) × 19 µm (apical diameter), whereas the largest type measured 61 µm × 76 µm × 80 

µm. While considering the ten types of sphaeractinomyxon, it was found that the number of 

spores developing inside pansporocysts varied between one, two, four and eight. The total 

prevalence of infection was of 19% for the two host species, with a maximum recorded for 

spring and summer (25-26%). While considering each type of sphaeractinomyxon 

individually, it was found that the prevalence values ranged between 0.3 and 1.7%. All 

described sphaeractinomyxons were most similar to mugilids infecting Myxobolus species. 

The validity of the tetraspora and endocapsa collective group names is discussed. 
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Introduction 

 

The discovery and description, in 1899, of the first actinospore types – i.e. synactinomyxon, 

hexactinomyxon and triactinomyxon – is attributed to Antonin Štolc, who isolated them from 

specimens of oligochaetes collected in Vltava river in Czech Republic (Caullery and Mesnil 

1905). A few years later, in 1904 the first sphaeractinomyxon actinospore, designated with a 

binomial name, i.e. Sphaeractinomyxon stolci, was described from marine oligochaetes 

(Caullery and Mesnil 1904, 1905).  Since then, several other sphaeractinomyxons were 

described; Sphaeractinomyxon gigas in 1923, by Granata; Sphaeractinomyxon danicae in 

192,3 by Georgevitch; Sphaeractinomyxon  ilyodrili in 1940, by Jirovec (Marques 1984); 

Sphaeractinomyxon amanieui (Puytorac 1963); and Sphaeractinomyxon rotundum (Marques, 

1984). Until this time, all actinospore types were considered to represent legitimate species. 

They were classified in a separate class, named Actinosporea, and named following the 

binomial nomenclature system. However, in 1984, Wolf and Markiw were able to 

demonstrate the alternation of the life cycle of Myxobolus cerebralis in an oligochaete, 

involving the formation of triactinomyxon actinospores. The class Actinosporea was then 

extinct and the genera of actinosporeans became collective group names (Kent et al. 1994). In 

the following, new types of sphaeractinomyxon were described. Sphaeractinomyxon types 1 

and 2 (Hallett et al. 1997), Sphaeractinomyxon ersei (Hallett et al. 1998) and 

Sphaeractinomyxon leptocapsula (Hallett et al. 1999). 

Two new actinospore collective group names, tetraspora and endocapsa, were erected 

to encompass the new types of sphaeractinomyxons exhibiting some variations in its 

characters (Hallett and Lester 1999; Hallett et al. 1999). Tetraspora actinospores differ from 

sphaeractinomyxon in the number of spores it develops inside pansporocysts, exclusively, i.e. 

four spores instead of the usual eight spores. Two types of tetraspora were described, 

Tetraspora discoidea and Tetraspora rotundum (Hallett e Lester, 1999). Endocapsa 

actinospores differ from sphaeractinomyxon in having small irregular valvular expansions and 

not protruding polar capsules. Four types of endocapsa were described, Endocapsa rosulata 

and Endocapsa stepheni (Hallett et al. 1999), endocapsa type 1 (Hallett et al., 2001), and 

endocapsa type of Székely et al. (2007). 

Several life cycles have been demonstrated by experimental infection or inferred by 

molecular biology involving actinospore types from about half of the actinospore collective 

groups (Eszterbauer et al. 2015). Until now, sphaeractinomyxon actinospores were never 

associated with a life cycle of any identified myxosporean, but phylogenetically 

sphaeractinomyxons are associated with marine Myxobolus species (Kent et al. 2001). 
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The body of knowledge on myxosporeans and the group's taxonomy are still based in 

the myxosporean phase and myxospore morphology, despite the fact that molecular biology 

has demonstrated a real need for new ways to approach the myxosporean classification (Fiala 

2006; Fiala et al. 2015). The study of actinospores is still very insipient, especially in what 

concern the marine species, and surely they will have a crucial role in the future classification 

of the Myxosporea Bütschli, 1881 class. This study is intended to represent a contribution for 

that goal, adding ten new marine sphaeractinomyxon actinospores, morphologically and 

molecularly described from two species of oligochaete hosts. 

 

Material and methods 

 

Actinospore sampling and morphological study 

 

From 2013 to 2014, an actinospore survey was conducted in 651 oligochaete specimens from 

Aveiro estuary (40°40′N:8°45′W), Portugal. Oligochaetes were collected from the mud at low 

tide and kept individually in cell well plates containing salt water. A stereo microscope was 

used to examine the specimens for the release of actinospores during the following days. All 

specimens were posteriorly examined individually under a light microscope (200-400x of 

magnification) with a drop of salt water and gently pressured by a lamella, to detect the 

presence of actinospores in the coelomic cavity. 

Developmental stages and free actinospores were examined and photographed using a 

Zeiss Axiophot microscope (Grupo Taper, Sintra, Portugal), equipped with a Zeiss AxioCam 

Icc3 digital camera. AxioVision 4.6.3 software (Grupo Taper) was used in image analysis. 

Morphology and morphometry were characterized using fresh material, in accordance to Lom 

et al. (1997). Measurements included the mean value±standard deviations (SDs), range of 

variation, and number of measured actinospores. 

 

Molecular characterization 

 

Genomic DNA from actinospores and oligochaete hosts was extracted using the 

GenElute™ Mammalian Genomic DNA Miniprep Kit (Sigma-Aldrich), following the 

manufacturer’s instructions. The 18S ribosomal RNA (rRNA) gene of actinospores was PCR 

amplified with the universal eukaryotic primers ERIB1 and ERIB10 (Table 1). PCR was 

carried out in a 25 µl reaction volume, using 2 µl of extracted genomic DNA, 0.5 µl of 10 

mM deoxyribonucleotide triphosphates (dNTPs; nzyTech), 0.25 µl of 10 pmol of each primer, 



 

5 
 

2.5 µl of 10× Taq DNA polymerase buffer, 1.25 µl of 50 mM MgCl2, 1.25 U of Taq DNA 

polymerase (nzyTech), and 18 µl of water. The reactions were run on a Bio-Rad - MJ Mini 

Gradient Thermal Cycler, with initial denaturation at 95 °C for 3 min, followed by 35 cycles 

of 95 °C for 1 min, 55 °C for 1 min, and 72 °C for 1 min. The final elongation step was 

performed at 72 °C for 7 min. This was followed by a nested PCR, using as a template, 1 µl of 

the initial PCR and specific myxosporeans primers (Table 1). The PCR mixture reaction was 

the same as for the first PCR, except for the 0.5 µl of 10 pmol of each primer. The nested 

PCR cycle had an initial denaturation at 95 °C for 3 min, followed by 35 cycles of 94 °C for 

45 s, 53 °C for 45s, and 72 °C for 1:30 min, and a final elongation at 72 °C for 7 min. 

Concerning the oligochaete hosts, the 16S rRNA gene was PCR amplified using the universal 

primers 16sar-L and 16sbr-H (Table 1). The PCR was carried out in a single reaction in the 

same conditions as for the actinospores DNA nested PCR, but using 2 µl of extracted genomic 

DNA. All PCR products were electrophoresed through a 1 % agarose 1× tris-acetate-EDTA 

buffer (TAE) gel stained with GreenSafe Premium (nzyTech). The PCR amplification 

products were purified and sequenced by STABVida (Portugal). 

Staden Package software (pregap4 and gap4) version 2.0.0 (Staden et al. 2000) was 

used to assist the 16S rDNA and 18S rDNA consensus sequences assembling. Similarities 

between sequences (pairwise p-distance) were calculated using MEGA 5 software (Tamura et 

al. 2011). Consensus sequences were submitted to a standard nucleotide BLAST search for 

close relatives from NCBI (http://blast.ncbi.nlm.nih.gov). 

 

Results 

 

 

During the survey, 651 oligochaetes were examined for parasites. From these, 122 (18.7%) 

were found infected with actinospores identified as representatives of sphaeractinomyxon 

collective group. 

All examined oligochaete hosts looked alike, with similar dimensions, bifid setae and 

a body tegument devoid of papillae. However, molecular biology has demonstrated the 

existence of two distinct oligochaete species. After submitting the 16S rRNA gene sequence 

from both oligochaete species to a BLAST search, one consensus sequence with 537 bp, 

obtained from nine specimens (GenBank acceccion number ########), was found to be 

99.8% similar to Limnodriloides agnes Hrabě, 1967 (KR025871), while the other, with 527 

bp, obtained from five specimens (########), was 98.8% similar to Tubificoides 

pseudogaster (Dahl, 1960) (HM459968), specifically, T. pseudogaster from the lineage II, as 
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reported by Kvist et al. (2010). Accordingly, the prevalence of infection was calculated 

considering the total sample of both oligochaetes. 

Sphaeractinomyxons were found in oligochaetes throughout the year. Seasonal 

prevalence was 8.1% for winter (January–March; n= 211), 26.3% for spring (April–June; 

n=137), 19.5% for summer (July–September; n=123), and 25.0% for autumn (October–

December; n=180). From the total number of infected oligochaetes, 30.3% had only initial 

developmental stages and/or immature spores, especially in the autumn season, with a 

maximum of 40.0%; 5.7% had co-infections with another type of sphaeractinomyxon, and, in 

one case, with a triactinomyxon type. The individual prevalence of infection for each type of 

actinospore was very low, ranging from 0.3 to 1.7%, even considering that it must be 

underestimated, because they were calculated comprising two different hosts. 

 

Taxonomy and morphology of studied actinospores 

 

Sphaeractinomyxon type 1 (new type) 

Figs. 1a-c, Table 2 

 

Description: Mature spores spherical in apical and lateral view. Spores (n=36) 17.2±1.5 

(15.2–20.5) µm in length, 18.8±1.3 (16.7–21.7) µm in width and 18.8±0.9 (16.9–21.0) µm in 

diameter; three pyriform polar capsules 4.7±0.4 (3.8–5.8) µm in length and 3.4±0.3 (2.7–3.8) 

µm in width. Polar filaments exhibiting 3 to 4 longitudinal coils. Sporoplasm having many 

secondary cells. Spores developing in number of 8 inside pansporocysts. 

Type host: Limnodriloides agnes Hrabě, 1967 

Type locality: Aveiro Estuary, Portugal 

Site of infection: Coelomic cavity 

Prevalence of infection: 1.7% (11 out of 651) 

GenBank accession no.: ######## 

Remarks: The sequences in GenBank most similar to this type were Triactinomyxon 

sp. SH-2006 (DQ473515) and Endocapsa sp. SH-2006 (DQ473516), with 91% of similarity, 

followed by Myxobolus exiguus Thélohan, 1895 (AY129317), Myxobolus muelleri Bütschli, 

1882 (AY129314) and Myxobolus episquamalis Egusa et al., 1990 (JF810537), with 90% of 

similarity. 

 

Sphaeractinomyxon type 2 (new type) 

Fig. 1d, Table 2 
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Description: Mature spores spherical to angular in apical and lateral view. Spores (n=10) 

23.3±0.8 (22.1–24.8) µm in length, 28.4±1.0 (26.2–29.8) µm in width and 28.6±1.2 (26.6–

31.1) µm in diameter; three pyriform polar capsules 5.9±0.2 (5.7–6.0) µm in length and 

4.1±0.2 (4.0–4.3) µm in width. Polar filaments exhibiting 3 to 4 longitudinal coils. 

Sporoplasm having many secondary cells. Spores developing in number of 8 inside 

pansporocysts. 

Type host: Limnodriloides agnes Hrabě, 1967 

Type locality: Aveiro Estuary, Portugal 

Site of infection: Coelomic cavity 

Prevalence of infection: 0.5% (3 out of 651) 

GenBank accession no.: ######## 

Remarks: The sequences in GenBank most similar to this type were Myxobolus sp. 

WSK-2013 (KC733438) and Sphaeractinomyxon ersei (AF306790), with 94% of similarity, 

and Myxobolus ichkeulensis Bahri and Marques, 1996 (AF378337), with 93% of similarity. 

 

Sphaeractinomyxon type 3 (new type) 

Figs. 1e-f, Table 2 

 

Description: Mature spores angular in apical view and spherical to ellipsoidal in lateral view. 

Spores (n=16) 30.5±1.8 (27.9–33.4) µm in length, 33.6±2.2 (28.4–38.0) µm in width and 

33.9±0.8 (32.5–35.3) µm in diameter; three pyriform polar capsules 7.5±0.7 (6.5–8.3) µm in 

length and 6.2±0.4 (5.8–7.0) µm in width. Polar filaments exhibiting 3 longitudinal coils. 

Sporoplasm having many secondary cells. Spores developing in number of 4 inside 

pansporocysts. 

Type host: Limnodriloides agnes Hrabě, 1967 

Type locality: Aveiro Estuary, Portugal 

Site of infection: Coelomic cavity 

Prevalence of infection: 0.5% (3 out of 651) 

GenBank accession no.: ######## 

Remarks: The sequences in GenBank most similar to this type were Endocapsa 

rosulata (AF306791), with 91% of similarity, and M. exiguus (AY129317) and M. muelleri 

(AY129314), with 90% of similarity. 

 

Sphaeractinomyxon type 4 (new type) 
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Fig. 1g, Table 2 

 

Description: Mature spores spherical to angular in apical view and spherical to slightly 

ellipsoidal in lateral view. Spores (n=19) 33.2±2.8 (28.1–36.7) µm in length, 36.5±2.3 (32.4–

42.6) µm in width and 37.9±2.2 (34.1–40.3) µm in diameter; three pyriform polar capsules 

7.8±0.4 (7.0–8.7) µm in length and 6.6±0.4 (5.8–7.1) µm in width. Polar filaments exhibiting 

2 to 3 longitudinal coils. Sporoplasm having many secondary cells. Spores developing in 

number of 4 inside pansporocysts. 

Type host: Limnodriloides agnes Hrabě, 1967 

Type locality: Aveiro Estuary, Portugal 

Site of infection: Coelomic cavity 

Prevalence of infection: 0.8% (5 out of 651) 

GenBank accession no.: ######## 

Remarks: The sequences in GenBank most similar to this type were Endocapsa sp. 

SH-2006 (DQ473516), with 89% of similarity, and M. episquamalis (JF810537), M. exiguus 

(AY129317) and M. muelleri (AY129314), with 91% of similarity. 

 

Sphaeractinomyxon type 5 (new type) 

Figs. 1h-i, Table 2 

 

Description: Mature spores angular in apical view and ellipsoidal in lateral view. Spores 

(n=10) 42.5±2.1 (38.8–45.6) µm in length, 54.8±2.7 (50.0–59.5) µm in width and 56.0±2.4 

(52.9–58.8) µm in diameter; three pyriform polar capsules 9.1±0.3 (8.8–9.6) µm in length and 

7.6±0.3 (7.0–7.9) µm in width. Polar filaments exhibiting 2 to 3 longitudinal coils. 

Sporoplasm having many secondary cells. Spores developing in number of 4 inside 

pansporocysts. 

Type host: Limnodriloides agnes Hrabě, 1967 

Type locality: Aveiro Estuary, Portugal 

Site of infection: Coelomic cavity 

Prevalence of infection: 0.6% (4 out of 651) 

GenBank accession no.: ######## 

Remarks: The sequences in GenBank most similar to this type were M. exiguus 

(AY129317) and Endocapsa rosulata (AF306791), with 90% of similarity, and M. 

episquamalis (JF810537), with 89% of similarity. 
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Sphaeractinomyxon type 6 (new type) 

Figs. 1j-k, Table 2 

 

Description: Mature spores angular in apical view and ellipsoidal in lateral view. Spores 

(n=20) 51.5±5.2 (46.0–56.9) µm in length, 64.5±3.3 (61.6–69.2) µm in width and 62.1±2.8 

(56.7–68.4) µm in diameter; three pyriform polar capsules 10.2±0.4 (9.9–10.9) µm in length 

and 8.9±0.8 (7.5–9.7) µm in width. Polar filaments exhibiting 2 to 3 longitudinal coils. 

Sporoplasm having many secondary cells. Spores developing in number of 2 to 4 inside 

pansporocysts. 

Type host: Limnodriloides agnes Hrabě, 1967 

Type locality: Aveiro Estuary, Portugal 

Site of infection: Coelomic cavity 

Prevalence of infection: 0.8% (5 out of 651) 

GenBank accession no.: ######## 

Remarks: The sequences in GenBank most similar to this type were M. episquamalis 

(JF810537), M. exiguus (AY129317) and M. muelleri (AY129314), with 90% of similarity, 

and Endocapsa rosulata (AF306791), with 87% of similarity. 

 

Sphaeractinomyxon type 7 (new type) 

Figs. 1l-n, Table 2 

 

Description: Mature spores angular in apical view and ellipsoidal in lateral view. Spores 

(n=10) 60.9±5.6 (55.0–68.7) µm in length, 75.6±6.2 (64.7–85.8) µm in width and 80.3±5.1 

(71.8–91.4) µm in diameter; three pyriform polar capsules 10.6±0.9 (9.4–11.9) µm in length 

and 9.7±0.4 (9.2–10.1) µm in width. Polar filaments exhibiting 2 to 3 longitudinal coils. The 

sporoplasm having many secondary cells. Spores developing in number of 1 to 4 inside 

pansporocysts. 

Type host: Limnodriloides agnes Hrabě, 1967 

Type locality: Aveiro Estuary, Portugal 

Site of infection: Coelomic cavity 

Prevalence of infection: 1.2% (8 out of 651) 

GenBank accession no.: ######## 

Remarks: The sequences in GenBank most similar to this type were Endocapsa 

rosulata (AF306791), Myxobolus bizerti Bahri and Marques 1996 (AY129318), M. exiguus 

(AY129317) and M. muelleri (AY129314), all with 90% of similarity. 
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Sphaeractinomyxon type 8 (new type) 

Fig. 1o, Table 2 

 

Description: Mature spores spherical in apical and lateral view. Spores (n=21) 8.1±0.9 (17.0–

21.3) µm in length, 18.6±0.8 (17.7–21.1) µm in width and 18.1±1.0 (17.1–20.0) µm in 

diameter; three pyriform polar capsules 4.7±0.2 (4.3–5.2) µm in length and 3.3±0.2 (3.0–3.5) 

µm in width. Polar filaments exhibiting 2 to 3 longitudinal coils. The sporoplasm having 

many secondary cells. Spores developing in number of 8 inside pansporocysts. 

Type host: Tubificoides pseudogaster (Dahl, 1960) 

Type locality: Aveiro Estuary, Portugal 

Site of infection: Coelomic cavity 

Prevalence of infection: 0.3% (2 out of 651) 

GenBank accession no.: ######## 

Remarks: The sequences in GenBank most similar to this type were Triactinomyxon 

sp. SH-2006 (DQ473515) and Endocapsa sp. SH-2006 (DQ473516), with 94% of similarity, 

and M. exiguus (AY129317) and M. muelleri (AY129314), with 93% of similarity. 

 

Sphaeractinomyxon type 9 (new type) 

Fig. 1p, Table 2 

 

Description: Mature spores spherical in apical and lateral view. Spores (n=21) 20.9±1.0 

(19.0–23.4) µm in length, 22.0±1.5 (20.4–26.9) µm in width and 22.6±1.2 (20.7–26.5) µm in 

diameter; three pyriform polar capsules 5.6±0.4 (4.8–6.0) µm in length and 4.3±0.3 (3.9–4.8) 

µm in width. Polar filaments exhibiting 2 to 3 longitudinal coils. The sporoplasm having 

many secondary cells. Spores developing in number of 8 inside pansporocysts. 

Type host: Tubificoides pseudogaster (Dahl, 1960) 

Type locality: Aveiro Estuary, Portugal 

Site of infection: Coelomic cavity 

Prevalence of infection: 0.9% (6 out of 651) 

GenBank accession no.: ######## 

Remarks: The sequences in GenBank most similar to this type were Triactinomyxon 

sp. SH-2006 (DQ473515), with 96% of similarity, Endocapsa sp. SH-2006 (DQ473516), with 

94% of similarity, and M. exiguus (AY129317) and M. muelleri (AY129314), with 93% of 

similarity. 
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Sphaeractinomyxon type 10 (new type) 

Figs. 1q-r, Table 2 

 

Description: Mature spores spherical in apical view and spherical to slightly ellipsoidal in 

lateral view. Spores (n=47) 22.3±1.1 (19.3–24.9) µm in length, 24.0±1.7 (19.6–27.4) µm in 

width and 24.3±1.6 (21.2–27.5) µm in diameter; three pyriform polar capsules 5.2±0.3 (4.5–

6.2) µm in length and 4.0±0.2 (3.4–4.5) µm in width. Polar filaments exhibiting 3 longitudinal 

coils. Sporoplasm having many secondary cells. Spores developing in number of 8 inside 

pansporocysts. 

Type host: Tubificoides pseudogaster (Dahl, 1960) 

Type locality: Aveiro Estuary, Portugal 

Site of infection: Coelomic cavity 

Prevalence of infection: 0.8% (5 out of 651) 

GenBank accession no.: ######## 

Remarks: The sequences in GenBank most similar to this type were Triactinomyxon 

sp. SH-2006 (DQ473515), with 93% of similarity, and Endocapsa sp. SH-2006 (DQ473516), 

M. exiguus (AY129317) and M. muelleri (AY129314), with 92% of similarity. 

 

The spores and corresponding developmental stages were always found in the 

coelomic cavity, for all described actinospore types (Fig. 1a); in some cases, they were also 

found inside reproductive structures cavities (Fig. 1k). Spore development was asynchronous, 

as all different developmental stages were observed simultaneously in a same individual. 

Nevertheless, spore development inside each individual pansporocyst was usually 

synchronous, even though, asynchronous development was also observed in some rare cases. 

After observing the developmental stages of the several new sphaeractinomyxon 

types, it is possible to infer the successive steps in spores development (Fig. 2). The first 

identifiable stage corresponded to binucleated cells (Fig. 2a). These cells divide twice, 

forming a set of four cells (Figs. 2b-c), which then create the initial pansporocyst with two 

somatic cells forming the pansporocysts walls and another two generative cells inside the 

pansporocyst (Fig. 2d). The two internal cells start to divide in three (Fig. 2e) and four 

internal cells (Fig. 2f). Two such internal cells then divide further two times, resulting in 

stages with six (Fig. 2g) and then 10 smaller cells (Fig. 2h), while the other two larger cells 

only then start to divide (Fig. 2i). In the end of the gametogamy, it is found a pansporocyst 

with 16 morphologically indistinct cells (Fig. 2j). The gametogamy ends with the formation 
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of zygotes (Fig. 2k). The gametogamy stage had similar developmental stages in all different 

types of described actinospore; however, the sporogony stage was found to differ to a little 

extent among the different types, according to the final number of spores formed in each 

pansporocyst. In the beginning of the sporogony, for the actinospore types with the 

development of eight spores, it were found pansporocysts with a set of eight cells centrally 

located and eight sporoplasmic cells leaning against the pansporocyst wall (Fig. 2l). The 

centrally located cells divide, forming eight involucres formed by three valvogenic cells 

surrounding three capsulogenic cells (Fig. 2o). As the spores develop, the sporoplasmic cells 

migrate inside the spore involucre (Fig. 2p). When immature (Figs. 2q, r), the spores look 

larger compared to mature spores, and their appearance can give the false idea of spores with 

expansions (Fig. 2r). For the actinospore types with the development of two or four spores, it 

were found pansporocysts with two (Fig. 2m) or four (Fig. 2n) involucres and the same 

amount of sporoplasmic cells leaning against the pansporocyst wall. In these stages, it is also 

observed some elongated cells, whose function or purpose can only be speculated, and which 

seem to correspond to vegetative cells that do not develop to form spores. In the end of the 

sporogony it is possible to observe pansporocysts with different number of mature spores, 

according to the different actinospore types (Figs. 2s, t, u). In pansporocysts with less than 

eight mature spores, it was possible to observe some small vegetative cells, as the example in 

Fig. 2t, where four vegetative cells are easily seen between the four mature spores. These 

vegetative cells were also observed in mature pansporocysts of the sphaeractinomyxon type 1 

in oligochaetes heavily infected. This type of actinospore usually develops eight spores per 

pansporocyst, but several pansporocysts had a smaller number of spores and the missing 

spores were compensated by the presence of these vegetative cells. 

The mature spores were never seen exiting the worm body, not by the intestine either 

by the gonophores or the nephridiopores, even in heavily infected worms. In some cases, 

when the worm host body was excessively pressured by a cover slip, the spores free in the 

coelom could break through the intestine epithelium and invade its lumen, but this was not a 

common occurrence. 

Genetic distances between the 10 sphaeractinomyxon new types were calculated and 

are presented in Table 3. The lowest genetic differences found were between 

sphaeractinomyxon type 4 and type 7 (5.2%), while the highest respected sphaeractinomyxon 

type 1 and type 2 (14.3%). A BLAST search for the 10 sphaeractinomyxon new types found 

no match in the GenBank. The most similar species were Myxobolus species (89–94%), 

especially M. exiguus (AY129317), M. muelleri (AY129314), Myxobolus sp. (KC733438), M. 

ichkeulensis (AF378337), Myxobolus spinacurvatura Maeno, Sorimachi, Ogawa and Egusa, 
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1990 (AF378341), M. episquamalis (JF810537) and M. bizerti (AY129318). They also had 

similarities with some actinospore types in GenBank (86–96%): Sphaeractinomyxon ersei 

(AF306790), Triactinomyxon sp. SH-2006 (DQ473515), Endocapsa rosulata (AF306791), 

Endocapsa sp. SH-2006 (DQ473516), Tetraspora discoidea (AF306793) and Raabeia TGR-

2014 (KF263539). 

 

Discussion 

 

Oligochaete worms in Aveiro estuary were found infected with 10 new types of 

sphaeractinomyxon actinospore (species), duplicating the number of the strictly described 

sphaeractinomyxons (Marques, 1984; Hallett et al. 2001). The new types of 

sphaeractinomyxon can be distinguished in morphological terms by the size of the spores and 

polar capsules, within each oligochaete species host. 

One obvious conclusion that can be drawn from the results of this study is the strict 

specificity of the different sphaeractinomyxon types to the oligochaete host species. Each 

specific sphaeractinomyxon type was never found in both species of oligochaetes L. agnes 

and T. pseudogaster. This great specificity turns useless the morphological comparison 

between sphaeractinomyxons infecting different host species. From the 16 

sphaeractinomyxon types (10 sphaeractinomyxon, two tetraspora and four endocapsa) 

described in the literature, none was reported to infect L. agnes or T. pseudogaster. Another 

conclusion is the need to use molecular biology in future descriptions of these types of spores 

from different species of oligochaete hosts, since spore measurements can overlap in many 

different sphaeractinomyxon types. Therefore, in ecological studies, besides spore's measures, 

the host oligochaete species is also an important character to identify the sphaeractinomyxon 

type without the use of molecular biology, and eventually locality can also play an important 

role in species separation. 

The developmental stages observed in this study follow the same path described for 

the sphaeractinomyxon types, since the first development description made by Caullery and 

Mesnil (1905). The major differences between these actinospores and the others types, is the 

fact that sphaeractinomyxons can develop a different number of spores (from one to eight) 

inside pansporocysts, while all other described actinospore types have always eight spores. 

Main differentiating characteristics between the different sphaeractinomyxon types, 

besides the number of spores developing inside the pansporocysts, are the size and form of the 

spores. The form and number of the developing spores seem to be related with the size of the 

spores. The spore form changes from round in apical and lateral view, in the smaller 
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sphaeractinomyxon types, to more angular in apical view and ellipsoidal in lateral view, in the 

larger sphaeractinomyxon types. The spore shape change is not only a species specific 

character but also an environmental influenced character. For instance, spores observed under 

the pressure of a cover slip, tend to become more angular as the pressure increases; 

accordingly, researchers should have some caution when observing these types of spores in a 

microscope slide. Spore size is also related with the number of spores developing inside the 

pansporocyst. The smaller sphaeractinomyxon types develop in number of eight inside 

pansporocysts, while the median size sphaeractinomyxon types, develop in number of two to 

four spores inside pansporocysts, and the larger sphaeractinomyxon types, develop in number 

of one to two inside pansporocysts. This character seems to be not only typical for each 

species, but also, an environmentally influenced character. For instance, in heavily infected 

worms, the number of mature spores inside the pansporocysts was smaller than expected; in 

these cases, the missing spores were 'replaced' by small vegetative cells, suggesting that the 

lack of space or excessive pressure exerted in the worm coelomic cavity had some kind of 

inhibiting effect during the spore's development. 

None of the infected oligochaetes was found to release sphaeractinomyxons from the 

coelomic cavity. There is some literature reporting the presence of this type of spores in the 

intestinal lumen of their hosts (Hallett et al. 1998, 1999, 2001), but, in this study, the spores 

where only observed in the lumen of the intestine when excessive pressure was applied to the 

cover slip over the oligochaete under microscopy observation. This suggests that the presence 

of spores inside the intestine lumen is likely accidental, and not a normal exiting route. 

Overall prevalence of infection of all new types of sphaeractinomyxon, for the two 

hosts species, was of 19%, and could reach a maximum of 26% in spring, with a minimum in 

winter. Parasite infection was found throughout the year but, the spring and summer months 

seem to be more appropriate for the dissemination of these type of actinospores since, in 

autumn, there is a great number of worms with only developmental stages and immature 

spores. Nevertheless, individually the prevalence of infection was low, which is consistent 

with the prevalence values reported in the literature (Yokoyama et al. 2012). 

Molecular biology could demonstrate a close proximity of the 10 new types of 

sphaeratinomyxon to Myxobolus species, in particular, to species infecting mugilid fishes. The 

same is true for the other sphaeractinomyxon, tetraspora and endocapsa types in GenBank. 

Myxosporean species infecting mullets worldwide amount to 64, according to the last 

counting, and, from these, 32 are Myxobolus species (Yurakhno and Ovcharenko 2014). Only 

31% of the mullets infecting Myxobolus have DNA sequences published in GenBank, and 

surely, many new species are yet to be discovered. Nevertheless, it is premature to associate 
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the sphaeractinomyxon actinospores as the invertebrate stage of mugilid infecting Myxobolus 

species. 

The number of spores developing inside pansporocysts was used as argument for the 

erection of tetraspora as a new actinospore collective group (Hallett and Lester 1999); 

nevertheless, these authors considered that, in morphological terms these spores represented 

typical sphaeractinomyxons, only developing in a set of four spores. In face of the results 

obtained in this study, no reason is found to justify the existence or creation of new collective 

groups for sphaeractinomyxons based in this character. 

Endocapsa collective group, erected by Hallett et al. (1999), is another group of 

actinospores similar to the sphaeractinomyxons and, in the same way, these authors state that, 

by default, the endocapsa can be considered as sphaeractinomyxons. The major differences 

described are the 'submerged' polar capsules and the presence of irregular 'processes in the 

form of swellings'. In the work of Hallett et al. (1999), several forms of different swellings are 

drawn, and an important detail is described by these authors, the swellings do not change 

when in contact with water, contrary to what happens to the other actinospores types with 

typical processes. Besides the later record, there is another more recent record for the 

endocapsa type in Lake Assad (Euphrates River), Syria (Székely et al. 2007), which is the 

only freshwater endocapsa isolate until now. Unfortunately, however, spores illustrations in 

that work do not help to support the endocapsa actinospores, as depicted spores have the 

aspect of being degraded. We cannot dispute this collective group without observing the 

described spores, but, in the course of this study, it was possible to observe more than one 

hundred infected oligochaetes and thousands of mature spores ranging from 15 µm to 91 µm 

in size, and their developmental stages, and had never found spores with swellings or 

processes. However, many immature spores, very similar to the description made for the 

endocapsa actinospores, were observed with 'submerged' polar capsules and a kind of 

swellings but, side by side, we also observed mature spores with its typical 

sphaeractinomyxon form within the same host (for instance, see Fig. 2r). Another important 

detail were the modifications suffered by spores, especially when they started to dehydrate, in 

which the sporoplasm concentrates more in the centre of the spores, and the corners of the 

more angular spores start to appear as swellings. 

In conclusion, the endocapsa collective group needs a validation by new records that 

can indisputably confirm them as a legitimated collective group. On the other hand, it is 

mandatory to considerer if the number of spores developing inside pansporocysts is reason 

enough to divide the sphaeractinomyxon actinospores in new and different collective groups 
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(for instance, tetraspora for four spores, dispora for two spores, unispora for one spore, etc.). 

In our opinion, that there is no need for such separation. 
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Table captions 

 

Table 1 Primers used in actinospores and oligochaete DNA amplification and sequencing 

 

Table 2 Morphology of sphaeractinomyxon types, isolated from the marine oligochaetes 

Limnodriloides agnes and Tubificoides pseudogaster (the mean±SD with the range in 

parentheses; in μm) 

 

Table 3 Pairwise genetic differences between the 18S rDNA sequences of the ten new 

sphaeractinomyxon types 

 

 

Figure legends 

 

Fig. 1 Spores of sphaeractinomyxon types found in the coelomic cavity of Limnodriloides 

agnes (a-n) and Tubificoides pseudogaster (o-r). a Sphaeractinomyxon type 1 filling the 

coelomic cavity of L. agnes. b Sphaeractinomyxon type 1 in lateral view. c 

Sphaeractinomyxon type 1 in apical view. d Sphaeractinomyxon type 2 in apical and lateral 

view. e Sphaeractinomyxon type 3 in lateral view. f Sphaeractinomyxon type 3 in apical view. 

g Sphaeractinomyxon type 4 in lateral view. h Sphaeractinomyxon type 5 in apical view. i 

Sphaeractinomyxon type 5 in lateral view. j Sphaeractinomyxon type 6 in apical and lateral 

view inside a bisporous pansporocyst. k Developmental stages of sphaeractinomyxon type 6 

inside a gonad cavity. l Sphaeractinomyxon type 7 in apical view. m Sphaeractinomyxon type 

7 in lateral view. n Polar capsules of a sphaeractinomyxon type 7 smashed spore exhibiting 

the polar filaments coiled longitudinally. o Sphaeractinomyxon type 8 in apical and lateral 

view. p Sphaeractinomyxon type 9 in apical and lateral view inside a pansporocyst. q 

Sphaeractinomyxon type 10 in lateral view. r Sphaeractinomyxon type 1o in apical view. 

Scale bars=20 µm. 

 

Fig. 2 Developmental stages of the sphaeractinomyxons in the coelomic cavity of 

Limnodriloides agnes and Tubificoides pseudogaster. a A  binucleated cell. b-c Binucleated 

cells dividing into two and four cells. d Initial pansporocyst with two enveloping cells and 
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two internal cells. e-f Pansporocysts with three and four internal cells. g-h Pansporocysts in 

which two internal cells divided successively two times originating a final set of 8 smaller 

cells while two other larger cells rest undivided. i Pansporocysts in which the lager undivided 

cells from the anterior stages started their division. j Final stage of gametogamy with a 

pansporocysts with 16 inner cells. k Pansporocyst in the beginning of the sporogony showing 

8 zygotes. l Pansporocyst with 8 set of cells in a more central area and sporoplasmic cells 

(double asterisks) leaning against the pansporocyst wall. m Pansporocyst with a more 

advanced stage of sporogony that will produce two final spores. It is visible two sporoplasmic 

cells (double asterisks) against the pansporocyst wall, two involucres formed by three 

valvogenic cells surrounding three inner capsulogenic cells (asterisks) and some elongated 

cells with unknown function. n Pansporocyst in the same sporogony stage as the one in the 

previous figure but in a type of sphaeractinmyxon that will produce four final spores. o 

Pansporocysts in a slightly more advanced sporogony stage than the previous two figures, but 

producing eight final spores. The capsulogenic cells are already forming the polar capsules. p 

Pansporocyst in a more advanced sporogony stage, were the majority of the spores have 

already the sporoplasmic cells inside the spore involucre, but two sporoplasmic cells (double 

asterisks) are still outside their spore involucre (asterisks). q Pansporocyst with eight 

immature spores. r Some immature spores outside a busted pansporocyct accompanied by a 

solitaire mature spore on the right side. s-u Pansporocysts with mature spores from three 

different types of sphaeractinomyxon. One type developing two spores (s), another type 

developing four spores (t) and, finally a type developing eight spores (u). Note the presence of 

four vegetative cells (asterisks) around the four mature spores in figure t. Scale bars=20 µm. 

 

  



 

21 
 

 

Table 1 Primers used in actinospores and oligochaete DNA amplification and sequencing 

 

Name Sequence (5’-3’) Pared with Source 

ERIB1 ACC TGG TTG ATC CTG CCA G ERIB10 Barta et al. 1997 

ERIB10 CTT CCG CAG GTT CAC CTA CGG ERIB1 Barta et al. 1997 

18e CTG GTT GAT CCT GCC AGT ACT3r, Myx4r, 

ACT1r 

Hillis and Dixon 1991 

18r CTA CGG AAA CCT TGT TAC G MyxospecF, 

ACT3f 

Whipps et al. 2003 

MyxospecF TTC TGC CCT ATC AAC TTG TTG ACT1r, 18r Fiala 2006 

ACT3f CAT GGA ACG AAC AAT ACT1r, 18r Hallett and Diamant 

2001 

ACT3r ATT GTT CGT TCC ATG 18e Hallett and Diamant 

2001 

Myx4r CTG ACA GAT CAC TCC ACG AAC 18e Hallett and Diamant 

2001 

ACT1r AAT TTC ACC TCT CGC TGC CA 18e, MyxospecF Hallett and Diamant, 

2001 

16sar-L CGC CTG TTT ATC AAA AAC AT 16sbr-H Palumbi et al. 2002 

16sbr-H CCG GTC TGA ACT CAG ATC ACG T 16sar-L Palumbi et al. 2002 

 

 

Table 2 Spore morphology of sphaeractinomyxon types from Limnodriloides agnes (types 1–

7) and Tubificoides pseudogaster (types 8–10). 

Spore type Spore length Spore width Spore diameter Polar capsule 

length 

Polar capsule 

width 

1 17.2±1.5 (15.2–

20.5) 

18.8±1.3 (16.7–

21.7) 

18.8±0.9 (16.9–

21.0) 

4.7±0.4 (3.8–5.8) 3.4±0.3 (2.7–3.8) 

2 23.3±0.8 (22.1–

24.8) 

28.4±1.0 (26.2–

29.8) 

28.6±1.2 (26.6–

31.1) 

5.9±0.2 (5.7–6.0) 4.1±0.2 (4.0–4.3) 

3 30.5±1.8 (27.9–

33.4) 

33.6±2.2 (28.4–

38.0) 

33.9±0.8 (32.5–

35.3) 7.5±0.7 (6.5–8.3) 6.2±0.4 (5.8–7.0) 

4 33.2±2.8 (28.1–

36.7) 

36.5±2.3 (32.4–

42.6) 

37.9±2.2 (34.1–

40.3) 

7.8±0.4 (7.0–8.7) 6.6±0.4 (5.8–7.1) 

5 42.5±2.1 (38.8–

45.6) 

54.8±2.7 (50.0–

59.5) 

56.0±2.4 (52.9–

58.8) 

9.1±0.3 (8.8–9.6) 7.6±0.3 (7.0–7.9) 
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6 51.5±5.2 (46.0–

56.9) 

64.5±3.3 (61.6–

69.2) 

62.1±2.8 (56.7–

68.4) 

10.2±0.4 (9.9–

10.9) 

8.9±0.8 (7.5–9.7) 

7 60.9±5.6 (55.0–

68.7) 

75.6±6.2 (64.7–

85.8) 

80.3±5.1 (71.8–

91.4) 

10.6±0.9 (9.4–

11.9) 

9.7±0.4 (9.2–

10.1) 

8 18.1±0.9 (17.0–

21.3) 

18.6±0.8 (17.7–

21.1) 

18.1±1.0 (17.1–

20.0) 

4.7±0.2 (4.3–5.2) 3.3±0.2 (3.0–3.5) 

9 20.9±1.0 (19.0–

23.4) 

22.0±1.5 (20.4–

26.9) 

22.6±1.2 (20.7–

26.5) 

5.6±0.4 (4.8–6.0) 4.3±0.3 (3.9–4.8) 

10 22.3±1.1 (19.3–

24.9) 

24.0±1.7 (19.6–

27.4) 

24.3±1.6 (21.2–

27.5) 

5.2±0.3 (4.5–6.2) 4.0±0.2 (3.4–4.5) 

 

 

Table 3 Pairwise genetic differences between the 18S rDNA sequences of the ten new 

sphaeractinomyxon types 

 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Type 9 Type 

10 

Type 1 

(########) 

          

Type 2 

(########) 

0.143          

Type 3 

(########) 

0.112 0.130         

Type 4 

(########) 

0.109 0.125 0.057        

Type 5 

(########) 

0.112 0.138 0.098 0.098       

Type 6 

(########) 

0.109 0.131 0.099 0.100 0.080      

Type 7 

(########) 

0.109 0.131 0.072 0.052 0.099 0.110     

Type 8 

(########) 

0.076 0.131 0.107 0.104 0.115 0.109 0.114    

Type 9 

(########) 

0.079 0.134 0.106 0.102 0.110 0.109 0.112 0.057   

Type 10 

(########) 

0.082 0.133 0.113 0.104 0.116 0.120 0.118 0.058 0.061  
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