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Abstract— Avoiding low glucose concentration is critically
important in type-1 diabetes treatment. Predicting the future
plasma glucose levels could ensure the safety of the patient.
However, such estimation is no trivial task. The current paper
proposes a predictor framework which stems from Unscented
Kalman filter and works during closed-loop control, that can
predict hazardous glucose levels in advance. Once the blood
glucose concentration starts to rise, the predictor activates
and estimates future glucose levels up to 3 hours, confirming
whether the controller can endanger the patient. The capabil-
ities of the framework is presented through simulations based
on the SimEdu validated in-silico simulator.

I. INTRODUCTION

Diabetes Mellitus (DM) is a collective term referring to
several chronic metabolic diseases typically characterized by
elevated blood glucose levels, glucose excretion in the urine,
and consequentially with an increase in urine volume. Type I.
DM (T1DM) is driven by autoimmune mediated destruction
of pancreatic β-islet cells, which leads to insufficient insulin
production and elevated blood glucose levels [1]. As a
result immediate insulin treatment is needed to maintain
normal glucose concentration (normoglycemia). In the past
few decades the automation of insulin treatment has been
extensively researched [2], [3], [4], and it is usually referred
to as Artificial Pancreas (AP). Some implementations of AP
has matured to clinical testing [5], [6] with promising results.

One of the biggest dangers with any form of diabetes
treatment is hypoglycemia (a condition where the blood
glucose concentration is going below 3.9 mmol/L), which
can result in a variety of symptoms and can lead to loss of
consciousness, seizures and even death [1]. Thus, for any
(semi-) automated treatment, it is crucial to avoid hypo-
glycemia.

This is however, no easy task for a variety of reasons
including:

1) If the controller can only administer insulin, it has no
means to elevate glucose levels.

2) Even rapid-acting insulin - if injected subcutaneously
- has significantly slower effect on the plasma glucose
concentration than meal intake or physical activity.

3) The dynamics of the human metabolism concerning
glucose is slower when the glucose levels are lower
compared to when they are high [7].
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Thus, to reduce the duration and severity of hyperglycemic
episodes (glucose concentration exceeding 7.8 mmol/L), the
controller must inject insulin shortly after a meal intake.
While in the attempt to avoid high glucose levels, hypo-
glycemia can occur if too much insulin is administered. It is
suspected, that relying solely on feedback, where the timing
and amount of meal intake of the patient is unknown, cannot
achieve clinically acceptable quality tight glycemic control
[8], [9].

Predicting future glucose concentrations could help to
avoid such severe outcomes. Various methods have been
introduced to achieve reliable estimations [10], [11].

The goal of the work presented here was to develop a pre-
dictor algorithm capable of detecting potential hypoglycemic
episodes during tight glycemic control by calculating a confi-
dence interval for future glucose concentration values. Given
a controller tuned to suppress high glucose levels, if the
proposed algorithm can detect potential hypoglycemia early
enough to intervene, the safety of pure feedback controllers
can be improved significantly.

Results have been demonstrated on in-silico simulations
of the SimEdu simulator [13]. The model used during these
simulation is presented in Section II. Section III is about the
Linear Parameter-Varying (LPV) State-Feedback controller.
This controller requires an observer providing estimation of
state variables. Our choice was a modified version of the
Unscented Kalman Filter (UKF), which also serves as the
core of the predictor algorithm presented in Section IV. The
controller was purposefully modified to allow low glucose
levels. The results of the Simulation are detailed in Sec-
tion V.

II. MODELING

A 11th order model (1) has been used for the simulations,
which was introduced by [12] and later updated in [13].
It will be referred to as the Cambridge-model. The state
variables of the model are: C(t) glucose concentration in the
subcutaneous tissue [mmol/L], Q1(t) and Q2(t) the masses
of glucose in accessible and non-accessible compartments
[mmol], x1(t), x2(t) and x3(t) remote effect of insulin
on glucose distribution, disposal and endogenous glucose
production respectively [1/min], I(t) insulin concentration
in plasma [mU/L], S1(t) and S2(t) insulin masses in the
accessible and non-accessible compartments [mU], G1(t)
and G2(t) masses of ingested glucose in the stomach and
gut [mmol/kg]. The input of the system is the u(t) injected
insulin flow of rapid-acting insulin [mU/min] is the input
of the system, while the D(t) amount of ingested carbohy-
drates [mmol/min] and the Phy(t) effect of physical activity
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[mmol/min] are considered as disturbances. The output is
the C(t) glucose concentration in the subcutaneous tissue.
The measurement noise is modeled by additive white noise.
Further details about the model can be found in [13] and
[14].
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Ṡ1(t) = −kaS1(t) + u(t)
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A high-order model is rather difficult to work with,
therefore (1) was only used in simulations and the following
reduced model is the basis of observer and controller design:

Q̇1(t) = − (FaQ1(t) + Fb + x1(t))Q1(t) + k12Q2(t)−
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+EGP0max
{

0, 1− kaSIE

VIke
S2(t)

}
+G2(t)

Q̇2(t) = x1(t)Q1(t)−
(
k12 + kaSID

VIke
S2(t)

)
Q2(t)
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Ġ1(t) =
UG,ceilD(t)−G1(t)

tmax

(2)
where F s

01(Q1(t) + VG)−1 ≈ FaQ1(t) + Fb. The output of
this reduced model is C(t) ≈ Q1(t)/VG.

III. CONTROLLER DESIGN

Without closed-loop control and with meal intake, un-
known and various unmeasured disturbances affecting the
human metabolism the blood glucose levels can vary in a
wide range for a diabetes patient [1]. However, with a suc-
cessful closed-loop control the output can be kept in a narrow
range, making prediction easier even if normoglycemia is
not achieved. The controller presented here achieves just
that: makes the behavior of the patient easier to predict. Our
choice was linear parameter-varying (LPV) control, tuned
for disturbance rejection, and damping oscillatory transients.
Then, to show the capabilities of the predictor, the latter
property has been removed. This modified controller will
bring the simulated patient to hypoglycemia after every meal
intake, which the predictor can detect.
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Fig. 1. Nominal reduced LPV model with weighting functions.

The model (2) can be transformed into an LPV system
[15]. For the LPV form, let us introduce the following
notation for the scheduling variables:

ρ(t) =

(
ρ1(t)
ρ2(t)

)
=

(
Q1(t)
Q2(t)

)
Q1,min ≤ Q1(t) ≤ Q1,max.
Q2,min ≤ Q2(t) ≤ Q2,max.

(3)

Further components - called weighting functions - can
represent control signal constraints, disturbance and measure-
ment noise properties, uncertainties or tracking performance
requirements [16]. Based on [20] such weighting functions
extended the model as shown on Fig. 1. The inputs are: the u
control signal, the uq quantization noise, the ud control signal
disturbance, the D meal intake, the Phy physical activity,
the n measurement noise, and the r reference signal. The
outputs are the zper tracking error and the zu control signal
constraint performance signal. P (ρ) represents the nominal
T1DM model (2) in LPV form, Wu is a scalar weight that
equals to the inverse of the maximal allowed insulin signal,
while Wn indicate measurement noise level. Finally, Wper

is the transfer function of a first order system that defines
tracking performance (4): the low frequency components of
the tracking error is requested to be 10 times smaller than
for higher frequencies.

Wper =
0.6s+ 0.1

60s+ 1
(4)

It is possible to add weighting functions representing model
uncertainties, making the controller robust [16].

For this extended model we can define a vector for state
feedback:

K(ρ) = K0 +

2∏
i=1

ρi(t)Ki (5)

which can be calculated by solving a convex optimization
problem [18], [19]. The resulting state-feedback controller
will have the following properties:

1) The H∞ norm of the controlled system from the
disturbances input d(t) to constrained control signal
zu(t) is less than 1, and similarly from d(t) to zper(t)
tracking performance output is less than

√
γ(ρ).

2) The ’frozen’ poles of the controlled system will be
withing the area shown on Fig. 2. This will ensure
that the controller can be realized in discrete time and
the transients will be less oscillatory.
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Fig. 2. Constrains on the closed-loop poles

However, the second property has been modified so that
the imaginary part of the closed-loop poles are no longer
constrained (dashed line in Fig.2). Therefore, hypoglycemia
can occur.

Finally, because of the max{} functions present in (2) one
can define not one but four separate LPV models depending
on the value of Q1(t) and x3(t) (or kaSIES2(t)/(VIke) in
the reduced model) as presented in [15].

1) Endogenous glucose production (EGP) is active and
there is no renal extraction of glucose: (x3(t) ≤ 1)
and Q1(t) < RthrVG;

2) EGP is active (x3(t) ≤ 1), and renal extraction is active
Q1(t) > RthrVG;

3) No EGP (x3(t) > 1), and there is no renal extraction
Q1(t) ≤ RthrVG;

4) No EGP (x3(t) > 1), and renal extraction is active
Q1(t) > RthrVG;

Therefore, four different controllers can be defined for the
four different LPV models, and the final control rule will
switch between them. Let us introduce switching functions
swi(Q1(t), S2(t)) ∈ R (or swi(t) for short), i = 1, . . . , 4 so
that

∑4
i=1 swi(Q1(t), S2(t)) = 1. The control rule will be

as follows:

u(t) =

4∑
i

swi(t)Ki(ρ(t))
(

x(t)− x0

)
+ u0 (6)

where x0 is the steady state values of the extended state
vector x(t) and u0 is the steady state value of u(t) (the
output equals to the reference signal and all disturbances are
zero).

A. Observer

To use state-feedback control a reliable state observer is
needed. Unscented Kalman Filter was chosen as it offers
a higher accuracy than the widely used Extended Kalman
Filter, but simultaneously uses less computational power than
e.g. particle filters. UKF uses a small number of deterministic
samples, called sigma-points, to represent the probability
distribution of the system state [21]. To calculate these
sigma points for a given vector of stochastic variables the
mean and the factor of the covariance matrix is needed.
The parameters of the UKF were chosen so that the sigma
points do not spread far from the mean value. To increase
numerical robustness it was implemented as a square-root
filter. This means that the matrix factors needed for the

sigma point calculation is updated directly using QR decom-
position, instead of Cholesky factorization [20], [22], [23].
The observer works with a discrete nonlinear system of the
form (7) presented below, built from the combination of the
reduced model (2) and the weighting functions.

xk+1 = f(xk,wk, uk, k)
yk = Cxk + zk

(7)

where xk ∈ Rn, wk ∈ Rm, f : Rn × Rm × R × R → Rn

and C is an 1 × n real vector. UKF and observers using
sigma points in general rely on the assumption that the
state variables and disturbances have Gaussian distribution.
However, it has been reported [24] that the blood glucose
concentration usually follows lognormal distribution instead
of the Gaussian distribution. Therefore, we introduced the
transformation T , which substitutes selected elements of a
vector or matrix with their natural logarithm if they are
positive real numbers. With the help of this transformation
the sigma points acquired from the sigma point selection
strategy will reflect lognormal distribution. The variables
assumed to have lognormal distribution are states Q1(t),
Q2(t), G1(t), G2(t) and the disturbance D(t). It is assumed,
that: T (wk) ∼ N (µw,k,Qk), and zk ∼ N (0, Rk). Let us
introduce the notation X for a set of N of sigma points, Σ
for covariance matrix, f̃(.) for T (f(.)) and ωm, ωc positive
real weights associated with X . Furthermore let Triang{M}
of a matrix M stand for the transpose of the upper triangular
result Γ of the QR decomposition (8):

Triang{M} = ΓT

ΘΓ = QR{MT } (8)

The proposed observer algorithm is as follows:

0. Initialization:
a) The initial estimation x̂0 and estimation error co-

variance matrix Σ0 are chosen, so that T (x0) ∼
N (T (x̂0),Σ0).

b) Calculate the initial set of sigma points X0. The
disturbances and measurement noise are embed-
ded into X0.

1) Estimation:

Xk =
(
X (x)T

k X (w)T
k X (z)T

k

)T
and control sig-

nal uk is known.
a) Propagate the sigma points through the nonlinear

function of the system, while applying transfor-
mation:

X (x̄)
k+1 = f̃(T −1(X (x)

k ), T −1(X (w)
k ), uk)

X (x̄)
k+1 = (ξ

(x̄)
k+1,1 · · · ξ

(x̄)
k+1,N )

(9)

b) Calculate the initial estimation of the transformed
state vector:

x̄k+1 =

N∑
i=1

ω
(m)
i ξ

(x̄)
k+1,i (10)
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c) Calculate the following:

P(x) =

N∑
i=1

√
ω

(c)
i (ξ

(x̄)
k+1,i − x̄k+1) (11)

d) Propagate the transformed sigma points to the
output:

Yk+1 = CT −1(X (x̄)
k+1) + X (z)

k

Yk+1 = (ξ
(y)
k+1,1 · · · ξ

(y)
k+1,N )

(12)

e) Calculate the initial estimation of the measured
output:

ȳk+1 =

N∑
i=1

ω
(m)
i ξ

(y)
k+1,i (13)

f) Calculate the following:

P(y) =

N∑
i=1

√
ω

(c)
i (ξ

(y)
k+1,i − ȳk+1) (14)

2) Update:
The actual value of the measured output yk+1 is
measured.

a) The factor Σ
1
2

k+1 can be calculated with QR
decomposition as follows:(

P (yy) 0 0

P
(xy)
k Σ

1
2

k+1 0

)
=

= Triang

{(
P(y)

P(x)

)} (15)

b) Kalman gain is calcualted as follows:

Gk+1 = P(xy)
(
P (yy)

)−1

(16)

c) Update the estimated state vector:

x̂k+1 = T −1 (x̄k+1 + Gk+1(yk+1−
− ȳk+1))

(17)

d) Calculate the new sigma point set Xk+1.
3) k = k + 1 and continue from Estimation.

IV. PREDICTOR

Most observer algorithms contain the following two steps:
(1) Estimation - calculating what the state variables should
be knowing the previous step and the model dynamics, and
(2) Update - correcting the Estimation based on the dif-
ference between the expected and measured output. Output
measurement is not available in the case of prediction, but
Estimation can still be performed. Kalman filter takes this
further by calculating not only the expected values, but also
the estimation error covariance matrix, hence providing a
confidence interval for the prediction [25], [26]. The future
output may be uncertain, but the fact that the output is
crossing a threshold can be a vital information.

When a controller is tuned incorrectly, hypoglycemia can
occur after meal intake. In the event of this, the controller
may react too fast to the increasing blood glucose concentra-
tion, administer too large a dose of insulin and then although

hyperglycemia may be reduced in both duration and severity,
the effect of the insulin will persist long after high glucose
concentration is averted. At this point the control signal hits
zero and the controller cannot influence the system anymore.

Let us realize the predictor this way: When the glucose
levels exceed a defined threshold after the Update phase of
the observer, keep updating a separate set of sigma points for
a given horizon. Modify the model so that no further meal
intake is expected. If the predicted output with ± one sigma
confidence goes below 3.9 mmol/L within the prediction
horizon before the control signal reaches zero, a supervisor
system could use this information to intervene and modify
the control signal to avoid hypoglycemia.

The applied control law in this particular case is
state-feedback. Therefore, the state estimation error of
the observer cannot be neglected. For this purpose two
sets of sigma points are used. The first set will have
four different signals embedded: state variables, distur-
bance, measurement noise and estimation error: X (1)

k =(
X (x,1)T

k X (w,1)T
k X (z,1)T

k X (e,1)T
k

)T
. The second

set is used only to predict the error coming from state estima-
tion. The first set of sigma points will be calculated using the
vector ( xT

k wT
k 0 0 )T as mean values and covariance

matrix Σ
(1)
k (18). For the second set ( xT

k wk 0 ) and
Σ

(2)
k (19) will be used.

(
Σ

(1)
k

) 1
2

= diag
{

Σ
1
2

k ,Q
1
2

k ,
√
Rk, 0

}
(18)(

Σ
(2)
k

) 1
2

= diag
{

0,Q
1
2

k ,
√
Rk

}
(19)

where diag{} represents block-diagonal matrix.
The proposed algorithm is as follows:
0. Initialization:

The prediction starts once the Update step of the
Observer is completed. The first set of sigma points
X (1)

k is calculated from the mean and covariance (18),
and a second set X (2)

k using (19). Reduced or zero
meal intake is assumed in wk. l = k will be the starting
value of the loop counter.

1) Estimation:
a) Calculate the control signal in accordance with

the control rule (6) for both sigma point sets: U (1)
l

from
(
X (x,1)

l + X (e,1)
l

)
and U (2)

l from X (x,2)
l .

b) Propagate both sigma point sets through the
nonlinear function of the model, while applying
transformation to get: X (x̄,1)

l+1 and X (x̄,2)
l+1 .

c) Calculate the initial estimation of the transformed
state vector for both sigma point sets: x̄

(1)
l+1, x̄

(2)
l+1.

d) Calculate the same matrix as in (11) for both sets
to acquire P

(x)
1 and P

(x)
2 .

e) Propagate the transformed sigma points to the
output to get Y(1)

l+1 and Y(2)
l+1.

f) Calculate P
(y)
2 for only the second set of sigma

points the same way as in (13) and (14).
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g) The factor of the new covariance matrix of the
state variables can be calculated directly from
P

(x)
1 using QR decomposition:(

Σ
1
2

l+1 0

)
= Triang

{
P

(x)
1

}
(20)

h) The estimation error covariance matrix will be
updated using P

(x)
2 and P

(y)
2 :(

∗ 0 0

∗ Σ
1
2

e,l+1 0

)
=

= Triang

{(
P

(y)
2

P
(x)
1

)} (21)

i) Update the sigma point set X (1)
l+1 with the vector

( (x̄
(1)
l+1)T wT

l+1 0 0 )T and the block diag-

onal matrix Σ
(1)
l+1 (22), and X (2)

l+1 with the vector
( (x̄

(1)
l+1)T wT

l+1 0 )T and the block diagonal

matrix Σ
(2)
l+1 (23).

(
Σ

(1)
l+1

) 1
2

=

= diag
{

Σ
1
2

l+1,Q
1
2

l+1,
√
Rl+1,Σ

1
2

e,l+1

} (22)

(
Σ

(2)
l+1

) 1
2

=

= diag
{

Σ
1
2

e,l+1,Q
1
2

l+1,
√
Rl+1

} (23)

j) l = l + 1 and repeat while l ≤ k +Np, with Np

being the prediction horizon.

V. RESULTS

The capabilities of the proposed framework were tested
using MATLAB-simulink environment. The controller was
purposefully modified to allow oscillatory transients. The
controlled system is now very likely to go into severe hy-
poglycemia following a meal intake. The prediction horizon
was set to 3 hours. The simulation started at 6:00 a.m., and
lasted for 24 hours. 3 meals were administered to the virtual
patient:
• Breakfast at 9:30 a.m. containing 45 g carbohydrates

(CHO),
• lunch at 1:30 p.m. with 75 g CHO,
• and finally 85 g CHO for dinner at 7:30 p.m.

The predictor was turned on once the estimated output went
above 6 mmol/L. Two example of prediction is presented on
Fig. 3 and Fig. 4.

It is visible that the predictor can detect potential hy-
poglycemic episodes, even before severe hyperglycemia is
reached. Furthermore, the insulin signal is sill not zero when
this detection happens. An appropriate supervisor system
could intervene and avoid low glucose levels. It is also
visible, that real output is usually covered by the ± one
sigma interval of the prediction. The mean value of the
prediction is usually below the actual output. The reason
is that the observer estimates the state variables related to

Fig. 3. Prediction after the first meal. (a) Bottom: The three solid horizontal
lines represent the border of hypoglycemia (3.9 mmol/L), the border of
hyperglycemia (7.8 mmol/L) and the reference signal (5.2 mmol/L). The
other solid line is the real glucose concentration, while the dashed line is
the 3-hour prediction. The transparent area around the prediction is the ±σ
confidence interval. The horizontal dotted line is the time instance when the
prediction takes place. (b) Top: Control signal (solid line) and starting time
of prediction (dotted line).

Fig. 4. Prediction after the second meal. (a) bottom: Solid line - real
glucose concentration. The three horizontal lines - border of hypoglycemia
(3.9 mmol/L), border of hyperglycemia (7.8 mmol/L) and the reference
signal (5.2 mmol/L). Dashed line - prediction of the glucose concentration.
Transparent area - ±σ confidence interval. Horizontal dotted line - start of
prediction. (b) top: Control signal (solid line), starting time of prediction
(dotted line).

glucose ingestion (G1(t) and G2(t)) with a little delay.
This, combined with the assumption that there will be no
more meal intake, causes the predictor to estimate lower
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glucose levels. It is trivial that if another meal intake occurs
within the prediction horizon the predicted and real glucose
concentration will deviate from each other. Situations like
this must be handled by the supervisor algorithm, and hence
it is not in the scope of the investigation.

The proposed predictor is a general framework, that could
be used with any T1DM models and controllers which are
compatible with Kalman filter. The more effective the con-
troller is in disturbance rejection, the tighter the confidence
interval will be. The Unscented Kalman filter could be
substituted as well, with an EKF, a sigma-point filter with
different sigma point selection strategy or a particle filter,
etc. Sophisticated stochastic models of meal intake, physical
activity and other disturbances can improve the quality of
prediction even further.

VI. CONCLUSIONS

A Kalman filter-based predictor framework was proposed
to detect future hypoglycemic episodes during closed-loop
tight glycemic control. The predictor was able to predict
potential hypoglycemia up to 3 hours in advance during sim-
ulation using the Cambridge-model. The predictions occurred
before the control signal dropped to zero, hence allowing
intervention. Future works would focus on the development
of a supervisor algorithm, which uses this predictor to
enhance pure feedback controllers.
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