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A computer program has been developed for the determination of micro-

structural parameters from diffraction pro®les of materials with cubic or

hexagonal crystal lattices. The measured pro®les or their Fourier transforms are

®tted by ab initio theoretical functions for size and strain broadening. In the

calculation of the theoretical functions, it is assumed that the crystallites have

log-normal size distribution and that the strain is caused by dislocations. Strain

and size anisotropy are taken into account by the dislocation contrast factors

and the ellipticity of the crystallites. The ®tting procedure provides the median

and the variance of the size distribution and the ellipticity of the crystallites, and

the density and arrangement of the dislocations. The ef®ciency of the program is

illustrated by examples of severely deformed copper and ball-milled lead sul®de

specimens.

1. Introduction
Diffraction peak pro®le analysis has been in general use for the

investigation of the microstructure of crystalline materials since the

1920s (Becker, 1927). The original technique involved the measure-

ment of the intensity distribution of Debye±Scherrer lines by photo-

densitometers, then progressed in the 1940s with the use of parafo-

cusing powder diffractometers equipped with counters (Parrish,

1962), developing still further with the advent of high-resolution

diffractometers in the home laboratory (Guinier, 1963; Wilkens &

Eckert, 1964), especially modern powder diffractometers using

monochromatic radiation (LoueÈr & Langford, 1988), and high-reso-

lution powder diffractometers at synchrotrons (Pattison et al., 2000).

At the outset, the angular resolution was about 0.2� (in 2�); it

improved to about 0.1� with the arrival of conventional powder

diffractometers and is about 0.005� with the high-resolution

diffractometers. The obtainable peak to background ratio has

improved to a similar extent, starting with about 20, improving for the

�±2� diffractometers to 100, or even somewhat better, and reaching

103 to 104 for the high-resolution diffractometers (Wilkens & Eckert,

1964; UngaÂr et al., 1984; Pattison et al., 2000).

As for the peak shape, two fundamentally different approaches

have been developed during the past four decades. In powder

diffraction crystallography, the primary interest is in the crystal

structure, the peak shape representing an auxiliary tool in the

evaluation procedures (Rietveld, 1967, 1969; McCusker et al., 1999).

In Rietveld structure re®nement, the commonly used peak shapes are

the following simple analytical functions: Gaussian, Lorentzian,

pseudo-Voigtian, Voigtian, Pearson VII and empirical pro®le shape

functions (McCusker et al., 1999). The Rietveld method has become a

standard procedure in most powder diffraction applications, except

the determination of microstructures, and is more or less completely

satis®ed by one or the other of the listed functions. There have been

a few recent attempts to integrate microstructure determinations

into the Rietveld method using these simple analytical functions

(UngaÂr, Leoni & Scardi, 1999; Scardi & Leoni, 1999; Langford et

al., 2000).

From the point of view of peak pro®le analysis, the microstructure

consists of two fundamentally different effects: (i) the effect of

crystallite size and (ii) the effect of lattice distortions. The two have

different diffraction-order dependences, which enables their separa-

tion (Wilson, 1958; Bertaut, 1950; Williamson & Hall, 1953; Warren &

Averbach, 1952; Warren, 1959). Size broadening is caused by the

®nite column length of coherently scattering domains where this

length is parallel to the diffraction vector (Guinier, 1963). Assuming

the shape and the size distribution of the coherently scattering

domains, the size pro®les can be determined theoretically (Langford

et al., 2000; Gubicza et al., 2000; UngaÂr, Gubicza et al., 2001). Lattice

distortions are caused by lattice defects like dislocations, stacking

faults, grain boundaries, inclusions, precipitates, etc. There have been

many attempts to model strain broadening by describing lattice

distortions as random displacements of atoms from their ideal crystal

positions (Wilson, 1958, 1959; Stephens, 1999). It can be shown,

however, that static random displacements are equivalent to thermal

vibrations, which are well known to cause peak height reduction

without peak broadening (Schwartz & Cohen, 1977). It can also be

shown that peak pro®le broadening in the vicinity of the fundamental

Bragg re¯ections is most effectively caused by dislocations (Krivo-

glaz, 1969, 1996; Wilkens, 1970). Stacking faults, especially when they

are of ®nite size, are also important lattice defects causing this type of

peak broadening; however, most often they are outnumbered by the

density of the dislocations. The physical reason for the relevance of

dislocations in peak broadening is the 1/r spatial dependence of their

strain ®elds (r = distance from dislocations) (Krivoglaz, 1969). The

displacement of atoms caused by dislocations is by far non-random.

Krivoglaz & Ryaboshapka (1963) and Wilkens (1970) have shown

that there is a logarithmic singularity in the mean square strain of

dislocations at small L values (L is the Fourier transform variable). It

can also be shown that the strain pro®les are different from any of the
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simple analytical functions listed above (Wilkens, 1970). High-

resolution X-ray diffraction experiments carried out on plastically

deformed Cu and Ni single crystals have supported these results

(Wilkens, 1988; UngaÂr et al., 1984; Hecker et al., 1997). From this we

conclude that, though the simple analytical functions (see above) are

a good approximation of diffraction peak pro®les, especially for the

purpose of structure re®nement and qualitative or quantitative phase

analyses, if the ®ner details of microstructure are required, neither

the size nor the strain pro®les can be approximated by simple

analytical functions.

In a recent paper, a novel procedure was described to evaluate

microstructural parameters of cubic or hexagonal crystalline mate-

rials obtained by the analysis of broadened diffraction peak pro®les

(UngaÂr, Gubicza et al., 2001). The Fourier coef®cients of the

measured physical pro®les are ®tted by Fourier coef®cients of ab

initio physically well established functions of size and strain pro®les

(UngaÂr, Gubicza et al., 2001). The present paper describes the

numerical procedures and the computer programs used in this

evaluation method. The programs also enable the ®tting of the

measured physical intensity pro®les by the inverse Fourier transform

of ab initio theoretical Fourier coef®cients. The procedure has been

tested by applying it to a nanocrystalline powder of galena (PbS) and

to a severely plastically deformed bulk copper specimen.

2. Theoretical overview

The Fourier coef®cients of the peak pro®les, A(L), are the product of

the size, AS, and distortion, AD, coef®cients (Warren & Averbach,

1952):

A�L� � AS�L�AD�L�; �1�
where L is the variable of the Fourier transform. In the following, the

theoretical Fourier transforms are even functions of L; therefore, the

equations are given for L � 0.

2.1. The distortion effect

The distortion Fourier coef®cients can be expressed in the

following form (Warren & Averbach, 1952):

AD�L� � exp�ÿ2�2g2L2h" 2
Li�; �2�

where g is the absolute value of the diffraction vector, h" 2
Li is the

mean square strain depending on the displacement of the atoms

relative to their ideal positions, and the angle brackets indicate spatial

averaging. Several authors have worked on the determination of the

mean square strain, including Warren & Averbach (1952), Krivoglaz

& Ryaboshapka (1963) and Wilkens (1970). Warren and co-workers

(Warren & Averbach, 1952; Warren, 1959) assumed either random

atomic displacements and/or stacking faults. Krivoglaz (1969) and

Wilkens (1970) assumed dislocations as the main source of peak

broadening close to the fundamental Bragg positions, as mentioned

before. Wilkens improved the model of Krivoglaz by introducing the

effective outer cut-off radius of dislocations, R�
e , instead of the crystal

diameter. Assuming in®nitely long parallel screw dislocations with a

restrictedly random distribution, the mean square strain has been

derived in the following closed form (Wilkens, 1970):

h" 2
Li � �b=2��2��C f �L=R�

e �; �3�
where b is the absolute value of the Burgers vector, � is the dislo-

cation density, C is the contrast factor of the dislocations and f is the

strain function (the Wilkens function). f has the following explicit

form (Wilkens, 1970, equations A6±A8 in Appendix A therein):
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where f(L/R�
e ) = f �(�) and � = (1/2)exp(ÿ1/4)(L/R�

e ). van Berkum et

al. (1994) derived a simpli®ed form of (4) by neglecting some terms.

In the present work, we use the complete expression of the Wilkens

function, especially since it has been shown experimentally that it

describes well peak pro®les of plastically deformed single crystals

measured by high-resolution diffractometry (Wilkens & Eckert,

1964). Note that in previous papers, Re = exp(2)R�
e = 7.4R�

e was used

as the effective outer cut-off radius of dislocations (UngaÂr et al., 1984;

Wilkens, 1988; Hecker et al., 1997).

By inserting equation (3) into (2), the distortion Fourier transform

is obtained:

AD�L� � exp�ÿ��b2=2� �g2C� �L2 f �L=R�
e ��: �5�

Strain anisotropy is accounted for by the average contrast factors of

the dislocations. For untextured polycrystals, the average contrast

factors can be expressed by the fourth-order polynomials of the hkl

indices (UngaÂr & Tichy, 1999). For cubic crystals

C � Ch00�1 ÿ qH 2�; �6�
where

H 2 � h2k2 � h2l 2 � k2l 2

�h2 � k2 � l 2�2 :

For hexagonal crystals

C � Chk0�1 � a1H 2
1 � a2H 2

2 �; �7�
where

H 2
1 � �h2 � k2 � �h � k�2� l 2

�h2 � k2 � �h � k�2 � �3=2��a=c�2 l 2�2 ;

H 2
2 � l 4

�h2 � k2 � �h � k�2 � �3=2��a=c�2 l 2�2 ;

and a/c is the ratio of the two lattice constants. Note that a formally

similar equation to (6) has been derived by Stokes (1944) for a

random displacement of atoms in elastically anisotropic cubic crys-

tals. The constants Ch00 and Chk0 are calculated on the basis of the

crystallography of the dislocations and from the elastic constants of

the crystal (see UngaÂr, Dragomir et al., 1999). The parameters q, a1

and a2 are the same for all re¯ections. One can see from equation (5)

that the diffraction-order dependence of the distortion Fourier

transform is given by g2C. Note that for textured materials, the

contrast factors should be calculated individually for each re¯ection

(BorbeÂ ly et al., 2000).

2.2. The size effect

According to previous works (Bertaut, 1950; Guinier, 1963), the

Fourier transform of the intensity pro®le of the hkl diffraction peak
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equals the common volume of the crystal and its `double' obtained by

a translation L in the direction normal to the re¯ecting lattice planes.

For the calculation of the Fourier transform of the peak pro®le

originating from a crystallite, let us divide the crystal into cylindrical

columns normal to the lattice planes hkl. Let us set d�� as the cross

section of the columns, the heights of which in the crystal lie in the

interval between � and � + d�. The common volume originating

from these columns is (Guinier, 1963)

AS�L� � �1 ÿ jLj=��� d��: �8�
The common volume of the irradiated crystallites and their `double'

shifted by L can be obtained by summing for all columns existing in

the crystallites. Assuming spherical crystallites and a log-normal

crystallite size distribution, one can obtain

AS�L� �
Z1

jLj

1 ÿ jLj
�

� �
�2

Z1

�

f �x� dx

2
4

3
5 d�; �9�

where f(x) is the log-normal size distribution density function given

by

f �x� � 1

�2��1=2�

1

x
exp ÿ �log�x=m��2

2�2

� �
; �10�

where � is the variance and m is the median of the distribution. The

integral in equation (9) can be transformed into the following form:

AS�L� �
Z1

jLj

��2 ÿ jLj�� erfc
log��=m�

21=2�

� �
d�; �11�

where erfc is the complementary error function de®ned as

erfc �x� � 2

�1=2

Z1

x

exp�ÿt2� dt: �12�

Using substitutions and partial integration, the Fourier transform of

the intensity pro®le arising from small distortion-free crystallites with

spherical shape and log-normal size distribution can be written as

AS�L� � m3 exp��9=4��21=2��2�
3

erfc
log�jLj=m�

21=2�
ÿ 3

2
21=2�

� �

ÿ m2 exp�21=2��2

2
jLj erfc

log�jLj=m�
21=2�

ÿ 21=2�

� �

� jLj3
6

erfc
log�jLj=m�

21=2�

� �
: �13�

The normalized Fourier transform can be obtained by dividing

equation (13) by its maximal value at L = 0:

AS�0� � 2 m3 exp��9=4��21=2��2�
3

: �14�

Taking the inverse Fourier transform of equation (11), the size

intensity pro®le has the following integral form (Gubicza et al., 2000):

I S�s� �
Z1

0

�
sin2���s�
��s�2 erfc

log��=m�
21=2�

� �
d�: �15�

Note that the size pro®le function for the same crystallite shape and

size distribution has recently been derived by Langford et al. (2000).

As a result of the different kind of derivation and summation, their

formula [equation (21) of Langford et al., 2000] is different from

equation (15) here; however, the two equations are mathematically

equivalent.

Deriving (13) at L = 0, we obtain the size parameter L0, which

equals the area-weighted mean column length:

L0 � ÿ AS�0�
�dAS�L�=dL�L�0

� 2 m exp��5=4��21=2��2�
3

: �16�

The maximal value of the size function (15) is

I S�0� �
Z1

0

�3 erfc
log��=m�

21=2�

� �
d�: �17�

This integral can be determined by using similar transforms as we

used in calculating (13). The volume-weighted mean column length is

given as

d � 1

�
� I S�0�R1

ÿ1 I S�s� ds
� I S�0�

AS�0� �
3 m exp��7=4��21=2��2�

4
: �18�

Note that Hinds (1982) and Langford et al. (2000) obtained the same

expressions for d and L0.

As can be seen from equation (13), the size Fourier transform for

spherical crystallites is order independent. The anisotropy of the

crystallite size is introduced by assuming that the crystallites each

have the shape of an ellipsoid of revolution (UngaÂr et al., 2000). In

this case, the Fourier transform of the size pro®le has the same form

as equation (13), but the median of the size distribution depends on

the indices of the re¯ection:

mhkl � ma=�1 � �1="2 ÿ 1� cos2 ��1=2; �19�
where ma is the median of the size distribution of the diameters of the

ellipsoids perpendicular to the axis of revolution, " is the ratio of the

diameters of the ellipsoids parallel and perpendicular to the axis of

revolution (the so-called ellipticity), and � is the angle between the

axis of revolution and the diffraction vector. If the relative orienta-

tions of the crystallographic directions with respect to the axis of

revolution are known, cos� can be expressed by the indices of the

re¯ection. For example, if the axis of revolution is parallel to the edge

of the elementary cell for cubic crystals or is perpendicular to the

basal plane for hexagonal crystals, cos� can be given as

cos� � l=�h2 � k2 � l 2�1=2 �20�
or

cos � � l=��4=3��c2=a2��h2 � hk � k2� � l 2�1=2; �21�
respectively.

3. The method of multiple whole-profile (MWP) fitting

The theoretical Fourier transform [given by equations (1), (4), (5),

(6), (7), (13) and (14)] and the theoretical intensity function [given as

the inverse Fourier transform of (1)] describe the shapes and the

widths of the pro®les, but do not provide the physically relevant

heights of the pro®les. Therefore, the measured intensity pro®les and

their Fourier transforms, as well as the ®tting theoretical functions,

are normalized by their maximum values in the ®tting procedures, as

follows.

(i) Multiple whole-pro®le ®tting of the Fourier transforms. In this

procedure, ®rst the measured intensity pro®les are Fourier trans-

formed and normalized. Then all of them are ®tted simultaneously by

the normalized theoretical Fourier transform:

A�L� � AS�L�
AS�0� exp ÿ�b2

2
�g2C� �L2 f

L

R�
e

� �� �
; �22�
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where AS(L) and AS(0) are given by equations (13) and (14),

respectively.

(ii) Multiple whole-pro®le ®tting of the intensity pro®les. In this

procedure, ®rst the measured intensity pro®les are normalized. Then

all of them are ®tted simultaneously by the normalized theoretical

intensity function:

I�s� � Fc�s�=Fc�0�; �23�

where Fc is the cosine Fourier transform of (22):

Fc�s� � 2

Z1

0

A�L� cos�2�Ls� dL: �24�

In both cases, (i) and (ii), all pro®les are ®tted simultaneously using

a nonlinear least-squares algorithm, in which the sum of squared

residuals (SSR), de®ned for the Fourier coef®cients or the intensities

as

�2 �P
hkl

P
i

�Am�hkl;Li� ÿ Ath�hkl;Li��2

or

�2 �P
hkl

P
i

�Im�hkl; si� ÿ Ith�hkl; si��2;

respectively, is minimized, where the subscripts `m' and `th' indicate

`measured' and `theoretical', respectively. In the present procedure,

the pro®les are weighted equally. It should be noted that the pro®les

which correspond to the same g value but of which the hkl indices are

not permutations of each other (e.g. for face-centred cubic materials,

333 and 511 re¯ections) should be omitted in the evaluation proce-

dure, because they are the sum of two pro®les with different contrast

factors [see equations (6) and (7)]. The theoretical functions are

determined by the microstructural parameters m, �, �, R�
e and q (or a1

and a2) and the hkl indices. The values of the microstructural para-

meters are re®ned during the ®tting procedure. In the case of the

ellipsoidal size function [de®ned by equations (13), (14) and (19), and

(20) or (21)], the value of the ellipticity parameter, ", can also be

re®ned. The other parameters, the lattice constants, a (and c), the

Burgers vector length, b, and the contrast factors Ch00 or Chk0, are

input parameters of the ®tting procedure. If the dislocation structure

and the elastic constants of the material are not known, the length of

the Burgers vector and the contrast factors, Ch00 or Chk0, have to be

estimated and the values of the microstructural parameters, � and R�
e ,

become uncertain up to a scaling factor. For example, in cubic crys-

tals, the ®tting procedure provides primarily the product b2�Ch00

from which, in principle, � can only be obtained if Ch00 and b are

known. Note, however, that Ch00 changes slowly with the elastic

constants and the dislocation character; therefore, this type of

uncertainty is not serious (UngaÂr, Dragomir et al., 1999).

4. Description of the program

The purpose of the program is to prepare and evaluate experimental

diffraction data by the method of multiple whole-pro®le ®tting.

MWP-®t consists of two main interactive programs: Mkdat and

Evaluate. The function of the program Mkdat is to correct the

measured pro®les for (i) instrumental effects, (ii) background and

(iii) overlapping peaks. The microstructural evaluation is carried out

by the program Evaluate.

4.1. Software and hardware environment

The program was developed and tested under the Linux, Solaris

and Digital Unix operating systems. The core of the Evaluate

program is a modi®ed version of GNUPLOT written in C language

(the original GNUPLOT package is available from http://www.

gnuplot.org). The Evaluate program is an interactive front-end

written in the zsh shell-script language (available from http://

www.zsh.org). The Mkdat program is also written in zsh. Both the

programs, Evaluate and Mkdat, require some of the GNU utilities

(available from http://www.gnu.org). Parallel computing using the

libpthread library (useful on SMP systems) is also supported. The

program is now in a highly optimized state with no considerable

hardware requirements. The typical run-time of an evaluation of nine

separate pro®les supposing about 50 iteration steps is about half a

minute on a Compaq XP1000 workstation equipped with an Alpha

Ev6 500 CPU. The same evaluation takes about 5 min on a PC

equipped with an AMD 486 DX4/150 CPU. The memory requirement

of the programs is not signi®cant.

4.2. Algorithms

The program uses an implementation of the nonlinear least-

squares Marquardt±Levenberg (M-L) method (Levenberg, 1944;

Marquardt, 1963) for the ®tting, which is a standard part of

GNUPLOT. The theoretical functions are written in thread-safe C

code; therefore, no user-de®ned GNUPLOT functions are needed for

the ®tting. The integral in (4) is approximated by expanding the

integrand into a Taylor series. The Fourier transform of the measured

intensity pro®les is calculated by a simple trapezoidal quadrature

formula, suf®cient for the non-equidistantly sampled input data. The

cosine Fourier transform in (24) is computed by a fast Fourier

transform algorithm (Cooley & Tukey, 1965), using the imple-

mentation of Ooura (1996).

4.3. The programs

The program Evaluate needs the diffraction pro®les as input data

in two-column ®le format. The ®rst column should consist of the

position values scaled according to �K = 2(sin� ÿ sin�0)/�, where �0

is the Bragg angle of the peak and � is the wavelength of X-rays. The

second column should consist of the intensity values normalized

according to their maximum. The program Evaluate can also be used

for ®tting if only the Fourier transforms of the pro®les are given. If

the ®le format of the input data is different from that described

above, it can be corrected by the program Mkdat.

4.3.1. The program Mkdat. The program Mkdat recognizes ASCII

input data in a ®le containing either the equidistantly sampled

intensity values in one column or having two columns with 2� in the

®rst and the intensity values in the second. The ®les can contain any

number of Bragg re¯ections. The preparation consists of the

separation of overlapping peaks and background subtraction, and

instrumental correction of the pro®les. The program consists of the

following steps.

(a) The program searches for the peaks if the whole powder

diffractogram is available and gives a list of the positions and

intensity maxima of the diffraction peaks.

(b) The user is given the option to keep or skip any of the peaks or

to assign hkl indices to the corresponding peaks.

(c) The principle of the peak separation is as follows. After the

nonlinear 2� ! K transformation (K = 2sin�/�), the program

prompts for the type (see below) and approximate positions of the

selected and the unwanted overlapping peaks. Only in this particular

correction procedure are the peaks ®tted by simple mathematical
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functions, the type of which can be selected by the user: pseudo-

Voigtian, Voigtian or Pearson VII. The physical background is

approximated by a polynomial. The order of the polynomial must be

speci®ed by the user. The `background' of the peak selected for

correction is the sum of the physical background and the other

overlapping unwanted peaks. The parameters of the `background'

and the selected peak (including the positions and intensity maxima

of the peaks) are re®ned using the nonlinear M-L algorithm of the

GNUPLOT program. After the ®t converges, the ®tted `background'

is subtracted from the measured data. The position of the selected

peak is shifted to K = 0 and the intensity is normalized. If the ®t was

suf®ciently good, only the separated and normalized peak remains.

(d) If instrumental pro®les are available, the program can correct

the measured pro®les for the instrumental effect using the method of

complex deconvolution (Stokes, 1948). However, the deconvolution

of the physical and instrumental pro®les has to be carried out with

special care, particularly when the breadth of the observed pro®les is

close to that of the instrumental pro®les (Snyder et al., 1999).

(e) Finally, the program saves the separated and corrected pro®le

in the ®le hkl.dat in a two-column format in which the ®rst and

second columns contain the�K and the intensity values, respectively.

If the instrumental effect was taken into account, the Fourier trans-

form (which is a result of the deconvolution) is also saved.

4.3.2. The program Evaluate. The function of the program Evaluate

is to evaluate the previously prepared data in order to obtain the

microstructural parameters using the method of multiple whole-

pro®le ®tting. Although this is an interactive program, it has an

option `auto' to run in the background using the input ®les and the

default settings of the program. The steps of the evaluation procedure

are as follow.

(a) Selection of the crystal system. The possible selections are cubic

or hexagonal.

(b) Setting the value of the input parameters. The program

prompts for the value of the lattice constant(s), the absolute value of

the Burgers vector and the contrast factors Ch00 or Chk0.

(c) Selection of the size function. The possible selections are: no

size effect, spherical size function (default) or ellipsoidal size

function.

(d) Speci®cation of the sampling of the Fourier transform of the

measured data. The number of samples (default 256) and the

upper limit of sampling [the default is ®ve times the full width at

half-maximum (FWHM) value of the Fourier spectrum] may be

speci®ed.

(e) Computation of the normalized Fourier transform of the

measured data. This step is skipped if the Fourier transforms are

available from the instrumental correction [see the description of the

program Mkdat, x4.3.1, step (d)] or from previous runs. The Fourier

transforms are saved after the computation.

( f ) Speci®cation of the initial values of the parameters and the

point of stopping. The initial values of the ®tting parameters are

always saved for subsequent runs. The point of stopping is the

convergence criteria of the M-L algorithm: the ®tting is stopped if the

speci®ed maximal number of iterations (default 5000) is reached or

��2/�2 between two iteration steps is less than the speci®ed limit

(default 10ÿ9).

(g) Selection of the method of ®tting. The procedure of multiple

whole-pro®le ®tting can be carried out by using the Fourier trans-

forms or the intensity pro®les.

(h) Fitting. The measured pro®les and the ®tting theoretical

functions are plotted side by side in order of g and are replotted in

each step of iteration, so that it is possible to trace continuously how

the theoretical pro®les approach the measured data. The ®gure is

saved after the ®t converges. A typical plot for ®tting the Fourier

transforms is shown in Fig. 1.

(i) Printing of solutions. In addition to the resulting parameters m,

�, ", �, R�
e and q (or a1 and a2), the dislocation arrangement para-

meter M* = R�
e�

1=2 (introduced by Wilkens) and the size parameters

D, d and L0 are printed. The parameter D is de®ned by D =

0.9/FWHM, where FWHM is the full width at half-maximum of the

size pro®le. The other two size parameters are de®ned by equations

(18) and (16).

( j) Preparation of ®gures. If the Fourier transforms were ®tted, the

program also plots the intensity functions. If the intensity functions

were ®tted, the program also plots the Fourier transforms.

(k) Saving the results and removal of temporary ®les.

4.4. Availability

The program Evaluate is available via a World Wide Web front-end

(http://www.renyi.hu/mwp) for non-commercial scienti®c purposes.

The program Mkdat is available from the authors upon request (e-

mail: mwp@renyi.hu). The Web front-end is an HTML/CGI interface

to the program Evaluate. All options listed in x4.3.2 are accessible.

The main functions of the front-end are as follows.

(i) Uploading of the pro®le ®les using the POST method. The FILE

Input must be implemented in the browser. Note that the newer

browsers, like Netscape/Mozilla Navigator or Internet Explorer, are

compatible.

(ii) Listing of the samples. The evaluation can be started by clicking

on the name of the sample. The options selected in the previous run

are loaded.

(iii) The evaluation of the pro®les. After the ®t terminates, the

resulting microstructural parameters and the plots of the measured

and theoretical pro®les are presented.

(iv) Showing the results from previous runs. The resulting para-

meters in ASCII format and the plots of the measured and theoretical

pro®les in ASCII/PostScript/GIF format are preserved.

4.5. Documentation

This paper describes the purpose of the program, the theoretical

aspects of the crystallographic problem, the method of solution and

the miscellaneous functions of the program. For the documentation
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Figure 1
The measured (solid line) and theoretical ®tted (dashed line) Fourier transforms
for the copper sample as a function of the Fourier variable (frequency), L, plotted
by the program Evaluate. The difference plot is also given, in the bottom of the
®gure. The indices of the re¯ections are indicated.
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about the Web front-end, visit http://www.renyi.hu/mwp/doc. A guide

to the use and installation of the program Mkdat is distributed via e-

mail together with the program (see x4.4).

5. Examples of application

Two representative examples of the application of the present

procedure are presented: a submicrometre-grain-size copper

specimen produced by severe plastic deformation (x5.1) and a lead

sul®de (galena) sample produced by ball milling (x5.2).

5.1. The microstructure of submicrometre-grain-size copper deter-

mined by the MWP procedure

High-purity oxygen-free copper that had been severely plastically

deformed by a single pass of equal-channel angular pressing (ECA)

was kindly provided by Professor Valiev (Valiev et al., 1994). The ®rst

six re¯ections were measured in a special high-resolution double-

crystal diffractometer with negligible instrumental broadening

(UngaÂr & BorbeÂ ly, 1996). The MWP procedure was applied by ®tting

both the Fourier transforms and the intensity pro®les. The measured

and ®tted Fourier coef®cients and the measured and ®tted intensity

pro®les are shown in Figs. 1 and 2, respectively. The good quality of

the ®tting can be observed for both the Fourier coef®cients and the

intensity functions. The intensity functions are shown in logarithmic

scale, indicating that the ®t is satisfactory down to 10ÿ2±10ÿ3,

depending on the quality of the measurement of the tail region of the

pro®les. The median, m, and the variance, �, of the size distribution

function, the three crystallite size parameters, D, d and L0, the q

parameter of the dislocation contrast factors, and the density, �, the

outer cut-off radius, R�
e , and the arrangement parameter, M*, of the

dislocations, obtained by ®tting the Fourier transforms or the inten-

sity pro®les are listed in Table 1. It can be seen that the size values

obtained by ®tting the intensity functions are smaller than the values

given by the ®tting of the Fourier transforms.

The crystallite size distribution has also been determined by

transmission electron microscopy (TEM) (UngaÂr, Gubicza et al.,

2001). The size distribution functions corresponding to the m and �
values in Table 1 and that obtained from the TEM measurements are

shown in Fig. 3. It can be seen that the size distribution obtained from

the Fourier coef®cients shows a qualitatively better match with the

TEM data than the size distribution function obtained from the ®tting

to the intensity functions. From this we conclude that if the tail

regions of the pro®les, in particular the intensity distributions below

one half of the maximum, can be measured with suf®cient accuracy,

the ®tting of the Fourier coef®cients may provide microstructure data

that are closer to reality. Note, however, that in the case of strongly

overlapping peaks, ®tting to the whole intensity of non-separated

pro®les would be most successful. This procedure, using the ab initio

physical functions, is still under development.

5.2. The microstructure of ball-milled lead sulfide (galena) deter-

mined by the MWP procedure

A large number of natural PbS (galena) samples were ball-milled

and in some cases heat treated in order to produce a microstructural

map of galena produced by different crushing and heating procedures

(Martinetto, 2000; UngaÂr, Martinetto et al., 2001). The purpose of this

study was to investigate the manufacturing processes of ancient

Egyptian cosmetics produced from galena (Walter et al., 1999;

Martinetto, 2000).

Powder diffraction patterns of the crushed and heated natural

galena specimens and of the archeological samples were measured at

the high-resolution powder diffraction beamline BM16 of the ESRF

Figure 2
The measured (solid line) and theoretical ®tted (dashed line) intensity pro®les in
logarithmic scale for the copper sample, plotted by the program Evaluate. The
indices of the re¯ections are indicated.

Table 1
Data for the copper specimen.

(a) The median, m, and the variance, �, of the size distribution function, and the three
crystallite size parameters, D, d and L0, obtained by ®tting the Fourier transforms or the
intensity pro®les.

m � D d L0

MWP method using the Fourier transforms 62 0.53 153 123 83
MWP method using the intensity functions 20 0.75 155 108 55

(b) The q parameter of the dislocation contrast factors, and the density, �, the outer cut-
off radius, R�

e , and the arrangement parameter, M*, of the dislocations, obtained by ®tting
the Fourier transforms or the intensity pro®les.

q � (1014 mÿ2) R�
e (nm) M*

MWP method using the Fourier transforms 1.84 16.7 5.7 0.24
MWP method using the intensity functions 1.89 14.9 5.7 0.22

Figure 3
The crystallite size distribution density for the copper specimen obtained by ®tting
the Fourier transforms of the diffraction peaks (solid line) and the intensity pro®les
(dashed line), and that obtained from TEM micrographs (dotted columns).
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in Grenoble, France (Martinetto, 2000; UngaÂr, Martinetto et al.,

2001). The powder diffractograms were evaluated to obtain the

microstructural parameters by the procedure described here (UngaÂr,

Martinetto et al., 2001). Figs. 4 and 5 show a representative example

(the natural galena sample, planetary-ball-milled for 1 h) of the ®tting

of the Fourier coef®cients and the intensity pro®les, respectively, by

the program Evaluate. An excellent match between the measured and

the ®tted theoretical Fourier coef®cients (Fig. 4) and between the

measured and the ®tted theoretical intensity functions (Fig. 5) is

observed. The median, m, and the variance, �, of the size distribution

function, the three crystallite size parameters, D, d and L0, the q

parameter of the dislocation contrast factors, and the density, �, the

outer cut-off radius, R�
e , and the arrangement parameter, M*, of the

dislocations, obtained by ®tting of the Fourier transforms or the

intensity pro®les are listed in Table 2.

6. Problems occurring during the fitting procedure and how
to avoid them

After the evaluation of more than about 100 powder diffraction

patterns by the present procedure, experience with the program has

shown that in about 10% of the cases, the determination of � and R�
e

(or M*) becomes unstable. This means that the M-L method enters

into an ill-de®ned asymptotic minimum of �2 and the values of � and

R�
e tend to in®nity or zero. The problem can be recognized by

unrealistically high and low values of � and R�
e , and extremely large

asymptotic standard errors given by the M-L code. The problem can

be overcome by introducing a constraint by ®xing the value of M*.

The application of this constraint means practically that the product

of �1/2 and R�
e is ®xed. This constraint is an option of the program

Evaluate, available when the initial parameter values are speci®ed.

7. Summary and conclusions

A novel method and the corresponding software have been devel-

oped to provide the crystallite size and the crystallite size distribution

function, the dislocation density and the dislocation character of

crystalline materials from powder diffractograms. The procedure is

based on ab initio physical functions describing the concomitant size

and strain contribution to broadened physical pro®les. The size

pro®le is evaluated by assuming spherical crystallite shape and

lognormal size distribution functions. The Fourier transform of the

size pro®le has been derived in a simple form that is easy to use in

numerical calculations. Both the size pro®le and its Fourier transform

have been derived for ellipsoidal crystallites also, allowing for

anisotropy in the shape. Strain anisotropy is taken into account by

assuming that strain is caused by dislocations. The spatial dependence

of the mean square strain in the Fourier transform of the strain

pro®les is described by the function calculated for dislocations by

Wilkens (1970). The hkl dependence of the mean square strain is

given by the dislocation contrast factors.

The software has been developed according to two different types

of ®tting philosophy. In the ®rst, the Fourier coef®cients of the

measured physical pro®les are ®tted by the theoretical Fourier

coef®cients, consisting of the product of the theoretical size and strain

Fourier coef®cients. In the second, the measured physical pro®les are

®tted by the theoretical intensity pro®les, produced by the inverse

Fourier transform of the theoretical Fourier coef®cients. In both

cases, the microstructural parameters, m, �, ", �, R�
e and q (or a1, a2),

are provided by the nonlinear Marquardt±Levenberg ®tting proce-

dure. The software requires as input either the measured physical

pro®les after background subtraction and stripping of overlapping

peaks, or the Fourier coef®cients of the same measured physical
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Figure 4
The measured (solid line) and theoretical ®tted (dashed line) Fourier transforms
for the PbS sample as a function of the Fourier variable (frequency), L, plotted by
the program Evaluate. The difference plot is also given, in the bottom of the ®gure.
The indices of the re¯ections are indicated.

Figure 5
The measured (solid line) and theoretical ®tted (dashed line) intensity pro®les for
the PbS sample, plotted by the program Evaluate. The difference plot is also given,
in the bottom of the ®gure. The indices of the re¯ections are indicated.

Table 2
Data for the PbS specimen.

(a) The median, m, and the variance, �, of the size distribution function, and the three
crystallite size parameters, D, d and L0, obtained by ®tting the Fourier transforms or the
intensity pro®les.

m � D d L0

MWP method using the Fourier transforms 21 0.73 148 100 52
MWP method using the intensity functions 8 0.87 140 85 35

(b) The q parameter of the dislocation contrast factors, and the density, �, the outer cut-
off radius, R�

e , and the arrangement parameter, M*, of the dislocations, obtained by ®tting
the Fourier transforms or the intensity pro®les.

q � (1014 mÿ2) R�
e (nm) M*

MWP method using the Fourier transforms ÿ6 13 3.2 0.12
MWP method using the intensity functions ÿ4.9 12.5 2.8 0.1
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pro®les after the same corrections. In the latter case, if instrumental

correction was performed by the Stokes method, the input data

would be provided directly.

The software is available via the Web front-end (http://www.

renyi.hu/mwp) for users accepting the terms and conditions of usage.

The program for separating overlapping peaks and background

subtraction is available from the authors upon request.

The authors are indebted to Drs P. Martinetto and E. Dooryhee for

the powder diffractogram of PbS (galena). The authors are grateful to

the AlfreÂd ReÂnyi Institute of Mathematics, Hungarian Academy of

Sciences, for assuring the WWW front-end. The authors are grateful

for the ®nancial support of the Hungarian Scienti®c Research Fund,

OTKA, grant Nos. T031786, T029701 and D29339.
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