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Abstract

In this work we provide a short survey of the most frequently used fuzzy
reasoning schemes. The paper is organized as follows: in the first section
we introduce the basic notations and definitions needed for fuzzy inference
systems; in the second section we explain how the GMP works under Mam-
dani, Larsen and Gödel implications, furthermore we discuss the properties
of compositional rule of inference with several fuzzy implications; and in
the third section we describe Tsukamoto’s, Sugeno’s and the simplified fuzzy
inference mechanisms in multi-input-single-output fuzzy systems.

1 FUZZY SETS AND LOGIC
The use of fuzzy logic and fuzzy reasoning methods are becoming more and more
popular in intelligent information systems [30, 31], especially in hyperknowledge
support systems [6, 7, 8]; knowledge formation processes in knowledge-based
systems [26]; active decision support systems [1, 3, 4, 5, 27]; medical support
systems [9, 11, 12, 13, 14, 15, 18, 23]; robotics [16]; financial analysis [2]; control
[19, 20, 28, 29] and pattern recognition [22].
Fuzzy sets were introduced by Zadeh [32] as a means of representing and manip-
ulating data that was not precise, but rather fuzzy.

∗appeared in: C. Carlsson ed., The State of the Art of Information Systems in 2007, TUCS
General Publications, No. 16, Turku Centre for Computer Science, Åbo, [ISBN 952-12-0492-3],
1999 85-112.
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Definition 1.1 Let X be a nonempty set. A fuzzy set A in X is characterized by
its membership function

µA: X → [0, 1]

and µA(x) is interpreted as the degree of membership of element x in fuzzy set
A for each x ∈ X . Frequently we will write simply A(x) instead of µA(x). The
family of all fuzzy (sub)sets in X is denoted by F(X). The degree to which the
statement ”x is A” is true is defined as A(x) - the degree of membership of x in
A.

The use of fuzzy sets provides a basis for a systematic way for the manipula-
tion of vague and imprecise concepts. In particular, we can employ fuzzy sets
to represent linguistic variables. A linguistic variable can be regarded either as a
variable whose value is a fuzzy number or as a variable whose values are defined
in linguistic terms.

Definition 1.2 A linguistic variable is characterized by a quintuple

(x, T (x), U, G, M)

in which x is the name of variable; T (x) is the term set of x, that is, the set of
names of linguistic values of x with each value being a fuzzy number defined on
U ; G is a syntactic rule for generating the names of values of x; and M is a
semantic rule for associating with each value its meaning.

For example, if speed is interpreted as a linguistic variable, then its term set T
(speed) could be

T = {slow, moderate, fast, very slow, more or less fast, sligthly slow, . . .}

where each term in T (speed) is characterized by a fuzzy set in a universe of
discourse U = [0, 100]. We might interpret

• slow as ”a speed below about 40 mph”

• moderate as ”a speed close to 55 mph”

• fast as ”a speed above about 70 mph”
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Figure 1: Values of linguistic variable speed.

These terms can be characterized as fuzzy sets whose membership functions are

slow(v) =











1 if v ≤ 40
1 − (v − 40)/15 if 40 ≤ v ≤ 55
0 otherwise

moderate(v) =

{

1 − |v − 55|/30 if 40 ≤ v ≤ 70
0 otherwise

fast(v) =











1 if v ≥ 70
1 − (70 − v)/15 if 55 ≤ v ≤ 70
0 otherwise

In many practical applications we normalize the domain of inputs and use the
following type of fuzzy partition: NB (Negative Big), NM (Negative Medium),
NS (Negative Small), ZE (Zero), PS (Positive Small), PM (Positive Medium), PB
(Positive Big).
Triangular norms were introduced by Schweizer and Sklar [24] to model the dis-
tances in probabilistic metric spaces. In fuzzy sets theory triangular norms are
extensively used to model logical connective and. Triangular conorms are exten-
sively used to model logical connective or.

Definition 1.3 A mapping

T : [0, 1] × [0, 1] → [0, 1]

is a triangular norm (t-norm for short) iff it is symmetric, associative, non-decreasing
in each argument and T (a, 1) = a, for all a ∈ [0, 1].
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Figure 2: A usual fuzzy partition of [−1, 1].

Definition 1.4 A mapping

S: [0, 1] × [0, 1] → [0, 1]

is a triangular co-norm (t-conorm for short) if it is symmetric, associative, non-
decreasing in each argument and S(a, 0) = a, for all a ∈ [0, 1].

The three basic t-norms and t-conorms pairs are

• minimum/maximum:

MIN(a, b) = min{a, b} = a ∧ b, MAX(a, b) = max{a, b} = a ∨ b

• Łukasiewicz:

LAND(a, b) = max{a + b − 1, 0}, LOR(a, b) = min{a + b, 1}

• probabilistic: PAND(a, b) = ab, POR(a, b) = a + b − ab

We can extend the classical set theoretic operations from ordinary set theory to
fuzzy sets. We note that all those operations which are extensions of crisp concepts
reduce to their usual meaning when the fuzzy subsets have membership degrees
that are drawn from {0, 1}. For this reason, when extending operations to fuzzy
sets we use the same symbol as in set theory. Let A and B are fuzzy subsets of a
nonempty (crisp) set X .

Definition 1.5 The intersection of A and B is defined as

(A ∩ B)(t) = T (A(t), B(t)) = A(t) ∧ B(t),

where T is a t-norm. If T = min then we get

(A ∩ B)(t) = min{A(t), B(t)},

for all t ∈ X .
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If p is a proposition of the form ”u is A” where A is a fuzzy set, for example,
”big pressure” and q is a proposition of the form ”v is B” for example, ”small
volume” then the membership function of the fuzzy implication A → B is defined
pointwise as

(A → B)(u, v) = I(A(u), B(v))

where I is properly chosen function. We shall use the notation

(A → B)(u, v) = A(u) → B(v).

In our interpretation A(u) is considered as the truth value of the proposition ”u is
big pressure”, and B(v) is considered as the truth value of the proposition ”v is
small volume”.
There are three important classes of fuzzy implication operators:

• S-implications: defined by

x → y = S(n(x), y)

where S is a t-conorm and n is a negation on [0, 1]. These implications
arise from the Boolean formalism p → q = ¬p ∨ q. Typical examples of
S-implications are the Łukasiewicz and Kleene-Dienes implications.

• R-implications: obtained by residuation of continuous t-norm T , i.e.

x → y = sup{z ∈ [0, 1] |T (x, z) ≤ y}

These implications arise from the Intutionistic Logic formalism. Typical
examples of R-implications are the Gödel and Gaines implications.

• t-norm implications: if T is a t-norm then

x → y = T (x, y)

Although these implications do not verify the properties of material im-
plication they are used as model of implication in many applications of
fuzzy logic. Typical examples of t-norm implications are the Mamdani
(x → y = min{x, y}) and Larsen (x → y = xy) implications.

The most often used fuzzy implication operators are listed in the following table.
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Name Definition

Łukasiewicz x → y = min{1, 1 − x + y}
Mamdani x → y = min{x, y}
Larsen x → y = xy

Standard Strict x → y =

{

1 if x ≤ y
0 otherwise

Gödel x → y =

{

1 if x ≤ y
y otherwise

Gaines x → y =

{

1 if x ≤ y
y/x otherwise

Kleene-Dienes x → y = max{1 − x, y}
Kleene-Dienes-Łukasiewicz x → y = 1 − x + xy

Table 1.1 Fuzzy implication operators.

2 THE THEORY OF APPROXIMATE REASON-
ING

In 1979 Zadeh introduced the theory of approximate reasoning [35]. This theory
provides a powerful framework for reasoning in the face of imprecise and uncer-
tain information. Central to this theory is the representation of propositions as
statements assigning fuzzy sets as values to variables. Suppose we have two in-
teractive variables x ∈ X and y ∈ Y and the causal relationship between x and y
is completely known. Namely, we know that y is a function of x, that is y = f(x).
Then we can make inferences easily

”y = f(x)” & ”x = x1” −→ ”y = f(x′)”.

This inference rule says that if we have y = f(x), for all x ∈ X and we observe
that x = x1 then y takes the value f(x1). More often than not we do not know the
complete causal link f between x and y, only we now the values of f(x) for some
particular values of x, that is

+i : if x = xi then y = yi, for i = 1, . . . , m.
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y=f(x)

y=f(x’)
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Suppose that we are given an x′ ∈ X and want to find an y′ ∈ Y which correponds
to x′ under the rule-base + = {+1, . . . ,+m}. This problem is frequently quoted
as interpolation.

Figure 3: Simple crisp inference.

Let x and y be linguistic variables, e.g. ”x is high” and ”y is small”. The basic
problem of approximate reasoning is to find the membership function of the con-
sequence C from the rule-base {+1, . . . ,+n} and the fact A, where +i is of the
form

+1 : if x is Ai then y is Ci.

In [35] Zadeh introduced a number of translation rules which allow us to represent
some common linguistic statements in terms of propositions in our language. In
the following we describe some of these translation rules.
Entailment rule:

x is A

A ⊂ B

x is B

Mary is very young
very young ⊂ young
Mary is young

Conjuction rule:

x is A

x is B

x is A ∩ B

pressure is not very high
pressure is not very low
pressure is not very high and not very low

Disjunction rule:

x is A

or x is B

x is A ∪ B

pressure is not very high vspace2pt
or pressure is not very low

pressure is not very high or not very low
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Projection rule:

(x, y) have relation R

x is ΠX(R)

(x, y) have relation R

y is ΠY (R)

(x, y) is close to (3, 2)

x is close to 3

(x, y) is close to (3, 2)

y is close to 2

Negation rule:

not (x is A)
x is ¬A

not (x is high)
x is not high

In fuzzy logic and approximate reasoning, the most important fuzzy implication
inference rule is the Generalized Modus Ponens (GMP). The classical Modus Po-
nens inference rule says:

premise if p then q
fact p

consequence q

This inference rule can be interpreted as: If p is true and p → q is true then q
is true. The fuzzy implication inference is based on the compositional rule of
inference for approximate reasoning suggested by Zadeh [33]. It says

premise if x is A then y is B
fact x is A′

consequence: y is B′

where the consequence B′ is determined as a composition of the fact and the fuzzy
implication operator B′ = A′ ◦ (A → B) that is,

B′(v) = sup
u∈U

min{A′(u), (A → B)(u, v)},

for all v ∈ V . In many practical cases instead of sup-min composition we use
sup-T composition, where T is a t-norm,

B′(v) = sup
u∈U

T (A′(u), (A → B)(u, v)),
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A' = A B'= B

B
B'

A
A'

for all v ∈ V . It is clear that T can not be chosen independently of the implication
operator.
Suppose that A, B and A′ are fuzzy numbers. The Generalized Modus Ponens
should satisfy some rational properties

Property 2.1 Basic property:

if x is A then y is B
x is A

y is B

if pressure is big then volume is small
pressure is big

volume is small

Figure 4: Basic property.

Property 2.2 Total indeterminance:

if x is A then y is B
x is ¬A

y is unknown

if pres. is big then volume is small
pres. is not big

volume is unknown

Figure 5: Total indeterminance.

Property 2.3 Subset:
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A
A'

B'=B

A A' B'B

if x is A then y is B
x is A′ ⊂ A

y is B

if pres. is big then volume is small
pres. is very big

volume is small

Figure 6: Subset property.

Property 2.4 Superset:

if x is A then y is B
x is A′

y is B′ ⊃ B

Figure 7: Superset property.

Suppose that A, B and A′ are fuzzy numbers. We show that the Generalized
Modus Ponens with Mamdani implication operator does not satisfy all the four
properties listed above.

Example 2.1 The GMP with Mamdani implication operator. where the member-
ship function of the consequence B′ is defined by

B′(y) = sup{A′(x) ∧ A(x) ∧ B(y)},

for all y ∈ IR.
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Basic property: Let A′ = A and let y ∈ IR be arbitrarily fixed. Then we have

B′(y) = sup
x

min{A(x), min{A(x), B(y)} = sup
x

min{A(x), B(y)} =

min{B(y), sup
x

A(x)} = min{B(y), 1} = B(y).

So the basic property is satisfied. Total indeterminance: Let A′ = ¬A = 1 − A
and let y ∈ IR be arbitrarily fixed. Then we get

B′(y) = sup
x

min{1−A(x), min{A(x), B(y)} = sup
x

min{A(x), 1−A(x), B(y)} =

min{B(y), sup
x

min{A(x), 1 − A(x)}} = min{B(y), 1/2} = 1/2B(y) < 1

this means that the total indeterminance property is not satisfied. Subset: Let
A′ ⊂ A and let y ∈ IR be arbitrarily fixed. Then we have

B′(y) = sup
x

min{A′(x), min{A(x), B(y)} = sup
x

min{A(x), A′(x), B(y)} =

min{B(y), sup
x

A′(x)} = min{B(y), 1} = B(y)

So the subset property is satisfied. Superset: Let y ∈ IR be arbitrarily fixed. Then
we get

B′(y) = sup
x

min{A′(x), min{A(x), B(y)} = sup
x

min{A(x), A′(x), B(y)} ≤ B(y).

So the superset property of GMP is not satisfied by Mamdani implication operator.

Figure 8: The GMP with Mamdani’s implication operator.

Example 2.2 The GMP with Larsen’s product implication. where the member-
ship function of the consequence B′ is defined by

B′(y) = sup min{A′(x), A(x)B(y)},

for all y ∈ IR.

11



Basic property: Let A′ = A and let y ∈ IR be arbitrarily fixed. Then we have

B′(y) = sup
x

min{A(x), A(x)B(y)} = B(y).

So the basic property is satisfied. Total indeterminance: Let A′ = ¬A = 1 − A
and let y ∈ IR be arbitrarily fixed. Then we have

B′(y) = sup
x

min{1 − A(x), A(x)B(y)} =
B(y)

1 + B(y)
< 1

this means that the total indeterminance property is not satisfied. Subset: Let
A′ ⊂ A and let y ∈ IR be arbitrarily fixed. Then we have

B′(y) = sup
x

min{A′(x), A(x)B(y)} = sup
x

min{A(x), A′(x)B(y)} = B(y)

So the subset property is satisfied. Superset: Let y ∈ IR be arbitrarily fixed. Then
we have

B′(y) = sup
x

min{A′(x), A(x)B(y)} ≤ B(y).

So, the superset property is not satisfied in the GMP with Larsen’s product impli-
cation.
Suppose we are given one block of fuzzy rules of the form

+1 : if x is A1 then z is C1,

+2 : if x is A2 then z is C2,

· · · · · · · · ·
+n : if x is An then z is Cn

fact: x is A

consequence: z is C

The i-th fuzzy rule from this rule-base, +i, is implemented by a fuzzy implication
Ri and is defined as

Ri(u, w) = Ai(u) → Ci(w)

There are two main approaches to determine the membership function of conse-
quence C:

1. Combine the rules first. In this approach, we first combine all the rules by
an aggregation operator Agg into one rule which used to obtain C from A.

R = Agg (+1,+2, · · · ,+n)
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If the implicite sentence connective also is interpreted as and then we get

R(u, w) =
n
⋂

i=1

Ri(u, w) = min(Ai(u) → Ci(w))

or by using a t-norm T for modeling the connective and

R(u, w) = T (R1(u, w), . . . , Rn(u, w))

If the implicite sentence connective also is interpreted as or then we get

R(u, w) =
n
⋃

i=1

Ri(u, v, w) = max(Ai(u) → Ci(w))

or by using a t-conorm S for modeling the connective or

R(u, w) = S(R1(u, w), . . . , Rn(u, w))

Then we compute C from A by the compositional rule of inference as

C = A ◦ R = A ◦ Agg (R1, R2, · · · , Rn)

2. Fire the rules first. Fire the rules individually, given A, and then combine
their results into C. We first compose A with each Ri producing intermedi-
ate result

C ′
i = A ◦ Ri

for i = 1, . . . , n and then combine the C ′
i component wise into C ′ by some

aggregation operator Agg

C ′ = Agg (C ′
1, . . . , C

′
n) = Agg (A ◦ R1, . . . , A ◦ Rn).

We show that the sup-min compositional operator and the connective also inter-
preted as the union operator are commutative. Thus the consequence, C, inferred
from the complete set of rules is equivalent to the aggregated result, C ′, derived
from individual rules.

Lemma 2.1 Let
C = A ◦

n
⋃

i=1

Ri
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be defined by standard sup-min composition as

C(w) = sup
u

min{A(u), max{R1(u, w), . . . , Rn(u, w)}}

and let
C ′ =

n
⋃

i=1

A ◦ Ri

defined by the sup-min composition as

C ′(w) = max
i=1,...,n

{sup
u

A(u) ∧ Ri(u, w)}.

Then C(w) = C ′(w) for all w from the universe of discourse W .

Proof. Using the distributivity of ∧ over ∨ we get

C(w) = sup
u
{A(u)∧(R1(u, w)∨. . .∨Rn(u, w))} = sup

u
{(A(u)∧R1(u, w))∨. . .∨

(A(u)∧Rn(u, w))} = max{sup
u

A(u)∧R1(u, w), . . . , sup
u

A(u)∧Rn(u, w)} = C ′(w).

Which ends the proof.
Similar statement holds for the sup-product compositional rule of inference, i.e the
sup-product compositional operator and the connective also as the union operator
are commutative:

Lemma 2.2 Let
C = A ◦

n
⋃

i=1

Ri

be defined by sup-product composition as

C(w) = sup
u

A(u) max{R1(u, w), . . . , Rn(u, w)}

and let
C ′ =

n
⋃

i=1

A ◦ Ri

defined by the sup-product composition as

C ′(w) = max{sup
u

A(u)Ri(u, w), . . . , sup
u

A(u)Rn(u, w)}

Then C(w) = C ′(w) holds for each w from the universe of discourse W .
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However, the sup-min compositional operator and the connective also interpreted
as the intersection operator are not usually commutative. In this case, the conse-
quence, C, inferred from the complete set of rules is included in the aggregated
result, C ′, derived from individual rules.

Lemma 2.3 Let
C = A ◦

n
⋂

i=1

Ri

be defined by standard sup-min composition as

C(w) = sup
u

min{A(u), min{R1(u, w), . . . , Rn(u, w)}}

and let
C ′ =

n
⋂

i=1

A ◦ Ri

defined by the sup-min composition as

C ′(w) = min{sup
u
{A(u) ∧ Ri(u, w)}, . . . , sup

u
{A(u) ∧ Rn(u, w)}}.

Then C ⊂ C ′, i.e C(w) ≤ C ′(w) holds for all w from the universe of discourse
W .

Proof. From the relationship

A ◦
n
⋂

i=1

Ri ⊂ A ◦ Ri

for each i = 1, . . . , n, we get

A ◦
n
⋂

i=1

Ri ⊂
n
⋂

i=1

A ◦ Ri.

Similar statement holds for the sup-t-norm compositional rule of inference, i.e
the sup-product compositional operator and the connective also interpreted as the
intersection operator are not commutative. In this case, the consequence, C, in-
ferred from the complete set of rules is included in the aggregated result, C ′,
derived from individual rules.
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Lemma 2.4 Let
C = A ◦

n
⋂

i=1

Ri

be defined by sup-T composition as

C(w) = sup
u

T (A(u), min{R1(u, w), . . . , Rn(u, w)})

and let
C ′ =

n
⋂

i=1

A ◦ Ri

defined by the sup-T composition. Then C ⊂ C ′, i.e C(w) ≤ C ′(w) holds for all
w from the universe of discourse W .

If X = {x1, . . . , xn} is a finite set and A is a fuzzy set in X then we often use the
notation

A = µ1/x1 + . . . + µn/xn

where the term µi/xi, i = 1, . . . , n signifies that µi is the grade of membership of
xi in A and the plus sign represents the union.

Example 2.3 We illustrate Lemma 2.3 by a simple example. Assume we have two
fuzzy rules of the form

+1 : if x is A1 then z is C1

+2 : if x is A2 then z is C2

where A1, A2 and C1, C2 are discrete fuzzy numbers of the universe of discourses
{x1, x2} and {z1, z2}, respectively. Suppose that we input a fuzzy setA = a1/x1+
a2/x2 to the system and let

R1 =









z1 z2

x1 0 1

x2 1 0









, R2 =









z1 z2

x1 1 0

x2 0 1









represent the fuzzy rules. We first compute the consequence C by

C = A ◦ (R1 ∩ R2).
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Using the definition of intersection of fuzzy relations we get

C = (a1/x1 + a2/x2) ◦

















z1 z2

x1 0 1

x2 1 0









⋂









z1 z2

x1 1 0

x2 0 1

















=

(a1/x1 + a2/x2) ◦









z1 z2

x1 0 0

x2 0 0









= ∅

Let us compute now the membership function of the consequence C ′ by

C ′ = (A ◦ R1) ∩ (A ◦ R2)

Using the definition of sup-min composition we get

A ◦ R1 = (a1/x1 + a2/x2) ◦









z1 z2

x1 0 1

x2 1 0









.

Plugging into numerical values

(A◦R1)(z1) = max{a1∧0, a2∧1} = a2, (A◦R1)(z2) = max{a1∧1, a2∧0} = a1,

So,
A ◦ R1 = a2/z1 + a1/z2

and from

A ◦ R2 = (a1/x1 + a2/x2) ◦









z1 z2

x1 1 0

x2 0 1









=

we get
A ◦ R2 = a1/z1 + a2/z2.

Finally,

C ′ = a2/z1 + a1/z2 ∩ a1/z1 + a2/z2 = a1 ∧ a2/z1 + a1 ∧ a2/z2.

Which means that C is a proper subset of C ′ whenever min{a1, a2} 1= 0.
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x0

.

Suppose now that the fact of the GMP is given by a fuzzy singleton, x̄0, x0 ∈ IR.
Then the process of computation of the membership function of the consequence
becomes very simple. For example, if we use Mamdani’s implication operator in
the GMP then

rule 1: if x is A1 then z is C1

fact: x is x̄0

consequence: z is C

where the membership function of the consequence C is computed as

C(w) = sup
u

min{x̄0(u), (A1 → C1)(u, w)} = sup
u

min{x̄0(u), min{A1(u), C1(w)}},

for all w ∈ W . Observing that x̄0(u) = 0, ∀u 1= x0 the supremum turns into a
simple minimum

C(w) = min{x̄0(x0) ∧ A1(x0) ∧ C1(w)s} = min{A1(x0), C1(w)},

for all w ∈ W (see Figure 8).

Figure 9: Fuzzy singleton.

If we use Gödel implication operator in the GMP then

C(w) = sup
u

min{x̄0(u), (A1 → C1)(u, w)} = A1(x0) → C1(w)

That is (see Figure 10):

C(w) =

{

1 if A1(x0) ≤ C1(w)
C1(w) otherwise

18
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Figure 10: Inference with Gödel implication operator.

Lemma 2.5 Consider one block of fuzzy rules of the form

+i: if x is Ai then z is Ci, 1 ≤ i ≤ n

and suppose that the input to the system is a fuzzy singleton. Then the conse-
quence, C, inferred from the complete set of rules is equal to the aggregated
result, C ′, derived from individual rules. This statements holds for any kind of
aggregation operators used to combine the rules.

Proof. Suppose that the input of the system A = x̄0 is a fuzzy singleton. On the
one hand we have

C(w) = (A ◦ Agg 〈R1, . . . , Rn〉)(w) = Agg 〈R1(x0, w), . . . , Rn(x0, w)〉.

On the other hand

C ′(w) = Agg 〈A◦R1, . . . , A◦Rn〉(w) = Agg 〈R1(x0, w), . . . , Rn(x0, w)〉 = C(w).

Consider one block of fuzzy rules of the form

+ = {Ai → Ci, 1 ≤ i ≤ n}

where Ai and Ci are fuzzy numbers.

Lemma 2.6 Suppose that in + the supports of Ai are pairwise disjunctive:

suppAi ∩ suppAj = ∅, for i 1= j.

If the Gödel implication operator is used in + then we get
n
⋂

i=1

Ai ◦ (Ai → Ci) = Ci

holds for i = 1, . . . , n
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A1 A2 A3

core(A1) core(A2) core(A3)

Proof. Since the GMP with Gödel implication satisfies the basic property we get

Ai ◦ (Ai → Ci) = Ai.

From supp(Ai) ∩ supp(Aj) = ∅, for i 1= j it follows that

Ai ◦ (Aj → Cj) = 1, i 1= j

where 1 is the universal fuzzy set. So,
n
⋂

i=1

Ai ◦ (Ai → Ci) = Ci ∩ 1 = Ci.

This property means that deleting any of the rules from + leaves a point x̂ to which
no rule applies. It means that every rule is useful.

Definition 2.1 The rule-base + is said to be separated (see Figure 11) if the core
of Ai, defined by

core(Ai) = {x | Ai(x) = 1},
is not contained in

⋂

j #=i

suppAj

for i = 1, . . . , n.

Figure 11: Separated rule-base.

The following theorem shows that Lemma 2.6 remains valid for separated rule-
bases.

Theorem 2.1 [10] Let+ be separated. If the implication is modelled by the Gödel
implication operator then

n
⋂

i=1

Ai ◦ (Ai → Ci) = Ci

holds for i = 1, . . . , n
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Proof. Since the Gödel implication satisfies the basic property of the GMP we get

Ai ◦ (Ai → Ci) = Ai.

Since core(Ai) ∩ supp(Aj) 1= ∅, for i 1= j there exists an element x̂ such that
x̂ ∈ core(Ai) and x̂ /∈ supp(Aj), i 1= j. That is Ai(x̂) = 1 and Aj(x̂) = 0, i 1= j.
Applying the compositional rule of inference with Gödel implication operator we
get

(Ai ◦ Aj → Cj)(z) = sup
x

min{Ai(x), Aj(x) → Cj(x))} ≤

min{Ai(x̂), Aj(x̂) → Cj(x̂))} = 1, i 1= j

for any z. So,
n
⋂

i=1

Ai ◦ (Ai → Ci) = Ci ∩ 1 = Ci

Which ends the proof.

3 MULTIPLE FUZZY REASONING SCHEMES
If several linguistic variables are involved in the antecedents and the conclusions
of the rules then the system will be referred to as a multi-input-multi-output fuzzy
system. For example, the case of two-input-single-output (MISO) fuzzy systems
is of the form

+i : if x is Ai and y is Bi then z is Ci

where x and y are the process state variables, z is the control variable, Ai, Bi,
and Ci are linguistic values of the linguistic vatiables x, y and z in the universes
of discourse U , V , and W , respectively, and an implicit sentence connective also
links the rules into a rule set or, equivalently, a rule-base. The procedure for
obtaining the fuzzy output of such a knowledge base consists from the following
three steps:

• Find the firing level of each of the rules.

• Find the output of each of the rules.

• Aggregate the individual rule outputs to obtain the overall system output.
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To infer the output z from the given process states x, y and fuzzy relations Ri, we
apply the compositional rule of inference:

+1 : if x is A1 and y is B1 then z is C1

+2 : if x is A2 and y is B2 then z is C2

· · · · · · · · · · · ·
+n : if x is An and y is Bn then z is Cn

fact : x is x̄0 and y is ȳ0

consequence : z is C

where the consequence is computed by

consequence = Agg 〈fact ◦ +1, . . . , fact ◦ +n〉.

That is,
C = Agg(x̄0 × ȳ0 ◦ R1, . . . , x̄0 × ȳ0 ◦ Rn)

taking into consideration that x̄0(u) = 0, u 1= x0 and ȳ0(v) = 0, v 1= y0, the
computation of the membership function of C is very simple:

C(w) = Agg{A1(x0) × B1(y0) → C1(w), . . . , An(x0) × Bn(y0) → Cn(w)}

for all w ∈ W . The procedure for obtaining the fuzzy output of such a knowledge
base can be formulated as

• The firing level of the i-th rule is determined by

Ai(x0) × Bi(y0).

• The output of of the i-th rule is calculated by

C ′
i(w) := Ai(x0) × Bi(y0) → Ci(w)

for all w ∈ W .

• The overall system output, C, is obtained from the individual rule outputs
C ′

i by
C(w) = Agg{C ′

1, . . . , C
′
n}

for all w ∈ W .
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Example 3.1 If the sentence connective also is interpreted as anding the rules by
using minimum-norm then the membership function of the consequence is com-
puted as

C = (x̄0 × ȳ0 ◦ R1) ∩ . . . ∩ (x̄0 × ȳ0 ◦ Rn).

That is,

C(w) = min{A1(x0) × B1(y0) → C1(w), . . . , An(x0) × Bn(y0) → Cn(w)}

for all w ∈ W .

Example 3.2 If the sentence connective also is interpreted as oring the rules by
using minimum-norm then the membership function of the consequence is com-
puted as

C = (x̄0 × ȳ0 ◦ R1) ∪ . . . ∪ (x̄0 × ȳ0 ◦ Rn).

That is,

C(w) = max{A1(x0) × B1(y0) → C1(w), . . . , An(x0) × Bn(y0) → Cn(w)}

for all w ∈ W .

Example 3.3 Suppose that the Cartesian product and the implication operator
are implemented by the t-norm T (u, v) = uv. If the sentence connective also
is interpreted as oring the rules by using minimum-norm then the membership
function of the consequence is computed as

C = (x̄0 × ȳ0 ◦ R1) ∪ . . . ∪ (x̄0 × ȳ0 ◦ Rn).

That is,

C(w) = max{A1(x0)B1(y0)C1(w), . . . , An(x0)Bn(y0)Cn(w)}

for all w ∈ W .

We present three well-known inference mechanisms in MISO fuzzy systems. For
simplicity we assume that we have two fuzzy rules of the form

+1 : if x is A1 and y is B1 then z is C1

+2 : if x is A2 and y is B2 then z is C2

fact : x is x̄0 and y is ȳ0

consequence : z is C
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Figure 12: Tsukamoto’s inference mechanism.

Tsukamoto. All linguistic terms are supposed to have monotonic membership
functions.
The firing levels of the rules are computed by

α1 = A1(x0) ∧ B1(y0), α2 = A2(x0) ∧ B2(y0)

In this mode of reasoning the individual crisp control actions z1 and z2 are com-
puted from the equations

α1 = C1(z1), α2 = C2(z2)

and the overall crisp control action is expressed as

z0 =
α1z1 + α2z2

α1 + α2
=

α1C
−1
1 (α1) + α2C

−1
2 (α2)

α1 + α2

i.e. z0 is computed by the discrete Center-of-Gravity method. If we have m rules
in our rule-base then the crisp control action is computed as

z0 =
α1z1 + · · · + αmzm

α1 + · · · + αm
,
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a2x+b2y   

where αi is the firing level and zi is the (crisp) output of the i-th rule, i = 1, . . . , m.
Sugeno and Takagi use the following architecture [25]

+1 : if x is A1 and y is B1 then z1 = a1x + b1y

+2 : if x is A2 and y is B2 then z2 = a2x + b2y

fact : x is x̄0 and y is ȳ0

consequence : z0

Figure 13: Sugeno’s inference mechanism.

The firing levels of the rules are computed by

α1 = A1(x0) ∧ B1(y0), α2 = A2(x0) ∧ B2(y0)

then the individual rule outputs are derived from the relationships

z∗1 = a1x0 + b1y0, z∗2 = a2x0 + b2y0

and the crisp control action is expressed as

z0 =
α1z∗1 + α2z∗2

α1 + α2
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If we have m rules in our rule-base then the crisp control action is computed as

z0 =
α1z∗1 + · · · + αmz∗m

α1 + · · · + αm
,

where αi denotes the firing level of the i-th rule, i = 1, . . . , m.

Example 3.4 We illustrate Sugeno’s reasoning method by the following simple
example

if x is SMALL and y is BIG then z = x − y

if x is BIG and y is SMALL then z = x + y

if x is BIG and y is BIG then z = x + 2y

where the membership functions SMALL and BIG are defined by

SMALL(v) =















1 if v ≤ 1

1 − (v − 1)/4 if 1 ≤ v ≤ 5

0 otherwise

BIG(u) =















1 if u ≥ 5

1 − (5 − u)/4 if 1 ≤ u ≤ 5

0 otherwise

Suppose we have the inputs x0 = 3 and y0 = 3. What is the output of the system?

The firing level of the first rule is

α1 = min{SMALL(3), BIG(3)} = min{0.5, 0.5} = 0.5

the individual output of the first rule is z1 = x0 − y0 = 3− 3 = 0. The firing level
of the second rule is

α1 = min{BIG(3), SMALL(3)} = min{0.5, 0.5} = 0.5

the individual output of the second rule is z2 = x0 + y0 = 3 + 3 = 6. The firing
level of the third rule is

α1 = min{BIG(3), BIG(3)} = min{0.5, 0.5} = 0.5
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the individual output of the third rule is z3 = x0+2y0 = 3+6 = 9. and the system
output, z0, is computed from the equation z0 = (0×0.5+6×0.5+9×0.5)/1.5 =
5.0.

Simplified fuzzy reasoning. In this context, the word simplified means that the
individual rule outputs are given by crisp numbers, and therefore, we can use their
weighted sum (where the weights are the firing strengths of the corresponding
rules) to obtain the overall system output:

+1: if x1 is A11 and . . . and xn is A1n then y = z1

. . . . . . . . . . . .
+m: if x1 is Am1 and . . . and xn is Amn then y = zm

fact: x1 is u1 and . . . and xn is un

consequence: y is z0

where Aij are values of the linguistc variables x1, . . . , xn. We derive z0 from
the initial content of the data base, {u1, . . . , un}, and from the fuzzy rule base
+ = {+1, . . . ,+m}. by the simplified fuzzy reasoning scheme as

z0 =
z1α1 + · · · + zmαm

α1 + · · · + αm

where αi = (Ai1 × · · ·× Ain)(u1, . . . , un), i = 1, . . . , m.

Remark 3.1 Jang [21] showed that fuzzy inference systems with simplified fuzzy
IF-THEN rules (and, consequently, Sugeno’s and Tsukamoto’s systems as well)
are universal approximators, i.e. they can approximate any continuous function
on a compact set to arbitrary accuracy. It means that the more fuzzy terms (and
consequently more rules) are used in the rule base, the closer is the output of the
fuzzy system to the desired values of the function to be approximated.
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