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In this paper, we provide the derivation of a super compact pairwise (PW) model with only four equations
in the context of describing susceptible–infected–susceptible (SIS) epidemic dynamics on heterogenous
networks. The super compact model is based on a new closure relation that involves not only the aver-
age degree but also the second and third moments of the degree distribution. Its derivation uses an a
priori approximation of the degree distribution of susceptible nodes in terms of the degree distribution
of the network. The new closure gives excellent agreement with heterogeneous PW models that contain
significantly more differential equations.

Keywords: SIS epidemic; pairwise model; triple closure.

1. Introduction

While networks have provided a new modelling paradigm for population dynamics [1–3], these are still
used in conjunction with mean-field models of various types. The most frequently used and well-known
mean-field models for network epidemics are the degree-based mean-field model, also known as het-
erogeneous mean-field [3,4], and pairwise (PW) model [5–7]. Both continue to provide a productive
framework for approximating expected values of random variables emerging from explicit network-
based stochastic simulations in different contexts and networks with different properties. The major
advantage of such mean-field models stems from the fact that often these allow us to analytically deter-
mine quantities such as the basic reproduction number, final epidemic size or endemic equilibrium [4,6].
Such analytic expressions then lead to a significantly better understanding of the interplay between net-
work and disease characteristics.

PW models have originally been introduced in the context of mathematical ecology [8] followed
by natural extensions to epidemiology [6]. The original simple model for undirected and unweighted
networks has been subsequently extended to networks with heterogenous degree [9], directed net-
works [10], weighted networks [11], networks displaying motifs [12] and even combined with the
edge-based compartmental modelling framework for an even more compact treatment [7].

c© The authors 2015. Published by Oxford University Press. All rights reserved.
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Fig. 1. SIS epidemic propagation on a bimodal configuration random graph: simulation (gray thick curve), PW (dashed), compact
PW (continuous), heterogeneous PW (circles). The parameter values are N = 1000 nodes, half of nodes have degree k1 = 5 while
the other half have degree k2 = 35. The recovery and per contact transmission rate are γ = 1 and τ = 3γ 〈k〉/〈k2〉, respectively.
The moments are defined as 〈ki〉 = ∑

kip(k), where p(k) is the network’s degree distribution.

The closure in the most basic or fundamental PW model is based on the assumption on homogeneity
of the degree distribution, i.e. all nodes have approximately the same degree n. Hence, the conventional
PW model cannot be applied for graphs with heterogeneous degree distribution, such as bimodal graphs
or networks with power law degree distribution. This is shown in Fig. 1. For heterogeneous networks, a
corresponding PW model was introduced in [9]. This gives excellent agreement with simulations for all
configuration-like random networks [13], see Fig. 1. The heterogeneous PW model consist of order N2

differential equations, where N denotes the number of nodes in the network. An approximation of pairs
leads to a simpler system, called compact PW model that consist of only order N equations [7] and still
gives very good agreement with simulations, see Fig. 1.

The aim of this paper is to introduce an even simpler model with only four equations that performs
well for large heterogeneous networks. The system is derived from the compact PW model by intro-
ducing a further approximation, and using a closure relation that contains not only the average of the
network’s degree distribution but also its second and third moments.

2. Derivation of the super compact PW model

2.1 PW model for homogenous networks

We start from the exact PW model. For the SIS epidemic on an arbitrary undirected network, the
expected values of [S], [I], [SI], [II] and [SS] satisfy the following system of differential equations:

˙[S] = γ [I] − τ [SI], (1)

˙[I] = τ [SI] − γ [I], (2)
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˙[SI] = γ ([II] − [SI]) + τ([SSI] − [ISI] − [SI]), (3)

˙[SS] = 2γ [SI] − 2τ [SSI], (4)

˙[II] = −2γ [II] + 2τ([ISI] + [SI]), (5)

where [X ], [XY] and [XYZ] denote the expected number of nodes in state X , edges in state X − Y
and triples in state X − Y − Z, respectively. For example, assuming the network at an arbitrary but
fixed point in time, with all nodes labelled either S or I, the number of nodes in state S is simply
[S] = ∑N

i=1 Si, where Si returns 1 if node i is susceptible and zero otherwise. Similarly, the number
of S − I links is [SI] = ∑N

i=1 gijSiIj, where the network is defined in terms of a symmetric adjacency
matrix G = (gij)i,j=1,2,...,N with no self-loops and with binary entries. As before, Ij returns 1 if node j is
infected and zero otherwise. This effectively means that for undirected networks [XY] = [YX], [XX] is
double the number of unique edges in state X − X , and similarly X − Y − X accounts twice for a unique
X − Y − X triple, where X , Y ∈ {S, I}. The parameters τ and γ denote the per contact transmission and
recovery rate, respectively. This system is derived directly from master equations in [14] and hence
exact. We note that some of the equations can be omitted by exploiting conservation identities, such as
[S] + [I] = N .

It is well known that in order to transform equations (1)–(5) into a self-consistent solvable system
closures need to be applied in order to break dependency on higher order moments. Particularly useful
are closures at the level of triples. As it is well known, the simplest closure is

[ASI] ≈ n − 1

n

[AS][SI]

[S]
= (n − 1)[AS]

[SI]

n[S]
, (6)

where n = 〈k〉 is the average degree of the network, and A stands for S or I. Intuitively, the closure means
that the number of A − S − I triples can be counted by considering all (n − 1)[AS] stubs emanating from
S nodes which are already connected to a node in state A and multiplying this by the probability that
such stubs will connect to an infectious node, i.e. [SI]/n[S]. This closure leads to the traditional PW
system

˙[S]p = γ [I]p − τ [SI]p, (7)

˙[I]p = τ [SI]p − γ [I]p, (8)

˙[SI]p = γ ([II]p − [SI]p) + τ
n − 1

n

[SI]p([SS]p − [SI]p)

[S]p
− τ [SI]p, (9)

˙[SS]p = 2γ [SI]p − 2τ
n − 1

n

[SI]p[SS]p

[S]p
, (10)

˙[II]p = −2γ [II]p + 2τ
n − 1

n

[SI]2
p

[S]p
+ 2τ [SI]p. (11)

Here the subscript p is used to emphasize that the solution of this system is different from the exact
values of the expected variables. As Fig. 1 shows, this system cannot capture network heterogeneities,
hence closure (6) needs improvement.
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2.2 PW models for heterogenous networks: the heterogeneous, pre-compact and compact PW models

The problem with closure (6) is that it assumes that each node has degree n, which is obviously a crude
approximation for heterogeneous networks. This has led to several heterogeneous mean-field models,
where the state space is much extended to account for the expected number of nodes in different states
and with a given degree, i.e. [Sk](t) and [Ik](t) for the expected number of susceptible and infected
nodes of degree k, respectively. These new variables will induce or require further variables at pair
level, such as [SkIl](t) which denotes the expected value of the number of edges connecting susceptible
nodes of degree k to infected nodes of degree l. In this spirit, the following heterogeneous models were
developed in historical order:

• heterogeneous PW model [9],

• pre-compact PW model [9] and

• compact PW model [7].

Instead of presenting the systems of differential equations of these models and working from the
most explicit or complex to the more compact one, we start from the simplest model and show in an
intuitive way how the more sophisticated models arise. Since closure (6) uses the degree of the middle
node, it is useful to express the triple as

[ASI] =
K∑

k=1

[ASkI],

where the different degrees occurring in the graph are k = 1, 2, . . . , K. The closure for the triples in the
right-hand side can be written as

[ASkI] ≈ k − 1

k

[ASk][SkI]

[Sk]
. (12)

In order to use this closure in the exact system (1)–(5), one needs differential equations for [Sk], for
[SkI] and for [SkS]. The exact differential equations for [Sk] are

˙[Sk] = γ [Ik] − τ [SkI], k = 1, 2, . . . , K, (13)

where the substitution [Ik] = Nk − [Sk] can be used. The simplest heterogeneous model [7] uses only
[Sk] as new variables and introduces an algebraic expression that approximates [SkI] and [SkS] in terms
of [Sk], [SI] and [SS] as follows:

[SkI] ≈ [SI]
k[Sk]∑K
l=1 l[Sl]

, (14)

which can be interpreted as showing that the ratio of the number of edges connecting degree k suscep-
tible nodes to infected nodes and the number of SI edges is almost the same as the ratio of the number
of stubs starting from degree k susceptible nodes and the total number of stubs starting from susceptible
nodes. Using this approximation, closure (12) can be simplified as given below

[ASkI] ≈ k − 1

k

[ASk][SkI]

[Sk]
≈ k − 1

k

[AS][SI]k2[Sk]

S2
1

= [AS][SI]k(k − 1)[Sk]

S2
1

, (15)
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where S1 = ∑N
k=1 k[Sk] is the first moment of the distribution of susceptible nodes. This leads to the

so-called compact PW model, in which the variables are: [SI], [SS], [II] and [Sk] for k = 1, 2, . . . , K, i.e.
it contains K + 3 differential equations. In fact, the system consists of equations (13), and (3)–(5) with
the above-mentioned closures and approximations, namely (14) and (15). Thus, it takes the form

˙[Sk]c = γ [Ik]c − τk[Sk]c
[SI]c

Ss
, (16)

˙[Ik]c = τk[Sk]c
[SI]c

Ss
− γ [Ik]c, (17)

˙[SI]c = γ ([II]c − [SI]c) + τ([SS]c − [SI]c)[SI]cP − τ [SI]c, (18)

˙[SS]c = 2γ [SI]c − 2τ [SS]c[SI]cP, (19)

˙[II]c = 2τ [SI]c − 2γ [II]c + 2τ [SI]2
cP, (20)

Ss =
K∑

k=1

k[Sk]c, P = 1

S2
s

K∑
k=1

(k − 1)k[Sk]c. (21)

Here the subscript c, referring to the word ‘compact’, is used to emphasize that the solution of this
system is different from the exact expected values.

The next level of complexity is represented by the pre-compact PW model, in which the variables
[SkI] and [SkS] are kept as independent variables and differential equations for these are written down.
Thus, the systems can be formulated in terms of variables, such as [Sk], [SkS], [SkI], [IkS] and [IkI],
i.e. resulting in a total of 5K variables. This can be done by considering the closure introduced in [9]
which is

[AnBm] = [AnB][AnB]

[AB]

[NnNm]
∑

q q[Nq]

n[Nn]m[Nm]
, (22)

where Nk denotes the number of nodes of degree k. It is worth noting that this system is not able to
account for preferential mixing.

The most complex system, which we call heterogeneous PW model, uses all combinations of pairs
as variables, namely [SkSl], [SkIl] and [IkIl]. Hence, it consists of 2K2 differential equations. At the price
of having a system with the number of equations of quadratic order, we do not need any extra approxi-
mations (besides the closures), such as (14) in the compact PW model, or (22) for the pre-compact PW
model. Without explicitly including the closures, the most complex system can be written as

˙[Sk] = −τ
∑

l[SkIl] + γ [Ik], (23)

˙[Ik] = +τ
∑

l[SkIl] − γ [Ik], (24)

˙[SkSl] = −τ
∑

m

([ImSkSl] + [SkSlIm]) + γ ([SkIl] + [IkSl]), (25)
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˙[SkIl] = +τ
∑

m

([SkSlIm] − [ImSkIl]) − (τ + γ )[SkIl] + γ [IkIl], (26)

˙[IkIl] = +τ
∑

m

([ImSkIl] + [IkSlIm]) + τ([SkIl] + [IkSl]) − 2γ [IkIl], (27)

with all subscripts going from 1, 2, . . . , K.

2.3 Super compact PW model with heterogeneous triple closure

We now show that the network heterogeneity can be captured by a small system, containing only
four differential equations, just as in the simplest PW model. Consider a random network with
degrees d1, d2, . . . , dK and denote the number of nodes of degree dk by Nk for k = 1, 2, . . . , K, i.e.
N1 + N2 + · · · + NK = N . We point out that denoting degrees as dk instead of k will prove to be advan-
tageous in the derivation below. The degree distribution of the graph is then given by pk = Nk/N . The
average degree and the second moment of the degree distribution are

〈k〉 = 1

N

K∑
k=1

dkNk , 〈k2〉 = 1

N

K∑
k=1

d2
k Nk . (28)

In order to arrive to our new even more simplified system, the super compact PW model, we start
from a triple and the closure given in (15)

[ASI] =
N∑

k=1

[ASkI] ≈ [AS][SI]

S2
1

N∑
k=1

dk(dk − 1)[Sk] = [AS][SI]
S2 − S1

S2
1

,

where we used closures (12) and (14), and where S2 = ∑K
k=1 d2

k [Sk] is the second moment of the dis-
tribution of susceptible nodes. Thus, in order to use this closure in the exact system (1)–(5) one needs
an algebraic expression of S2 and S1 in terms of variables [S], [I], [SI], [II] and [SS] only. Expressing
the total number of stubs starting from susceptible nodes we get S1 = [SI] + [SS] as an exact relation.
Thus, the problem arises from the fact that such an exact relation is not available for the second moment
S2. Our heuristic idea to obtain a good approximation of (S2 − S1)/S2

1 is the following. Dividing the
equation [S] = ∑K

k=1[Sk] by [S], we get that [Sk]/[S] is a probability distribution. The expected value of
this distribution is known, it is

K∑
k=1

dk
[Sk]

[S]
= nS := [SI] + [SS]

[S]
,

or in other words the average degree of susceptible nodes. Our idea is to use an a priori approximating
distribution for [Sk]/[S] that will be denoted by sk . This approximating distribution satisfies

s1 + s2 + · · · + sK = 1, (29)

d1s1 + d2s2 + · · · + dKsK = nS . (30)

In order to get an a priori approximating distribution, we determined [Sk]/[S] numerically from the
compact PW model and compared it with pk = Nk/N , the degree distribution of the graph. Numerical
results show that these are linearly related, meaning that sk/pk is a linear function of the degree dk . More
precisely, sk/pk can be written as A(t)dk + B(t), where A and B are time dependent with this relation
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assumed to hold for all degrees. This allows us to deal with the heavily under determined linear system
given by equations (29) and (30). Introducing the notation qk = sk/pk , the assumption on linearity can
be formulated as

qk − q1

dk − d1
= qK − q1

dK − d1
, k = 1, 2, . . . , K.

This yields an expression for qk in terms of q1, qK and the degrees dk as

(dK − d1)qk = (dk − d1)qK + (dK − dk)q1.

Multiplying this equation by pk , we get the following relation between sk and pk:

(dK − d1)sk = pk(dk − d1)qK + pk(dK − dk)q1. (31)

Observe that q1 and qK can be determined from system (29) and (30) by substituting the above expres-
sion for sk . Namely, we obtain

(dK − d1) = (n1 − d1)qK + (dK − n1)q1, (32)

(dK − d1)nS = (n2 − n1d1)qK + (n1dK − n2)q1, (33)

where ni =
∑K

k=1 di
kpk is the ith moment of the degree distribution. (It is more convenient to use n1 and

n2 instead of 〈k〉 and 〈k2〉.) Solving the linear system (32) and (33) for q1 and qK , we get

(n2 − n2
1)q1 = n2 − n1nS + d1(nS − n1), (34)

(n2 − n2
1)qK = n2 − n1nS + dK(nS − n1). (35)

Substituting these expressions into (31) leads to

(dK − d1)(n2 − n2
1)sk = pk(dk − d1)(n2 − n1nS + dK(nS − n1))

+ pk(dK − dk)(n2 − n1nS + d1(nS − n1)).

Now we are in the position of determining the approximate second moment of the distribution sk .
Multiplying the above equation by d2

k and summing from k = 1 to k = K, some simple algebra yields

(n2 − n2
1)

K∑
k=1

d2
k sk = n2(n2 − nSn1) + n3(nS − n1).

Note that the third moment n3 of the degree distribution comes into play. Thus, the desired quantity S2

can be approximated as

S2 =
K∑

k=1

d2
k [Sk] ≈

K∑
k=1

d2
k [S]sk = [S]

n2(n2 − nSn1) + n3(nS − n1)

n2 − n2
1

.

Hence, using S1 = [SI] + [SS] = nS[S] we get

S2 − S1

S2
1

≈ 1

n2
S[S]

(
n2(n2 − nSn1) + n3(nS − n1)

n2 − n2
1

− nS

)
.
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Therefore, the new closure relation is

[ASI] = [AS][SI]

nS[S]

(
n2(n2 − nSn1) + n3(nS − n1)

nS(n2 − n2
1)

− 1

)
. (36)

We note that in the case of a homogeneous network, where each node has degree n, we have nS = n
and the average degree is n1 = n. Hence, the expression in the bracket simplifies to n2/n − 1. Moreover,
the second moment is n2 = n2. Therefore, this term is simply (n − 1) and leads to the traditional closure
[ASI] = ((n − 1)/n)([AS][SI]/[S]).

Using the new closure (36) in the PW model (1)–(5) gives the super compact PW model in the
following form:

˙[S]s = γ [I]s − τ [SI]s, (37)

˙[I]s = τ [SI]s − γ [I]s, (38)

˙[SI]s = γ ([II]s − [SI]s) + τ [SI]s([SS]s − [SI]s)Q − τ [SI]s, (39)

˙[SS]s = 2γ [SI]s − 2τ [SI]s[SS]sQ, (40)

˙[II]s = −2γ [II]s + 2τ [SI]2
s Q + 2τ [SI]s, (41)

where

Q = 1

nS[S]

(
n2(n2 − nSn1) + n3(nS − n1)

nS(n2 − n2
1)

− 1

)
, nS := [SI] + [SS]

[S]
.

In the next section, we show that this new super compact PW model gives an as accurate output as the
compact PW model, despite of the fact that it contains significantly fewer differential equations.

3. Performance of the new closure for different networks

As it was shown in Section 1 in Fig. 1, the heterogeneous PW and compact PW models give very
good agreement with simulations, hence we compare the super compact PW model with the new clo-
sure to the compact PW model. This comparison will be done for different heterogeneous networks.
Thus, systems (7)–(11), (16)–(20) and (37)–(41) will be solved numerically and the time dependence
of [I]p, [I]c and [I]s are compared, where [I]c = ∑N

k=1[Ik]c is the total number of infected nodes in the
compact PW model. The parameters of the epidemic are fixed at γ = 1 and τ = 3γ 〈k〉/〈k2〉. The later
is chosen in such a way that the ratio of τ and its critical value τcr = γ 〈k〉/〈k2〉 is a given constant.
Here, this ratio is chosen to be 3, its actual value has only a minor influence on the results, gener-
ally this need to be greater than 1 to have an epidemic. We note that τ has been chosen to avoid the
‘close to threshold’ regime, where mean-field models generally fail to accurately predict simulation
results [15,16].

Let us consider first the case of bimodal random graphs, where there are two different degrees d1

and d2, N1 denotes the number of nodes with degree d1 and N2 denotes the number of nodes with degree
d2, that is, N1 + N2 = N . In order to investigate the effect of graph structure, the ratio of low and high
degree nodes, i.e. N1 and N2, is varied. The degrees are fixed at k1 = 5 and k2 = 35. In Fig. 2, the
curves [I]p, [I]c and [I]s are shown in three cases. The average degree and the standard deviation of
the degree distribution is shown in Table 1. One can see that the new system agrees with and is almost
indistinguishable from the compact PW model, in fact for bimodal graphs [I]s coincides with [I]c since
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Fig. 2. The curves [I]p (dashed), [I]c (continuous) and [I]s (circles) for a bimodal graph with different ratios of the number
of low and high degree nodes. The upper curves correspond to N1 = 0.1N , N2 = 0.9N , the middle ones are based on N1 =
0.5N , N2 = 0.5N and the lower are for N1 = 0.9N , N2 = 0.1N . The parameter values are N = 1000, k1 = 5, k2 = 35, γ = 1 and
τ = 3γ 〈k〉/〈k2〉.

Table 1 The average degree and the standard deviation of the
degree distribution of the graphs for which the performance of the
new closure was tested. For bimodal graphs the degrees are k1 = 5
and k2 = 35, the numbers in the first column indicate the proportion
of low degree nodes, i.e. N1/N. For the sparse power law graphs
the degrees vary between kmin = 1 and kmax = 35, for the dense one
kmin = 10 and kmax = 140, the power is α = 2

Network 〈k〉
√

〈k2〉 − 〈k〉2

Bimodal 0.1 32 9
Bimodal 0.5 20 15
Bimodal 0.9 8 9
Power law sparse 10.1 5.9
Power law dense 28.4 26.01

equations (29) and (30) provide a unique solution without involving any approximations. Figure 2 shows
that the traditional PW model performs relatively well only in the case when the standard deviation is
small, that is, the graph is nearly homogeneous.

Consider now the case of configuration random graphs with cutoff power law degree distribution.
These random graphs are given by a minimal degree kmin, a maximal degree kmax and a power α. The
degree distribution of the graph is p(k) = Ck−α for k = kmin, kmin + 1, . . . , kmax with the normalization
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Fig. 3. The curves [I]p (dashed), [I]c (continuous) and [I]s (circles) for sparse (lower curves) and a dense (upper curves) power
law configuration graphs. The lower curves belong to the sparse case with kmin = 5 and kmax = 30. The upper curves belong to
the dense case with kmin = 10 and kmax = 140. The power is α = 2 in both cases. The parameter values are N = 1000, γ = 1 and
τ = 3γ 〈k〉/〈k2〉.

constant C given by

1

C
=

kmax∑
k=kmin

k−α .

In Fig. 3 again, the functions [I]p, [I]c(t) and [I]s(t) are shown for a sparse and a dense power law con-
figuration graph with power α = 2. Table 1 again shows the average degree and the standard deviation of
the degree distribution of the sparse and dense networks. The value of τ in both cases is τ = 3γ 〈k〉/〈k2〉.
We can see again that the super compact PW model gives excellent agreement with the compact PW
model.

4. Epidemic threshold based on the super compact PW model

The disease-free steady state of the super compact PW models, equations (37)–(41), is given by

[I]s = 0, [S]s = N , [SI]s = 0, [SS]s = n1N , [II]s = 0,

nS = n1N

N
= n1 and Q = 1

n1N

(
n2

n1
− 1

)
.

The variables of the system are [S]s, [SI]s, [SS]s and [II]s, so the Jacobian is a 4 × 4 matrix. These vari-
ables are not independent because 2[SI]s + [SS]s + [II]s = n1N , and hence, λ = 0 will be an eigenvalue.
Using the variable ordering [S]s, [SI]s, [SS]s, [II]s and considering Q as a function of [S]s, [SI]s, [SS]s,
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i.e. Q([S]s, [SI]s, [SS]s), the Jacobian is

J =

⎛
⎜⎜⎝

−γ −τ 0 0
A B +τ [SI]sQ γ

C D E 0
F G H −2γ

⎞
⎟⎟⎠ ,

where

A = +τ [SI]s([SS]s − [SI]s)
∂Q

∂[S]s
,

B = −γ − τ + τ [SS]sQ + τ [SI]s[SS]s
∂Q

∂[SI]s
− 2τ [SI]sQ − τ [SI]2

s

∂Q

∂[SI]s
,

C = −2τ [SI]s[SS]s
∂Q

∂[S]s
,

D = 2γ − 2τ [SS]sQ − 2τ [SI]s[SS]s
∂Q

∂[SI]s
,

E = −2τ [SI]sQ − 2τ [SI]s[SS]s
∂Q

∂[SS]s
,

F = +2τ [SI]2
s

∂Q

∂[S]s
,

G = +4τ [SI]sQ + 2τ [SI]2
s

∂Q

∂[SI]s
+ 2τ ,

H = +2τ [SI]2
s

∂Q

∂[SS]s
.

Noting that the partial derivatives of Q are not needed because these are multiples of [SI]s, which
evaluates to zero at the disease-free steady state, the Jacobian at the disease-free steady state becomes

J
∣∣∣
DFSS

=

⎛
⎜⎜⎜⎜⎜⎝

−γ −τ 0 0

0 −γ − τ + τ
n2 − n1

n1
0 γ

0 +2γ − 2τ
n2 − n1

n1
0 0

0 +2τ 0 −2γ

⎞
⎟⎟⎟⎟⎟⎠

.

The characteristic polynomial is

(−λ − γ )

(
−λ − γ − τ + τ

n2 − n1

n1

)
(−λ)(−λ − 2γ ) = 0,

with its eigenvalues given by

−γ , −γ + τ

(
n2

n1
− 2

)
, 0, −γ .
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The stability of the disease-free steady state changes when γ = τ(n2/n1 − 2), which is equivalent to
R0 = 1, with

R0 = τ

γ

(
n2

n1
− 2

)
= τn1

γ

(
n2

n2
1

− 2

n1

)
.

The best benchmark for this threshold comes form the compact PW model [7] which is

R0 = τn1

γ

(
n2

n2
1

− 1

n1

)
.

The 1/n1 extra term difference highlights the strong dependency of the threshold on model choice,
where in this case, model coarse graining introduces a small correction/perturbation compared with the
compact PW model which operates at a finer scale. Referring back to our numerical tests, we point out
that we did not explicitly consider the ‘close’ to threshold regime, since the super compact PW model
is highly coarse grained and thus unlikely to produce as good as or better agreement than more detailed
or sophisticated models. This is supported by past and recent research which confirms that agreement
between mean-field and simulation models close to the threshold remains difficult to obtain and often
requires more sophisticated models, see [15,16].

The issue of the threshold’s dependency on model and the precise value of the threshold for SIS
dynamics on networks have recently been subject to a vigorous debate. In particular, Boguñá et al. [15]
have recently proposed a more sophisticated mean-field model for SIS dynamics on networks. This
model sets out to capture the global network properties and topology by considering chains of infection
which go or come from much further away than the immediate neighbours that are two links away.
Using this model, the authors manage to show that the epidemic threshold is vanishingly small in the
thermodynamic limit in all random small-world networks with degree distribution decaying slower than
exponentially.

In [16], the authors reinforce and show that different mean-field approaches lead to different out-
comes in terms of the threshold. Similarly, in [17], the authors show that the heterogenous mean-field
theory [3], with closures at the level of pairs, fails to correctly capture the transition point and finite-size
scalings close to the threshold when a contact process dynamic is considered. They provide a heteroge-
neous PW-like model which produces much better agreement with simulation, and highlight again that
(a) thresholds depend on the precise form of the mean-field model and (b) getting reasonable agreement
between simulation and mean-field models require mean-field models at a finer scale.

5. Discussion

In this paper, we derived a super compact PW model consisting of only four equations for SIS dynamics
and for heterogenous networks constructed according to the configuration model. This represents an
improvement of going from order K, where K is the number of distinct degrees in the network, to order 1
equations, namely 4. We note that the closure that made the reduction possible relies on the observation
that the distribution of susceptible nodes of degree k, which is time dependent, can be related to the
original degree distribution of the network via a simple linear relation. We note that the linear relation
may not be the single or unique choice, more sophisticated functional forms could be used based on
combinatorial arguments. Moreover, the closure will not only encompass the first and second moment
of the degree distribution but also the third. The new super compact model gives excellent agreement
with the previously derived compact PW model.
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The accuracy of the new closure can be estimated in a semi-analytic way. The numerical solution of
the compact PW will allow us to evaluate

E = S2 − S1

S2
1

− Q,

which quantifies the performance of the newly derived closure, upon using the compact PW model as a
benchmark. Moreover, it can be shown analytically that the difference |[I]s(t) − [I]c(t)| can be estimated
by a constant multiple of E.

The super compact model is a coarse grained model and it is unable to account for networks dis-
playing preferential mixing. However, it is feasible to consider modifying the closure to account for
clustering. The new model however, provides good agreement with more detailed models which are
more complex to solve even numerically and offer limited analytical tractability. This model can be
seen as an interpolation between full simulation and a more complex mean-field model and offers the
advantage of quick insight into the impact of the network’s degree distribution on epidemic dynamic.
More importantly, if prevalence data are available, it is feasible to use the super compact model with a
family of degree distributions or a single degree distribution with a number of parameters in order to try
to infer the most likely degree distribution. This could prove to be a valuable first step before working
with or developing more sophisticated models.
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