
Query-based Access Control for Secure Collaborative
Modeling using Bidirectional Transformations∗

Gábor Bergmann1,2, Csaba Debreceni1,2, István Ráth1 and Dániel Varró1,2

1Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

1117 Budapest, Magyar tudósok krt. 2.
2MTA-BME Lendület Research Group on Cyber-Physical Systems

{bergmann,debreceni,rath,varro}@mit.bme.hu

ABSTRACT
Large-scale model-driven system engineering projects are
carried out collaboratively. Engineering artifacts stored in
model repositories are developed in either offline (checkout-
modify-commit) or online (GoogleDoc-style) scenarios. Com-
plex systems frequently integrate models and components
developed by different teams, vendors and suppliers. Thus
confidentiality and integrity of design artifacts need to be
protected by access control policies.

We propose a technique for secure collaborative model-
ing where (1) fine-grained access control for models can be
defined by model queries, and (2) such access control poli-
cies are strictly enforced by bidirectional model transforma-
tions. Each collaborator obtains a filtered local copy of the
model containing only those model elements which they are
allowed to read; write access control policies are checked on
the server upon submitting model changes. We illustrate
the approach and carry out an initial scalability assessment
using a case study of the MONDO EU project.

1. INTRODUCTION

1.1 Background and Motivation
The adoption of model driven engineering (MDE) by sys-

tem integrators (like airframers or car manufacturers) has
been steadily increasing in the recent years [39], since it
enables to detect design flaws early and generate various
artifacts (source code, documentation, configuration tables,
etc.) automatically from high-quality system models.

The use of models also intensifies collaboration between
distributed teams of different stakeholders (system integra-
tors, software engineers of component providers/suppliers,
hardware engineers, certification authorities, etc.) via model

∗This paper is partially supported by the EU Commission
with project MONDO (FP7-ICT-2013-10), no. 611125. and
the MTA-BME Lendület 2015 Research Group on Cyber-
Physical Systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS ’16, October 02-07, 2016, Saint-Malo, France
c⃝ 2016 ACM. ISBN 978-1-4503-4321-3/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976767.2976793

repositories, which significantly enhances productivity and
reduces time to market. An emerging industrial practice of
system integrators is to outsource the development of various
design artifacts to subcontractors in an architecture-driven
supply chain. Collaboration scenarios include traditional of-
fline collaborations with asynchronous long transactions (i.e.
to check out an artifact from a version control system and
commit local changes afterwards) as well as online collabo-
rations with short and synchronous transactions (e.g. when
a group of collaborators simultaneously edit a model, simi-
larly to well-known on-line document / spreadsheet editors).
Several collaborative modeling frameworks (like CDO[18],
EMFStore[19], etc.) exist to support such scenarios.

However, such collaborative scenarios introduce signifi-
cant challenges for security management in order to protect
the Intellectual Property Rights (IPR) of different parties.
For instance, the detailed internal design of a specific com-
ponent needs to be hidden to competitors who might supply
a different component in the overall system, but needs to be
revealed to certification authorities in order to obtain airwor-
thiness. Large research projects in the avionics domain (like
CESAR[1] or SAVI[3]) address certain collaborative aspects
of the design process (e.g. by assuming multiple subcon-
tractors), but security aspects are restricted to that of the
system under design. However, an increased level of collabo-
ration in a model-driven development process introduces ad-
ditional confidentiality challenges to sufficiently protect the
IPR of the collaborating parties, which are either overlooked
or significantly underestimated by existing initiatives.

Even within a single company, there are often teams with
differentiated responsibilities, areas of competence and clear-
ances. Such processes likewise demand confidentiality and
integrity of certain modeling artifacts.

Existing practices for managing access control of models
rely primarily upon the access control features of the back-
end repository. Coarse-grained access control policies aim to
restrict access to the files that store models. For instance,
EMF models can be persisted as standard XMI documents,
which can be stored in repositories providing file-based ac-
cess and change management (as in SVN[4], CVS[16]). Fine-
grained access control policies may restrict access to the
model on the row level (as in relational databases) or triple
level (as in RDF repositories).

Unfortunately, security policies are often captured directly
on the storage (file) level instead of the metamodel and/or
the model level, which result in inflexible fragmentation of
models in collaborative scenarios. To illustrate the problem,

http://dx.doi.org/10.1145/2976767.2976793

let us consider two collaborators, a SW Provider1 and HW
Supplier1, each of which has full control over a model (frag-
ment). Now if the HW Supplier1 would like to share part
of its model with the SW Provider1, then he needs to give
access to the entire model or split his model into two, and
give access to only one fragment. In case of multiple SW
Provideri, the same argument applies, which results in a
fragmented model for the HW Supplier1. In industrial prac-
tice, AUTOSAR models may be split into more than 1000
fragments, which poses a significant challenge for tool devel-
opers. A significant cause of this fragmentation has roots in
confidentiality and access control.
Furthermore, some model persistence technologies (such

as EMF’s default XMI serialization) do not allow model
fragments to cyclically refer to each other, putting a stricter
limit to fragmentation, while certain MDE use cases often
demand the ability to give access to each object (or even
each property of each object) independently.

1.2 Goals and Contributions
The main objective of the paper is to propose fine-grained

access control techniques for secure collaborative modeling
by advanced model query and transformation techniques
while relying upon existing storage back-ends to follow cur-
rent industrial best practices. In particular, we aim to ad-
dress the following high-level goals (refined later in Sec. 2):

G1 Attribute and Relation Based Access Control Policy,

G2 Secure and Versatile Offline Collaboration,

G3 Secure and Efficient Online Collaboration.

In this paper, we propose a query-based approach for mod-
eling fine-grained access control policies, and define bidirec-
tional model transformations to derive filtered views for each
collaborator and to propagate changes introduced into these
views back to a server. The transformation uniformly en-
forces high-level fine-grained access control policies during
the derivation of views and the back-propagation of changes.
It can be used in either live (incremental) or batch mode
to support online and offline collaborative scenarios, respec-
tively. An initial scalability evaluation is carried out using
models from the Wind Turbine Case Study of the MONDO
European FP7 project, which acts as a motivating example.

2. CASE STUDY AND CHALLENGES

2.1 Case Study

2.1.1 Language
Several concepts will be illustrated using a simplified ver-

sion of a modeling language for system integrators of offshore
wind turbine controllers, which is one of the case studies
of the MONDO EU FP7 project. The metamodel, defined
in EMF [36] and depicted by Figure 1, describes how the
system is modeled as modules providing and consuming sig-
nals. Modules are organized in a containment hierarchy of
composite modules, ultimately containing control unit mod-
ules responsible for a given type of physical device (such
as pumps, heaters or fans). Composite modules may be
shipped by external vendors and may express protected IP.
A sample instance model containing a hierarchy of 3 Com-

posite modules and 4 Control units, providing 16 Signals

Figure 1: Simplified Metamodel of Wind Turbine Con-
trollers

altogether, is shown on Figure 2. Boxes represent objects
(with attribute values as entries within the box). Arrows
with diamonds represent the containment edges, while ar-
rows without diamonds represent cross-references.

2.1.2 Access Restrictions
We assume that each control unit type (PumpCtrl, etc. . .)

is associated with a specific person (referred to as specialist,
but could also be a subcontractor or supplier) who is re-
sponsible for maintaining the model of control unit modules
of that specific type. Each such user is able to modify the
control units that belong to them (along with the signals
provided by those modules). Additionally, they are allowed
to see but not modify those composite modules (and their
provided signals) that directly or indirectly contain their
control units. But if the composite module is protected, its
vendor attribute value and consumed signals is hidden (even
from users who can see the consumed Signal object itself).
Finally, there is a principal engineer that oversees the entire
module structure and has read and write access to the entire
model.

The user responsible for fan controllers (the Fan Con-
trol Engineer) can modify the objects marked with dark
red background and white font, and can additionally see
objects with blue colored label and black font. As for cross-
references, the consumes references of o10 are modifiable
marked with thick red arrows; the reference from o2 to o12

is also visible to the user marked with blue dotted arrows.
But the fact that o2 consumes o9 is not revealed, because
the user is not allowed to see the Signal o9, as it is provided
by o7, hidden from this user.

On the other hand, the Pump Control Engineer, respon-
sible for pump controllers, can modify the objects with an
red dot-dashed outline, and additionally see the objects with
blue dashed outline. Thus this user would see all three com-
posite modules, but (due to IP protection) the vendor name
of o13 would remain hidden, as well as the fact that it con-
sumes the (otherwise visible) signal o23.

2.1.3 Usage Scenarios
The system integrator company is hosting the wind tur-

Figure 2: Sample Wind Turbine Instance Model (colored according to access privileges)

bine control model on their collaboration server, where it
is stored, versioned, etc. There are two ways for users to
interact with it.

A group of users may participate in online collabora-
tion, where they are continuously connected to the cen-
tral repository via an appropriate client (e.g. web browser).
Through their client, each user sees a live view of those parts
of the model that they are allowed to access. In case of the
Fan Control Engineer, this view will consist of the elements
depicted on Figure 2 with blue and green shading. The
users can modify the model through their client, which will
directly forward the change to the collaboration server. The
server will decide whether the change is permitted under
write access restrictions. If it is allowed, then the views of all
connected users will be updated transparently and immedi-
ately, though the change may be filtered for them according
to their read privileges. For example, when the principal en-
gineer uses their web browser to add a new signal provided
by composite module o13, then the Fan Control Engineer
will not see this change, but the views of the Heat Control
Engineer and Pump Control Engineer will immediately show
the new element. Next, when the principal engineer declares
that composite module o2 consumes the previously created
signal, the new cross-reference will only appear in the view
of the Pump Control Engineer, the only specialist that can
see both of its endpoints.

Alternatively, a user may choose offline collaboration.
When connecting to the server, they can download a model
file containing those model elements that they are allowed
to see. The user can then view, process, and modify their
downloaded model file locally, with software that can be an
unmodified off-the-shelf tool, and need not be aware of col-
laboration and access control. For example, the Fan Control
Engineer can change the cycle attribute of control unit o10
to high, and indicate that o10 additionally consumes the
signal o3. Finally, after local modifications, the user can
connect to the server again to upload the modified model.
The collaboration server will process the modified model,
and apply the detected changes to the central copy of the

model - provided that they do not violate any write access
control.

The previous paragraph was written under the assump-
tion that the model was not modified on the server in the
meantime. Had the principal engineer changed the same
cycle attribute on the server, then then Fan Control En-
gineer would have to download the updated version of the
filtered model and merge the two versions before being able
to commit. Discussion of collaboration patterns and model
merging are out of scope of this paper.

2.2 Challenges
Deriving from the goals stated in Sec. 1.2, we identify the

following challenges.

C1.1 Fine-grained Access Control. To meet G1, the solu-
tion must define and interpret a policy language that
allows to permit or deny model access separately for
individual model elements.

C1.2 Context-dependent Access. To meet G1, the solution
must define and interpret a policy language where ac-
cess to a model asset may be granted or denied based
on its attributes, relationships with other model ele-
ments, the properties of these other model elements,
and in general, the wider context of the asset.

C2.1 Model Compatibility. To meetG2 in an off-line collab-
oration scenario, the solution must be able to present
the information available to a given user as a self-
contained model, in a format that can be stored, pro-
cessed, displayed and edited by off-the-shelf model tool-
ing commonly associated with the modeling language.

C2.2 Offline Models. To meet G2 in an off-line collabora-
tion scenario, the solution must be able to present the
information available to a given user as a self-contained
model, that can be independently used without main-
taining connectivity with any central server, peer ma-
chine, or authority responsible for access control.

C3.1 Incrementality. To meet G3 in an on-line collabo-
ration scenario, the solution must be able to process
model modifications initiated by a user and apply the
consequences to the views available to other users with-
out re-processing the unchanged parts of the model.

Challenge C3.1 deserves some more explanation. In the
online collaboration scenarios, users may edit their views of
the model virtually simultaneously. If, upon a modification
performed by a user, the view available to them had to be
traversed entirely, and the views presented to other users had
to be regenerated from scratch, collaboration on larger mod-
els would have both significant performance issues as well as
low usability (since the models being used could simply dis-
appear to be replaced by a brand-new model). Therefore
source and target incrementality (as defined in [24]) are nec-
essary for efficient online collaboration, implying that only
the changes have to be inspected and propagated. On the
other hand, in the offline scenario, incrementality is neither
crucial (as access control is not applied repeatedly on every
elementary model manipulation) nor easily achievable (since
users upload complete model files, not just small changes).

3. ACCESS CONTROL OF MODELS

3.1 Assets and Internal Consistency
In order to tackle challenges C1.1 and C2.1, we first an-

alyze how models can be decomposed into individual assets
for which access can be permitted and denied, and under
what conditions can a filtered set of such assets be repre-
sented as a model that can be processed by standard tools.

3.1.1 Model Facts as Assets
For the purposes of access control, a model is conceived as

a set of elementarymodel facts. For instance, in case of RDF,
model facts would be the individual triples constituting the
model. These model facts would be the assets that the access
control policy will protect.

For example, we decompose models in the EMF modeling
platform into the following kinds of model facts:

Object facts are pairs formed of a model element (EOb-
ject) with its exact type (EClass), for each model ele-
ment object; e.g. obj(o1,Composite).

Reference facts are triples formed of a source EObject, a
reference type (EReference) and the referenced EOb-
ject, for each containment link and cross-link between
objects; e.g. ref(o2,consumes,o12).

Attribute facts are triples formed of a source EObject, an
attribute name (EAttribute) and the attribute value,
for each (non-default) attribute value assignment; e.g.
attr(o10,cycle,low).

Resource facts are pairs formed of a Resource (essentially
a file containing a model or a fragment of a model) and
its path (actually, URI) relative to the root location of
the model; e.g. res(r1,...).

Root facts are pairs formed of a Resource and a root el-
ement (EObject) of the resource; e.g. root(r1,o1).
There is one such fact for each EObject that is not
contained in other EObjects, but is rather a top-level
element in its respective resource.

Note that there are multi-valued attributes and references,
where an EObject is allowed host multiple attribute values
/ reference endpoints for that property. For such properties,
each of these multiple entries at a source EObject will be
represented by a separate attribute resp. reference model
fact.

3.1.2 Internal Consistency of Models
An arbitrary set of model facts does not necessarily con-

stitute a valid model; there may be internal consistency con-
straints imposed on the facts by the modeling platform to
ensure the integrity of the model representation and the abil-
ity to persist, read, and traverse models. Challenge C2.1
requires that filtered models must be synthesized as a set of
model facts compatible with all internal consistency rules.

Unlike low-level internal consistency rules, violating high-
level, language-specific well-formedness constraints would
not prevent a model from existing in the given modeling
technology, merely from being considered error-free. Thus
only internal consistency is required for access control.

The following are three simple examples of EMF inter-
nal consistency constraints: (i) attribute and reference facts
imply that the EObjects involved exist as an object fact,
having a type compatible with the type of the attribute or
reference; (ii) for reference types having an opposite, refer-
ence facts of the two types come in symmetric pairs; and (iii)
reference facts of a containment type and root facts together
form a containment forest, which contains all EObjects, and
where all tree roots are resources.

3.2 Access Control Policy

3.2.1 Access Control Rules and Queries
To meet challengeC1.1 stated in Sec. 2.2, our fine-grained

access control policy has to be able to assign permissions
separately for each model fact. Therefore the policies are
constructed from a list of access control rules, each of which
controls the access to a selected set of model facts by cer-
tain users or groups, and may either allow or deny the read
and/or write operation. Thus different rules can impose dif-
ferent restrictions on different model facts.

To address challenge C1.2, the policy must be able to
take into account the wider context of the model facts when
determining permissions. For this purpose, we propose to as-
sociate each access control rule with a model query to specify
exactly which model facts the rule controls. These queries
can identify the involved model facts, and can take into ac-
count the wider context such as properties of the object, its
connections to other objects, etc.

Model queries are widely used in MDE for specifying re-
ports, derived features, well-formedness constraints; also rule
preconditions in model transformations or design space ex-
ploration. Modeling platforms (e.g. the Eclipse Modeling
Framework (EMF) [36]) support various query languages.

For capturing access control queries over EMF models,
we have chosen the EMF-IncQuery framework [38], due
to its expressive power (beyond that of first-order formulae)
and incremental evaluation capabilities. The former prop-
erty helps with identifying the contexts of assets (challenge
C1.2), while the latter is necessary to meet the performance
needs of the online scenario (challenge C3.1).
Lst. 1 displays a graph pattern that specifies a query

against a wind turbine model in the EMF-IncQuery syn-

Listing 1 Query Definition protectedConsumes

1 pattern protectedConsumes(
2 module: Composite , signal: Signal
3) {
4 Module.consumes(module , signal);
5 Composite.protectedIP(module , true);
6 }

Listing 2 Query Definition objectCompositeWithType

1 pattern objectCompositeWithType(
2 composite: Composite , type
3) {
4 find submodules +(composite ,control);
5 Control.type(control , type);
6 }
7 pattern submodules(parent:Composite , child:Module){
8 Composite.submodules(parent ,child);
9 }

tax. When a query is evaluated, the results consist of a set
of pattern matches. In this case, a match is a pair <module,
signal> where module is an object in the model of type Com-
posite, signal is an object of type Signal, signal is one of
the signals consumed by module, and the protectedIP at-
tribute of module is true. In the instance model of Figure 2,
the pattern has two matches: <o13, o20> and <o13, o23>.
These are exactly those cross-references that need to be hid-
den even from those specialists that can see both endpoints.

Graph patterns can be composed in order to reuse com-
mon query parts, and also to express disjunction, negation,
and (surpassing the expressive power of first-order formulae)
transitive closure. Lst. 2 introduces a helper pattern sub-

modules that expresses the relationship between a composite
module and one of its submodules. This helper pattern is
transitively embedded into objectCompositeWithType; thus
the latter query will match pairs <composite, type> where
composite is a Composite that contains (directly or indi-
rectly) at least one control unit whose type attribute takes
the value type. The pattern has the following matches in the
instance model of Figure 2: <o1, FanCtrl>, <o1, Heater-

Ctrl>, <o1, PumpCtrl>, <o2, FanCtrl>, <o2, PumpCtrl>,
<o13, HeaterCtrl>, <o13, PumpCtrl>. Note that this query
will be useful to determine which composite modules shall
be revealed to which specialists.

3.2.2 Effective Permissions
While access control rules directly assign nominal permis-

sions to the model facts, the actually applied effective per-
missions may be different. There are four reasons for the
discrepancy:

• Multiple conflicting rules in the policy may impose
contradicting judgements on the same model fact. And
in cases not covered directly by any rule, a default be-
haviour must apply.

• Demanding the sanity of the access control scheme
leads to some implicit consequences of existing rules.

• Finally, in order to meet C2.1, the internal consis-
tency requirements specific to the model representa-
tion / technology (see Sec. 3.1) may introduce read

and write dependencies between the permissions of in-
dividual model facts.

There are multiple ways for resolving conflicts and inconsis-
tencies and deriving a consistent set of effective permissions
from nominal permissions. Thus the security policy itself in-
cludes a directive that selects the method to apply, so that
the policy designer can select the option most fitting to the
use case. In the following, we give a non-exhaustive list of
such permission dependencies, and outline some reconcilia-
tion strategies as well. We plan to revisit conflict resolution
in more detail in a separate paper [11].

Conflicts and defaults. In case two rules assign contra-
dicting nominal permissions to a fact, one useful resolution
strategy is to interpret the order of the rules in the list as
their priority ranking; this way, one can always add a more
specific rule to override a general rule in a special case. And
if no rules apply to a given model fact, a sensible default
may be to allow full access to it.

Sanity. The sanity of the policy implies that a user should
not be allowed to write values / model facts that are not
visible by them. Therefore without effective read permis-
sion, write permission is automatically denied as well, even
if there are no rules to deny nominal write permissions.

Read dependencies. Effective read permissions may
depend on permissions on other model facts. If a model
element is not visible, its references pointing inward or out-
ward and its attributes shall not be effectively readable ei-
ther, otherwise the set of visible facts would not form a
self-consistent model. In modeling platforms (such as EMF)
with a notion of containment between objects, effectively
visible objects cannot be contained in effectively invisible
objects (as the latter do not exist in the front model); this
can be solved either by inventing a new container for the
orphaned object (e.g. promoting it to a top-level object of
the model); or alternatively by applying the semantics that
an object effectively hidden from the front model will effec-
tively hide the entire containment subtree rooted there (this
latter choice will be used in the case study).

Write dependencies. Effective write permissions like-
wise have dependencies. In general, creating/modifying/re-
moving references between objects requires (in addition to
the nominal permission) an effectively modifiable source ob-
ject and an effectively visible target object; but some mod-
eling platforms including EMF have bidirectional references
(or opposites), for which internal consistency dictates that
the target object must be effectively modifiable as well. A
metamodel may constrain a reference (or attribute) to be
single-valued; assigning a new target to the reference would
automatically remove the old one, so a user can only be
effectively allowed the former write operation if they are ef-
fectively permitted the latter. Similarly, removing an object
from the model implies removing all references pointing to
it, and all objects contained within it, thus yet another write
permission dependency has to be introduced.

3.2.3 Solving the Case Study
An access control policy can be set up to meet the security

needs of the running example introduced in Sec. 2.1. An
extract of the policy is shown in Lst. 3.

Rule userComposite_Fan grants read permissions to the
FanEngineer user on Composite objects identified by the
model query; the query uses the pattern objectComposite-

WithType (see Lst. 2), with the variable type restricted to

Listing 3 Example Access Control Policy (extract)

1 // Rules specific to user FanEngineer
2 // Reveal composites containing fan controllers
3 rule userComposite_Fan permit R to FanEngineer {
4 query "objectCompositeWithType"
5 bind type value FanCtrl
6 }
7 // Give full access to fan control units
8 rule userControl_Fan permit RW to FanEngineer {
9 query "objectControlWithType"
10 bind type value FanCtrl
11 }
12 // Default rule
13 rule denyAllModule deny RW to specialists {
14 query "objectModule"
15 }
16 // IP protected modules
17 rule denyProtectedConsumes deny RW to specialists {
18 query "protectedConsumes"
19 }
20 rule denyProtectedVendor deny RW to specialists {
21 query "protectedVendor"
22 }

the control unit type associated with this user. In effect,
the user will be able to see all composite modules that con-
tain at least one control unit module of the type FanCtrl.
Similarly, the rule userControl_Fan grants additional write
permission to the control units themselves. Similar rules
exist for the specialists of other control unit types.

All modules not covered by the above rules will evaluate
against the next rule, denyAllModule, which denied read
and write access to all members of the group specialists,
therefore they will not be able to see or modify any other
modules. The principal engineer is not part of this group,
and thus retains full access. The rule only directly affects
modules, but Signals provided (contained) by hidden mod-
ules will become invisible to the given specialist as well.

Rules can also control access on the level of individual
attributes and references. For instance, rule denyProtect-

edSignalRead hides the signals read by protected modules
(see Lst. 1 for pattern protectedConsumes). An example
of this would be the consumes reference from o13 to o23

(see Figure 2) hidden from the pump engineer, despite that
he/she can see both the protected module and the signal.

4. BIDIRECTIONAL MODEL TRANSFOR-
MATION FOR ACCESS CONTROL

4.1 The Access Control Lens
Due to read access control, some users are not allowed

to learn certain model facts. This means that the complete
model (which we will refer to as the gold model) differs from
the view of the complete model that is exposed to a partic-
ular user (the front model).

In theory, access control could be implemented without
manifesting the front model, by hiding the entire gold model
behind a model access layer that is aware of the security
policy and enforces access control rules upon each read and
write operation performed by the user. However, our stated
challenge C2.1 requires users to be able to access their front
models using standard modeling tools; moreover, challenge
C2.2 requires that in the offline collaboration scenario, they

Figure 3: The MONDO Security Lens: Full Circle

can“take home”their front model files without being directly
connected to the gold model. In order to meet these goals,
we propose to manifest the front models of users as stand-
alone models, derived from a corresponding gold model by
applying a model transformation.

A central concern is to keep the front models of users
aware of changes performed by other users (as long as the
access control policy allows revealing this information). This
means that changes performed by one user on their front
model must be propagated (potentially in filtered form) to
the front models of other users. For conceptual simplicity,
this is always performed by propagating information through
the gold model. Thus the synchronization chain is as follows:
when a user modifies their front model, the gold model is
adjusted accordingly; then the front model of every other
user is updated to reflect the modified gold model. The goal
of providing change propagation in general is thus reduced
to the simpler task of propagating changes between a single
front and gold model pair.

In the literature of bidirectional transformations [13], a
lens (or view-update) is defined as an asymmetric bidirec-
tional transformations relationship where a source knowl-
edge base completely determines a derived (view) knowledge
base, while the latter may not contain all information con-
tained in the former, but can still be updated directly. The
two operations that have crucial importance in realizing a
lens relationship are the following:

• Get, which obtains the derived knowledge base from
the source knowledge base that completely determines
it, and

• PutBack, which updates the source knowledge base,
based on the derived view and the previous version of
the source (the latter is required as the derived view
does not contain all information).

The kind of bidirectional transformation relationship we
find between a gold model (containing all facts) and a front
model (containing a filtered view) fits the definition of a
lens. The Get operation applies the access control policy
for filtering the gold model into the front model. The Put-
Back operation takes a front model updated by the user,
and transfers the changes back into the gold model.

The lens concept is illustrated by Figure 3. Initially, the
Get operation is carried out to obtain the front model for a

given user from the gold model. Due to the read access con-
trol rules, some objects in the model may be hidden (along
with their connections to other objects); additionally, some
connections between otherwise visible objects may be hidden
as well; finally, some attribute values of visible objects may
be omitted. (Metamodel obfuscation and attribute value
obfuscation are also available, but are out of scope for this
paper.) If the user subsequently updates the front model,
the PutBack operation checks whether these modifications
were allowed by the write access control rules. If yes, the
changes are propagated back to the gold model, keeping
those model elements that were hidden from the user intact
(preserved from the previous version of the gold model).

Write access control checks are performed by the Put-
Back operation for the following reason. Write access rules
(a) may prevent a user from writing to the model, and (b)
they are defined based on queries that are to be evaluated
on the model. Since only the gold model contains all infor-
mation, such queries cannot be evaluated (at best, they can
be approximated) directly on the front repository of each
user, and thus write access control can only be enforced by
taking into account the gold model as well. Therefore, write
access control must be combined with the lens transforma-
tion. In particular, PutBack must check write permissions;
and fail (rolling back any effects of the commit or operation)
if applying the modification to the gold model is not allowed.

The proposed lens can be used to realize the synchroniza-
tion chain outlined above: when a user modifies their front
model, the PutBack operation is invoked to adjust the gold
model; then the front model of every other user is updated
by Get to reflect the modified gold model. The scope of
Sec. 4.2 is to define such a lens transformation between gold
and front models, by specifying how Get and PutBack are
performed to achieve read and write access control.

4.2 Transformation Design
BothGet and PutBack are designed as rule-based model

transformations. To address challenge C3.1, they can be ex-
ecuted as incremental computations in the on-line collabora-
tion scenario. For EMF in particular, instead of approaches
specifically designed for easy specification of bidirectional
transformations, we chose the unidirectional but reactive
Viatra framework for target-incremental transformations,
with EMF-IncQuery for source-incremental model queries.
Note that adopters merely have to write a policy, and we pro-
vide the transformations that interpret them; so conciseness
of the transformation program is not an issue.

Viatra transformations can be specified using transfor-
mation rules. A rule is associated with a graph query precon-
dition, an action (parametrized by a match of the precondi-
tion pattern), and a numerical priority value. Transforma-
tion execution involves repeatedly executing (firing) rules:
finding the matches of rule preconditions of all rules (this
set of matches is efficiently and incrementally maintained
during the transformation), selecting a match that belongs
to the rule with the lowest priority value, and executing the
action of the rule on that match; the loop terminates when
there are no more precondition matches.
We distinguish four groups of transformation rules: both

Get and PutBack have one group each for adding model
facts to the target model if a corresponding fact is present
in the source model (additive rules), and one group each
for removing model facts from the target model is no cor-

responding fact is present in the source model (subtractive
rules). All four groups consist of one rule for each kind of
model fact; in case of EMF, we distinguish 5 kinds of model
facts (see Sec. 3.1.1); this makes twenty EMF transformation
rules altogether.

To address challenge C2.1, the transformation has to al-
ways end up with target models that have internal consis-
tency. This aim is supported by the reconciliation strategy
that derives the effective permissions (see Sec. 3.2.2) from
nominal permissions. According to a given strategy, effec-
tive permissions are expressed as composite model queries,
taking into account the queries associated with access con-
trol rules, as well as the dependencies between model facts.
The computation of effective permissions is executed incre-
mentally by the query engine.

Based on such a set of effective permissions, model queries
can be applied to obtain the effectively visible part of the
gold model; and then the job of the transformation is more
or less reduced to simply synchronizing changed model facts
between the front model and the visible gold model. Thus
the transformation rules themselves are almost trivial; still,
there are a few ways in which they are more complicated
than just verbatim copying:

• Model objects of the two models reside at different
memory addresses, so the transformation must set up
and maintain a one-to-one mapping (the binary rela-
tion called object correspondence), that can be used to
translate model facts when propagating changes.

• Obfuscation features are out of scope of this paper, but
they also require translating type names or attribute
values.

• The priorities of transformation rules must be chosen
such that the order of rule execution takes into account
the valid manipulation operations allowed by the mod-
eling platform (e.g. can’t set the attribute value before
creating the object first).

• Write permissions have to be enforced by PutBack.
As executing a rule would change the gold model, care
should be taken in choosing when the effective per-
missions are consulted. The nominal permission for
writing a model fact is evaluated after performing fact
creation, but before performing fact deletion. The rea-
son for this discrepancy is that, by convention, policy
queries for write access control are expected to be eval-
uated in a state when the associated model fact exists
in the model.

5. EVALUATION
Throughout the previous sections, we have demonstrated

how the functional requirements stated in Sec. 2.2 are met by
the proposed solution. However, as challenge C3.1 is about
performance, Sec. 5.1 provides experimental measurements
to support the claim. Finally, Sec. 5.2 will discuss limitations
to the presented solution.

5.1 Experimental Performance Evaluation

5.1.1 Measurement Setup
The measurement targets scenarios with a large number

of users and a large access control policy. Therefore we used

the metamodel of Figure 1 with a slight modification: the
control unit attribute type was changed from an enumer-
ation to a string, with K different permitted values. The
corresponding policy file is similar to the extract shown by
Lst. 3, with one specialist engineer for each control unit type
(each having two access control rules dedicated to them) and
an additional principal engineer user. This means altogether
K + 1 users, 1 group and 2K + 3 access control rules.

Measurements were performed with gold instance mod-
els of various sizes. The model of size M contains a root
Composite object, which contains M copies of the struc-
ture depicted by Figure 2. This means 1 + 3M composite
modules, 4M control units, 16M signals and 8M consumes
cross-references. The copies are not completely identical:
the vendor attributes are set to a different value in each
copy; and the protectedIP attribute of composites as well
as the type and cycle attributes of control units were chosen
randomly from their respective ranges with uniform distri-
bution. However, care was taken that all control unit types
must occur at least once; this also implies 4M ≥ K.

The measurement was performed with U ≤ K specialist
users and the principal engineer present at an online col-
laboration session (so U + 1 front models in total). The
online case is chosen, so that the measurement can focus on
fine-grained change propagation; otherwise the majority of
time would be spent with serializing and deserializing entire
models and doing VCS checkouts/commits.

To test the incremental behaviour of the lens transforma-
tion, we measured the time it took the principal engineer
to perform a complex model manipulation operation on her
front model, and to have the changes propagated to the front
models of all users who can see it. The measured complex
operation is a signal reversal, which changes the direction
of a communication channel to the opposite. Given a ran-
dom preselected signal that is currently provided by module
a and consumed by module b, the reversal of this signal
changes the model so that the signal is now provided by
b instead of a, and consumed by a instead of b. We have
selected this representative operation since (a) it involves
adding and removing cross-references and a rearrangement
of the containment hierarchy; (b) it does not change the size
of the model, thus introduces no bias of this kind; (c) any
user that can see at least one of the involved modules can
see at least some aspect of the change in their front model;
and (d) every access control rule in the policy (except for
hiding the vendor attribute) plays a role in determining the
impact of the change.

5.1.2 Measurements
We measured1 the change propagation on a personal com-

puter2 with maximum a 7GB of RAM. For accuracy, 100 re-
versal operations were carried out and their execution times
averaged in a single run; we have plotted the mean execution
time of 10 runs, with 1 standard deviation error bars.

Two series of measurements were carried out: in themodel
size scalability series, we used K = 50 control unit types and
U = 10 present users, with the size of the model ranging
from M = 25 to M = 350 (8051 objects, 10850 references).
In the concurrent users scalability series, we used K = 100

1Raw data and reproduction instructions at http://tinyurl.
com/models16-access-control
2CPU: Intel Core i7-4700MQ@2.40GHz, MEM: 8GB, OS:
Windows 10

control unit types and the model of size M = 100 (2301
objects, 3100 references), with the number of specialist users
joining the session ranging from U = 2 to U = 100.

The results of the first series is shown by Figure 4. No
clear trend is visible on the chart (except for random fluctu-
ations evening out on larger models). The cost of perform-
ing a single signal reversal model manipulation is low, and
seems independent from the model size. This confirms that
we have achieved incrementality, where computation cost is
dependent on the extent of the change, but not on the size
of unchanged parts of the model.

0

2

4

6

8

10

12

14

25 38 50 63 75 88 100 150 200 250 300 350

R
u

n
ti

m
e

 (
m

s)

Model Size (M)

Figure 4: Average Execution Time of a Signal Reversal
(varying model size)

The results of the second series is shown by Figure 5. It
is apparent that when very few users join the session, most
signal reversals are not visible to any user other than the
principal engineer; but as more and more specialist users
join the session, the number of concurrent users starts to
dominate the cost of model manipulation. Asymptotically,
the cost of model manipulation appears proportional to the
average number of front models it is propagated to.

0

50

100

150

200

250

300

2 5 10 25 50 75 100

R
u

n
ti

m
e

(m
s)

of active users

Figure 5: Average Execution Time of a Signal Reversal
(varying # of concurrent users)

5.2 Assumptions and Limitations

5.2.1 User Experience for Write Access Control
User experience benefits if there is continuous feedback

on the viability of the modifications attempted by the user.
Advanced modeling tools may even incorporate this infor-
mation into their model notation. (Obviously rejected write
attempts offer a side channel through which some informa-
tion on the hidden parts of the gold model may be gleaned.
It is advised the policy designers take this into account.)

In the offline case, the server can reject (and must re-
ject) the modifications only when the user finally submits

http://tinyurl.com/models16-access-control
http://tinyurl.com/models16-access-control

them. A tighter feedback loop would require client-side ap-
proximation of the policy queries based on the incomplete
information in the front model; this is left as future work.

In the online case, however, PutBack is a live transfor-
mation, and can immediately reject offending changes.

5.2.2 Permanent Identifiers for Offline Collaboration
Before executing the PutBack transformation rules in

the offline scenario, the newly submitted front model has to
be loaded on the server, and the object correspondence (see
Sec. 4.2) must be initialized. The challenge is identifying
which elements in the front model correspond to which ele-
ments of the target model. One solution is to introduce some
kind of permanent unique identifier for all model elements. 3

Such a permanent identifier is preserved across model re-
visions and lens mappings, and can therefore be used to
pre-populate the object correspondence relation. Note that
unlike EMF, some modeling platforms (e.g. IFC [25]) auto-
matically provide such permanent identifiers.

While requiring permanent identifiers is a limitation of
the approach, it is only relevant for modeling platforms that
do not themselves provide this kind of traceability, and only
in the offline collaboration scenario. Being able to identify
model objects is a relatively low barrier for modeling lan-
guages; e.g. the original wind turbine language includes a
unique identifier for all model objects (omitted from Fig-
ure 1).

5.2.3 Ordered Lists
In EMF, some multi-valued references and attributes are

ordered lists. Model facts introduced in Sec. 3.1 collectively
represent all knowledge contained in an EMF model, with
the exception of ordering information; thus the proposed
solution does not respect ordering. The core reason is that
there is no unique way to provide PutBack for ordered lists
that have been filtered; therefore such a lens would necessar-
ily violate undoability [33], a common requirement against
bidirectional transformations. Finding an acceptable resolu-
tion of the problem (e.g. imposing a limitation that, for each
user, ordered lists must be read-only unless entirely visible)
is left as future work. For now, the proposed solution works
properly for unordered collections.

5.2.4 Central Authority
Note that both G2 and G3 employ a central repository

(owned by e.g. a system integrator) where the entire model
is available. In a more general case, no single entity would
be in possession of complete knowledge. There is an alge-
bra [13] for combining lens transformations in various ways,
suggesting a promising path for addressing this issue in fu-
ture research. However, such a distributed scenario is out of
scope for this paper; we address the centralized case, which
is by far the most common in access control approaches.

6. RELATED WORK
Access control in RDF triple/quad stores. Graph-

based access control is a popular strategy for many triple
and quad stores (4store [22], Virtuoso , IBM DB2) devel-
oped for storing large RDF data. User privileges can be

3Furthermore, access control rules must not deny read access
to this identifier of an object (obfuscation is possible), unless
by denying read access to the object altogether.

granted to for each named graph while access control is ac-
tually checked when issuing a SPARQL query. Denial of
access for a graph filters the query results obtained from
this specific graph. Data access in AllegroGraph [20] can be
controlled on the database or catalog level (coarse-grained)
as well as on the graph and triple level (fine-grained) while
Stardog only allows database-level access control.

Similarly to our approach, query-based access control is
discussed in [12]; the major difference being that we apply
queries in an MDE environment (this has very important
implications relative to RDF, see Sec. 3.1.2), and we also
provide offline collaboration.

In the Oracle Database Semantic Technologies [31], ac-
cess control is carried out by default on the model (graph)
level. Furthermore, it can be configured on the triple (row)
level, which is implemented by query rewriting. In this case,
the definition of access control policies is based on so-called
match and apply (graph) patterns, where the former iden-
tifies the type of access restriction while the latter injects
access-control specific constraints to the query.

Another access control technique is called label based se-
curity, which offers (1) triple-level control using (a hierar-
chy of) sensitivity labels attached to each triple, and (2)
RDF resource-level access control for subject/predicate/ob-
ject. Explicit data access labels are implemented in [31] and
are generalized into abstract tokens and operators in [32].

Context-dependent access control [2, 8] aims to filter the
query result by rewriting the queries [34] in accordance with
rule and graph pattern based policy specifications. A similar
pattern based policy definition is complemented with precise
default semantics and access conflict resolution in [15].Post-
filtering query results to enforce the access control policy
is also possible [6] but this strategy may have performance
issues without dedicated support.

Access control in collaborative modeling environ-
ments. Traditional version control systems (like CVS, SVN)
adopt file-level access policies, which are clearly insufficient
for fine-grained access control specifications. CDO [18] al-
lows for role-based access control with type-specific (class,
package and resource-level) permissions, but disallows in-
stance level access control policy specifications. Access con-
trol is not considered in recent collaborative modeling envi-
ronments like VirtualEMF [9], WebGME [29], or the tools
developed according to [21].

AToMPM [35] provides fine-grained role-based access con-
trol for online collaboration; no offline scenario or query-
based security is supported, though. Access control is pro-
vided at elementary manipulation level (RESTful services)
in the online collaboration solution of [14].

The VehicleFORGE collaborative hardware design plat-
form has an access control scheme TrustForge [10] that is
very flexible in determining the range of users that can ac-
cess a resource, but offers no query-based identification of
fine-grained assets.

Model-driven security. Model-based techniques have
also been used for access control purposes. In [26], similarly
to our solution, access control is enforced at runtime by pro-
gram code that has been automatically generated from a
model-based specification, which captures both system and
security policy descriptions. This technique can provide run-
time checks only on single entities by using the guarded ob-
ject design pattern. A similar approach is suggested by [7],
which specifies access control policies by OCL. Although this

idea enables the formulation of queries that involve several
objects, the efficient checking of these complex structural
queries highly depends on the algorithmic experience of the
system designer due to the fact that OCL handles model
navigation in an imperative style, in contrast to declarative
graph patterns, where several sophisticated pattern match-
ing algorithms are readily available.

The book chapter [28] about Model-driven Security pro-
vides a detailed survey of a wide range of MDE approaches
for designing secure systems, but does not cover the security
of the MDE process itself.

Access Control and Bidirectional Programming.
Bidirectional Programming (BP) is an approach for defining
lenses concisely, e.g. by only specifying one of Get and Put-
Back, and deriving the other. Such lenses can be directly
applied for read filtering. However, [17] demonstrates that
conventional BP is not sufficient for write access control. It
also proposes such an integrity-preserving BP approach, fo-
cusing on string transformations (and therefore not directly
applicable in MDE). There is no notion of access control pol-
icy either, so the security engineer has to develop their own
lens transformation to implement access control. However,
in future work, we plan to build on the high-level correctness
criteria proposed for security lenses.

Similarly to our approach, a dedicated policy is used by [30],
from which a lens is automatically generated to enforce ac-
cess control for XML documents. In addition to the at-
tributes and context of the assets (XML nodes), the XQuery-
based policy can take into account external (subject or con-
text) attributes as well. As it is not an MDE approach, there
is no treatment of cross-references. There is no discussion
of internal consistency either (see Sec. 3.1.2), except for the
containment hierarchy, which is relevant for XML as well.
Finally, there is no discussion of the challenges of online and
offline collaboration.

Other. Graph or logic based, declarative specification
formalisms (like Datalog programs or graph transformation)
can be applied for validating access control policies [27, 5,
37]. Note that the common goal of these approaches is to
prove statements on the policy itself, in contrast to our tech-
nique, which enforces the access control scheme at runtime
on the underlying model.

The closest representative of this research area is [23],
which exploits incremental techniques to analyze evolving
role-based access control policies. It restricts the set of priv-
ileges to read and write primitives in contrast to the com-
plete, model-based hierarchy in our solution. However, the
main difference still lies in the dissimilar role that access
control plays as mentioned above.

7. CONCLUSION AND FUTURE WORK
In this paper, we aimed to uniformly enhance secure on-

line and offline collaborative modeling frameworks by using
model queries for capturing fine-grained secure access con-
trol policies. Each collaborator can access a dedicated copy
of the model in accordance with read permissions of the pol-
icy. Moreover, bidirectional transformations for synchroniz-
ing changes between different collaborators and check that
write permissions are also respected.

We illustrated our techniques in the context of a Wind
Turbine case study from the MONDO European Project,
which was also used to carry out an initial experimental eval-
uation to assess scalability with models of increasing size and

increasing number of collaborators. Initial results for the on-
line collaboration case were promising with close to instant
propagation of changes and checking of write permissions up
to 75 simultaneous collaborators.

As future work, we would like to primarily address the lim-
itations presented in Sec. 5.2, and formally characterize the
assumptions under which Get and PutBack terminate and
satisfy other correctness criteria (incl. undoability) found in
bidirectional transformations literature.

8. REFERENCES
[1] CAESAR Research Project.

http://store.sae.org/caesar/.

[2] Fabian Abel, Juri Luca De Coi, Nicola Henze,
Arne Wolf Koesling, Daniel Krause, and Daniel
Olmedilla. Enabling advanced and context-dependent
access control in RDF stores. In The Semantic Web,
6th International Semantic Web Conference, 2nd
Asian Semantic Web Conference, ISWC 2007 +
ASWC 2007, Busan, Korea, November 11-15, 2007,
volume 4825 of LNCS, pages 1–14. Springer, 2007.

[3] Aerospace vehicle systems institute. SAVI Research
Project. http://http://savi.avsi.aero/.

[4] Apache. Subversion. https://subversion.apache.org/.

[5] Elisa Bertino, Barbara Catania, Elena Ferrari, and
Paolo Perlasca. A logical framework for reasoning
about access control models. ACM Transactions on
Inf. and System Security, 6:71–127, 2003.

[6] Joachim Biskup and Torben Weibert. Confidentiality
policies for controlled query evaluation. In Proc. of the
21st Annual IFIP WG 11.3 Working Conference on
Data and Applications Security, volume 4602 of
LNCS, pages 1–13, Redondo Beach, California, USA,
July 2007. Springer.

[7] Ruth Breu, Gerhard Popp, and Muhammad Alam.
Model based development of access policies.
International Journal on Software Tools for
Technology Transfer, 9(5):457–470, 2007.

[8] Willy Chen and Heiner Stuckenschmidt. A
model-driven approach to enable access control for
ontologies. In Business Services: Konzepte,
Technologien, Anwendungen. 9. Internationale Tagung
Wirtschaftsinformatik 25.-27. Februar 2009, Wien,
volume 246 of books@ocg.at, pages 663–672.
Österreichische Computer Gesellschaft, 2009.

[9] Cauê Clasen, Frédéric Jouault, and Jordi Cabot.
VirtualEMF: a model virtualization tool. In Advances
in Conceptual Modeling. Recent Developments and
New Directions, volume 6999 of LNCS, pages 332–335.
Springer, 2011.

[10] Penn University DARPA VehicleFORGE. TrustForge:
Flexible Access Control for VehicleForge.mil
Collaborative Environment, 2012.

[11] Csaba Debreceni, Gábor Bergmann, István Ráth, and
Dániel Varró. Deriving effective permissions for
modeling artifacts from fine-grained access control
rules. In Int. Workshop on Collaborative Modelling in
MDE (COMMitMDE), 2016. Submitted.

[12] Sebastian Dietzold and Sören Auer. Access control on
RDF triple stores from a semantic wiki perspective. In
In: Scripting for the Semantic Web Workshop at 3rd
European Semantic Web Conference (ESWC, 2006.

http://store.sae.org/caesar/
http://http://savi.avsi.aero/
https://subversion.apache.org/

[13] Zinovy Diskin. Algebraic models for bidirectional
model synchronization. In MoDELS, pages 21–36,
2008.

[14] Matthias Farwick, Berthold Agreiter, Jules White,
Simon Forster, Norbert Lanzanasto, and Ruth Breu.
A web-based collaborative metamodeling environment
with secure remote model access. In Web Engineering,
10th International Conference, ICWE 2010, Vienna,
Austria, July 5-9, 2010. Proceedings, volume 6189 of
LNCS, pages 278–291. Springer, 2010.

[15] Giorgos Flouris, Irini Fundulaki, Maria Michou, and
Grigoris Antoniou. Controlling access to RDF graphs.
In Future Internet - FIS 2010, volume 6369 of LNCS,
pages 107–117. Springer, 2010.

[16] Karl Franz Fogel and Moshe Bar. Open source
development with CVS. Coriolis Group Books, 2001.

[17] J. Nathan Foster, Benjamin C. Pierce, and Steve
Zdancewic. Updatable security views. In Proceedings
of the 2009 22Nd IEEE Computer Security
Foundations Symposium, CSF ’09, pages 60–74,
Washington, DC, USA, 2009. IEEE Computer Society.

[18] The Eclipse Foundation. CDO.
http://www.eclipse.org/cdo.

[19] The Eclipse Foundation. EMFStore.
http://www.eclipse.org/emfstore.

[20] Inc. Franz. AllegroGraph. http:
//franz.com/agraph/allegrograph/doc/security.html.

[21] Jesús Gallardo, Crescencio Bravo, and Miguel A.
Redondo. A model-driven development method for
collaborative modeling tools. J. Network and
Computer Applications, 35(3):1086–1105, 2012.

[22] Garlik. 4store.
http://4store.org/trac/wiki/GraphAccessControl.

[23] Mikhail I. Gofman, Ruiqi Luo, Jian He, Yingbin
Zhang, and Ping Yang. Incremental information flow
analysis of role based access control. In Proc. of the
2009 International Conference on Security and
Management, pages 397–403, Las Vegas, Nevada,
USA, 2009. CSREA Press.

[24] David Hearnden, Michael Lawley, and Kerry
Raymond. Incremental model transformation for the
evolution of model-driven systems. In Proc. of the 9th
International Conference on Model Driven Engineering
Languages and Systems, volume 4199 of LNCS, pages
321–335, Genova, Italy, October 2006. Springer.

[25] International Organization for Standardization. ISO
16739:2013: Industry Foundation Classes (IFC) for
data sharing in the construction and facility
management industries, 04 2013.

[26] Jan Jürjens. Model-based run-time checking of
security permissions using guarded objects. In Martin
Leucker, editor, Proc. of the 8th International
Workshop on Runtime Verification, volume 5289 of
LNCS, pages 36–50, Budapest, Hungary, 2008.
Springer.

[27] Manuel Koch, Luigi V. Mancini, and Francesco
Parisi-Presicce. A graph-based formalism for RBAC.
ACM Transactions on Information and System
Security, 5(3):71–127, August 2002.

[28] Levi Lucio, Qin Zhang, Phu Hong Nguyen, Moussa
Amrani, Jacques Klein, Hans Vangheluwe, and
Yves Le Traon. Advances in model-driven security.

Advances in Computers, 93:103–152, 2014.

[29] Miklos Maroti, Tamas Kecskes, Robert Kereskenyi,
Brian Broll, Peter Volgyesi, Laszlo Juracz, Tihamer
Levendovszky, and Akos Ledeczi. Next Generation
(Meta)Modeling: Web- and Cloud-based Collaborative
Tool Infrastructure. In 8th Multi-Paradigm Modeling
Workshop, Valencia, Spain, 09/2014 2014.

[30] Lionel Montrieux and Zhenjiang Hu. Towards
attribute-based authorisation for bidirectional
programming. In Proceedings of the 20th ACM
Symposium on Access Control Models and
Technologies, SACMAT ’15, pages 185–196, New York,
NY, USA, 2015. ACM.

[31] Oracle. Database Semantic Technologies.
http://docs.oracle.com/cd/E11882 01/appdev.112/
e11828/fine grained acc.htm.

[32] Vassilis Papakonstantinou, Maria Michou, Irini
Fundulaki, Giorgos Flouris, and Grigoris Antoniou.
Access control for RDF graphs using abstract models.
In 17th ACM Symposium on Access Control Models
and Technologies, SACMAT ’12, Newark, NJ, USA -
June 20 - 22, 2012, pages 103–112. ACM, 2012.

[33] Perdita Stevens. Bidirectional model transformations
in QVT: semantic issues and open questions. Software
& Systems Modeling, 9(1):7–20, 2008.

[34] Michael Stonebraker and Eugene Wong. Access
control in a relational data base management system
by query modification. In Roger C. Brown and
Donald E. Glaze, editors, ACM ’74: Proceedings of the
1974 annual conference - Volume 1, pages 180–186,
New York, New York, USA, 1974. ACM.

[35] Eugene Syriani, Hans Vangheluwe, Raphael
Mannadiar, Conner Hansen, Van Mierlo, and Huseyin
Ergin. AToMPM: A Web-based Modeling
Environment. MODELS 2013 Demonstrations Track,
2013.

[36] The Eclipse Project. Eclipse Modeling Framework.
http://www.eclipse.org/emf/.

[37] Romuald Thion and Stéphane Coulondre.
Representation and reasoning on role-based access
control policies with conceptual graphs. In Proc. of the
14th International Conference on Conceptual
Structures, volume 4068 of LNCS, pages 427–440,
Aalborg, Denmark, 2006. Springer.

[38] Zoltán Ujhelyi, Gábor Bergmann, Ábel Hegedüs, Ákos
Horváth, Benedek Izsó, István Ráth, Zoltan Szatmári,
and Dániel Varró. EMF-IncQuery: An integrated
development environment for live model queries.
Science of Computer Programming, (0):–, 2014.

[39] Jon Whittle, John Hutchinson, and Mark Rouncefield.
The state of practice in model-driven engineering.
IEEE Software, 31(3):79 – 85, 2014.

http://www.eclipse.org/cdo
http://www.eclipse.org/emfstore
http://franz.com/agraph/allegrograph/doc/security.html
http://franz.com/agraph/allegrograph/doc/security.html
http://4store.org/trac/wiki/GraphAccessControl
http://docs.oracle.com/cd/E11882_01/appdev.112/e11828/fine_grained_acc.htm
http://docs.oracle.com/cd/E11882_01/appdev.112/e11828/fine_grained_acc.htm
http://www.eclipse.org/emf/

	Introduction
	Background and Motivation
	Goals and Contributions

	Case Study and Challenges
	Case Study
	Language
	Access Restrictions
	Usage Scenarios

	Challenges

	Access Control of Models
	Assets and Internal Consistency
	Model Facts as Assets
	Internal Consistency of Models

	Access Control Policy
	Access Control Rules and Queries
	Effective Permissions
	Solving the Case Study

	Bidirectional Model Transformation for Access Control
	The Access Control Lens
	Transformation Design

	Evaluation
	Experimental Performance Evaluation
	Measurement Setup
	Measurements

	Assumptions and Limitations
	User Experience for Write Access Control
	Permanent Identifiers for Offline Collaboration
	Ordered Lists
	Central Authority

	Related Work
	Conclusion and Future Work
	References

