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ABSTRACT 
 

The crystallite size and size-distribution in the presence of strain is determined in carbon 
blacks by a recently developed procedure of X-ray diffraction peak profile analysis. The Fourier 
coefficients of the measured physical profiles are fitted by Fourier coefficients of well 
established ab initio functions of size and strain peak profiles. Strain anisotropy is accounted for 
by the dislocation model of the mean square strain in terms of average dislocation contrast 
factors. Crystallite shape anisotropy is modelled by ellipsoids incorporated into the size profile 
function. The Fourier transforme of the size profile is given as an explicite formula making the 
fitting procedure fast. The method is applied to carbon balcks terated at different preassures and 
temperatures. The microstructure is characterised in terms of crystallite size-distribution, 
dislocation density and crystallite shape anisotropy.  
 

INTRODUCION 
 
X-ray diffraction peak profile analysis is a widely used method for the determination of 
crystallite size and lattice defect structure in crystalline materials. The evaluation procedures are 
based on the diffraction order dependence of size and strain. In the simplest case size is 
independent and strain is dependent on diffraction order. Both dependencies become, however 
complicated if shape or strain are anisotropic. Shape anisotropy can be modelled by cilindrical or 
flat bodies [1], strain anisotropy has been account for either by a phenomenological model of 
anisotropic elastic constants [2] or by the anisotropic strain fields of dislocations [3,4]. The 
crystallite size-distribution has recently been suggested to be determined by whole profile fitting 
in the absence of strain by using theoretically calculated size profiles [5]. The strain profile in 
dislocated crystals has been derived by Wilkens in the form of  Forier transforms [6]. In the 
present work a procedure is described in which the Fourier coefficients of the experimentally 
determined physical peak profiles are fitted by the Fourier transforms of ab initio size and strain 
profiles. The only fitting parameters are well established physical parameters characteristic of the 
microstructure: (i) m and (ii) σ, the median and the variance of the log-normal crystallite size 
distribution function, (iii) ρ and (iv) M, the density and the arrangement parameter of 
dislocations and (v) q or A and B, the relevant parameters describing the average dislocation 
contrast factors in cubic or hexagonal crystals, respectively. In the case of shape anisotropy a 
further fitting parameter can be introduced to characterise, for example, the ellipticity of 
crystallite shape. The procedure will be illustrated by the application to representative carbon 
black specimens. A more detailed account of the results is given and discussed in an other paper 
of the present proceedings [7]. 
 



EVALUATION OF X-RAY DIFFRACTION PROFILES 
 
Within the kinematical theory of X-ray diffraction the physical profile of a Bragg reflection is 
given by the convolution of the size and the distortion profiles [8]: 
 

IF=IS*ID , (1) 
 
where the superscripts S and D stand for size and distortion, respectively. The Fourier transform 
of this equation is known as the Warren-Averbach method [8]: 
 

ln A(L) ≅ ln AL
S - 2π2L2g2 <εg,L2> , (2) 

 
where A(L) are the absolute values of the Fourier coefficients of the physical profiles, AL

S are the 
size Fourier coefficients, g is the absolute value of the diffraction vector and <εg,L

2> is the mean 
square strain. L is the Fourier length defined as L=na3 [8], where a3=λ/2(sinθ2-sinθ1), n are 
integers starting from zero, λ is the wavelength of X-rays and (θ2-θ1) is the angular range of the 
measured diffraction profile. Equations (1) and (2) tell that the size and strain profiles are in 
convolution and the Fourier coefficients are in product. Once we know these functions it is only 
a question of skillful numerical calculus to make a fitting between experiment and theory. The 
Fourier transform of the size profile for ellipsoidal crystallite shape with log-normal size 
distribution can be given as [9]: 
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where erfc is the complementary error function, σ is the variance and mhkl is the median of the 
log-normal size distribution function in the hkl direction. mhkl depends on the indeces of 
reflections in the following way: 
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where  m is the median of the size distribution paralel to the hexagonal basal plane, c/a is the 
ratio of the lattice constants of the hexagonal crystal and ε is the aspect ratio of the ellipsoid. 
For spherical crystallites with log-normal size distribution the area-, volume- and arithmetically 
weighted mean crystallite sizes are obtained as [10]: 
 



<x>area=m exp(2.5 σ2).       (5) 
 

<x>vol=m exp(3.5 σ2).        (6) 
 

<x>arithm=m exp(0.5 σ2).       (7) 
 

The mean square strain in dislocated crystals [6]: 
 

<εg,L
2> = (b/2π)2πρC f(η) , (8) 

 
where η~L/Re, Re is the effective outer cut off radius of dislocations, b, ρ and C are the Burgers 
vector, the density and the contrast factors of dislocations and f(η) is the L dependence of the 
mean square strain in a dislocated crystal. In the following f(η) will be called the Wilkens 
function. This function starts with a logarithmic term and continue as a hyperbola for large L
values: 
 

f(η) ~ - lnη + (
4
7 -ln2) + . . .  for η < 1 (9a) 

 

f(η) ~ -
ηπ
1

90
512  + . . .   for η > 1 (9b) 

 
The detailed expressions for f(η) are given in equations A.6 to A.8 in [6] and have been cited in 
eqs. (22) and (23) in [9]. In the procedure developed here the full expressions in A.6 to A.8 in [6] 
were used. 
 The average dislocation contrast factors are the weighted average of the individual C
factors either over the dislocation population or over the permutations of the hkl indices [11,12]. 
Based on the theory of line broadening caused by dislocations it can been shown that in an 
untextured cubic and hexagonal polycrystalline specimen the values of C are simple functions of 
the invariants of the fourth order polynomials of hkl [13]: 
 

C = 00hC (1-qH2) (10) 
 
and 
 

C = 0hkC ( )
( )
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respectively, where 00hC and 0hkC are the average dislocation contrast factors for the h00 and 
hk0 reflections, respectively, H2=(h2k2+ h2l2+ k2l2)/(h2+k2+l2)2; q, A and B are parameters 
depending on the elastic constants and on the character of dislocations (e.g. edge or screw type) 
in the crystal and c/a is the ratio of the two lattice constants of the hexagonal crystal. 



CORRECTIONS FOR INSTRUMENTAL EFFECTS, BACKGROUND AND 
OVERLAPPING PEAKS  
 

In the present case strong overlap of the diffraction profiles has been observed. The 
overlapping peaks have to be separated since the present evaluation method is worked out for 
individual profiles. Background subtraction and the separation of overlapping peaks is carried 
out in one step. Two or more analytical functions, usually of PearsonVII or Pseudo-Voigt type 
plus a linear background are fitted to the overlapping peaks. In the next step the unwanted fitted 
peaks together with the linear background are subtracted leaving the targeted peak free of 
overlap and background. The procedure is then repeated for the other targeted peaks. The 
separated profiles are taken as individual diffraction profiles in the evaluation procedures.  
 Due to very large strains and nanometric crystallite size peak broadening of the carbon 
black specimens is about two orders of magnitude larger than the instrumental effects. For this 
reason no instrumental corrections were necessary to be carried out. If, however, the instrumental 
effect can not be neglected the function fitted to the Fourier transform of the observed profiles 
would be the product of the size, the strain and the instrumental Fourier coefficients in 
accordance with Stokes correction [14]. 
 
RESULTS AND DISCUSSION 

The diffraction profiles were measured in a Philips X’pert diffractometer using Cu anode 
and pyrolitic graphite secondary monochromator. In order to have good counting statistics 
matched with the peak brodening the step size and countimg time in one step were selected as: 
0.01 Deg. (2θ) and 10 sec, respectively. Two typical powder patterns are shown in Fig. 1. 
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