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e-mail: christer.carlsson@abo.fi

Abstract: In this work we shall give a pure probabilistic interpretation of
possibilistic expected value, variance, covariance and correlation.

Keywords: Possibility distribution, expected value, variance, covariance, cor-
relation

∗In: Proceedings of the Seventh International Symposium of Hungarian Researchers on

Computational Intelligence, November 24-25, 2006, Budapest, [ISBN 963 7154 54 X], 2006
319-327

1



1 Probability and possibility

In probability theory, the dependency between two random variables can be
characterized through their joint probability density function. Namely, if X
and Y are two random variables with probability density functions fX(x)
and fY (y), respectively, then the density function, fX,Y (x, y), of their joint
random variable (X, Y ), should satisfy the following properties

�

R
fX,Y (x, t)dt = fX(x),

�

R
fX,Y (t, y)dt = fY (y),

for all x, y ∈ R. Furthermore, fX(x) and fY (y) are called the the marginal
probability density functions of random variable (X, Y ). X and Y are said
to be independent if the relationship

fX,Y (x, y) = fX(x)fY (y),

holds for all x, y. The expected value of random variable X is defined as

E(X) =

�

R
xfX(x)dx.

The covariance between two random variables X and Y is defined as

Cov(X, Y ) = E
�
(X − E(X))(Y − E(Y ))

�
= E(XY )− E(X)E(Y ),

and if X and Y are independent then Cov(X, Y ) = 0. The variance of
random variable X is defined by

σ2
X = E(X2)− (E(X))2 .

The correlation coefficient between X and Y is defined by

ρ(X, Y ) =
Cov(X, Y )

σXσY

and it is clear that −1 ≤ ρ(X, Y ) ≤ 1.

A fuzzy number A is a fuzzy set of the real line with a normal, (fuzzy) con-
vex and continuous membership function of bounded support. The family
of fuzzy numbers will be denoted by F . Fuzzy numbers can be considered
as possibility distributions [11, 15]. If A ∈ F is a fuzzy number and x ∈ R



a real number then A(x) can be interpreted as the degree of possiblity of
the statement ”x is A”. A fuzzy set C in Rn is said to be a joint possi-
bility distribution of fuzzy numbers Ai ∈ F , i = 1, . . . , n, if it satisfies the
relationship

max
xj∈R, j �=i

C(x1, . . . , xn) = Ai(xi)

for all xi ∈ R, i = 1, . . . , n. Furthermore, Ai is called the i-th marginal
possibility distribution of C, and the projection of C on the i-th axis is Ai

for i = 1, . . . , n.

Fuzzy numbers Ai ∈ F , i = 1, . . . , n are said to be non-interactive if their
joint possibility distribution C satisfies the relationship

C(x1, . . . , xn) = min{A1(x1), . . . , An(xn)},

or, equivalently,
[C]γ = [A1]

γ × · · ·× [An]γ

holds for all x1, . . . , xn ∈ R and γ ∈ [0, 1]. Marginal probability distributions
are determined from the joint one by the principle of ’falling integrals’ and
marginal possibility distributions are determined from the joint possibility
distribution by the principle of ’falling shadows’.

If A, B ∈ F are non-interactive then their joint membership function is
defined by

C = A×B,

where
C(x, y) = (A×B)(x, y) = min{A(x), B(y)}

for any x, y ∈ R.

It is clear that in this case for any u ∈ [A]γ and for all v ∈ [B]γ we have

(u, v) ∈ [C]γ,

since from A(u) ≥ γ and B(v) ≥ γ it follows that

min{A(u), B(v)} ≥ γ,

that is (u, v) ∈ [C]γ.

On the other hand, A and B are said to be interactive if they can not take
their values independently of each other.



It is clear that in this case any change in the membership function of A does
not effect the second marginal possibility distribution and vice versa. On
the other hand, A and B are said to be interactive if they can not take their
values independently of each other [11].

Let A ∈ F be fuzzy number with [A]γ = [a1(γ), a2(γ)], γ ∈ [0, 1]. A function
f : [0, 1] → R is said to be a weighting function if f is non-negative, monoton
increasing and satisfies the following normalization condition

� 1

0

f(γ)dγ = 1.

Different weighting functions can give different (case-dependent) importances
to γ-levels sets of fuzzy numbers. It is motivated in part by the desire to give
less importance to the lower levels of fuzzy sets [14] (it is why f should be
monotone increasing).

2 A pure probabilistic interpretation of pos-
sibilistic expected value, variance, covari-
ance and correlation

The f -weighted possibilistic expected value of A ∈ F , defined in [12], can be
written as

Ef (A) =

� 1

0

E(Uγ)f(γ)dγ =

=

� 1

0

a1(γ) + a2(γ)

2
f(γ)dγ,

where Uγ is a uniform probability distribution on [A]γ for all γ ∈ [0, 1].

The f -weighted possibilistic variance of A ∈ F , defined in [12], can be written
as

Varf (A) =

� 1

0

σ2
Uγ

f(γ)dγ

=

� 1

0

(a2(γ)− a1(γ))2

12
f(γ)dγ.



The f -weighted measure of possibilistic covariance between A, B ∈ F , (with
respect to their joint distribution C), defined by [13], can be written as

Covf (A, B) =

� 1

0

Cov(Xγ, Yγ)f(γ)dγ,

where Xγ and Yγ are random variables whose joint distribution is uniform
on [C]γ for all γ ∈ [0, 1].

The f -weighted possibilistic correlation of A, B ∈ F , (with respect to their
joint distribution C), defined in [9], can be written as

ρf (A, B) =

� 1

0 cov(Xγ, Yγ)f(γ)dγ
� � 1

0 σ2
Uγ

f(γ)dγ
�1/2� � 1

0 σ2
Vγ

f(γ)dγ
�1/2

.

where Vγ is a uniform probability distribution on [B]γ. Thus, the possibilistic
correlation represents an average degree to which Xγ and Yγ are linearly
associated as compared to the dispersions of Uγ and Vγ.

It is clear that we do not run a standard probabilistic calculation here. A
standard probabilistic calculation might be the following

� 1

0 cov(Xγ, Yγ)f(γ)dγ
� � 1

0 σ2
Xγ

f(γ)dγ
�1/2� � 1

0 σ2
Yγ

f(γ)dγ
�1/2

.

That is, the standard probabilistic approach would use the marginal distri-
butions, Xγ and Yγ, of a uniformly distributed random variable on the level
sets of [C]γ.

Theorem 2.1 ([9]). If [C]γ is convex for all γ ∈ [0, 1] then −1 ≤ ρf (A, B) ≤
1 for any weighting function f .

The possibilistic expected value, variance, covariance and correlation have
been extensively used for real option valuation [4, 8], project selection [2, 5,
6, 10], capital budgeting [1] and optimal portfolio selection [7].



3 Examples

First, let us assume that A and B are non-interactive, i.e. C = A×B.

Then [C]γ = [A]γ × [B]γ for any γ ∈ [0, 1] and we have Covf (A, B) = 0 (see
[13]) and ρf (A, B) = 0 for any weighting function f .

In the case, the covariance of A and B with respect to their joint possibility
distribution C is (see [13])

Covf (A, B) =

1

12

� 1

0

[a2(γ)− a1(γ)][b2(γ)− b1(γ)]f(γ)dγ,

and
ρf (A, B) = 1,

for any weighted function f .

If u ∈ [A]γ for some u ∈ R then there exists a unique v ∈ R that B can take.
Furthermore, if u is moved to the left (right) then the corresponding value
(that B can take) will also move to the left (right). This property can serve
as a justification of the principle of (complete positive) correlation of A and
B.

In the case, the covariance of A and B with respect to their joint possibility
distribution D is (see [13])

Covf (A, B) =

−
1

12

� 1

0

[a2(γ)− a1(γ)][b2(γ)− b1(γ)]f(γ)dγ,

and
ρf (A, B) = −1,

for any weighted function f .

If u ∈ [A]γ for some u ∈ R then there exists a unique v ∈ R that B can take.
Furthermore, if u is moved to the left (right) then the corresponding value
(that B can take) will move to the right (left). This property can serve as a
justification of the principle of (complete negative) correlation of A and B.

Zero covariance does not always imply non-interactivity. Really, let G be a
joint possibility distribution with a symmetrical γ-level set, i.e., there exist
a, b ∈ R such that

G(x, y) = G(2a− x, y)



= G(x, 2b− y) = G(2a− x, 2b− y),

for all x, y ∈ [G]γ, where (a, b) is the center of the set [G]γ .

Theorem 3.1 ([13]). If all γ-level sets of G are symmetrical then the co-
variance between its marginal distributions A and B becomes zero for any
weighting function f , that is,

Covf (A, B) = 0,

even though A and B may be interactive.

Now consider the case when

A(x) = B(x) = (1− x) · χ[0,1](x)

for x ∈ R, that is, [A]γ = [B]γ = [0, 1− γ] for γ ∈ [0, 1].

Suppose that their joint possibility distribution is given by

F (x, y) = (1− x− y) · χT (x, y),

where
T = {(x, y) ∈ R2|x ≥ 0, y ≥ 0, x + y ≤ 1}.

After some calculations we get

Covf (A, B) = −
1

36

� 1

0

(1− γ)2f(γ)dγ,

and
ρf (A, B) = −1/3,

for any weighting function f .

Now consider the case when

A(1− x) = B(x) = x · χ[0,1](x)

for x ∈ R, that is, [A]γ = [0, 1− γ] and [B]γ = [γ, 1], for γ ∈ [0, 1].

Let
E(x, y) = (y − x) · χS(x, y),



where
S = {(x, y) ∈ R2|x ≥ 0, y ≤ 1, y − x ≥ 0}.

A γ-level set of E is computed by

[E]γ = {(x, y) ∈ R2|x ≥ 0, y ≤ 1, y − x ≥ γ}.

We can easily see that

max
x

E(x, y) = y · χ[0,1](y) = B(y),

max
y

E(x, y) = (1− x) · χ[0,1](x) = A(x).

After some calculations we get

Covf (A, B) =
1

36

� 1

0

(1− γ)2f(γ)dγ,

and
ρf (A, B) = 1/3,

for any weighting function f .
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