
Second-order and implicit methods in numerical
integration improve tracking performance of the

closed-loop inverse kinematics algorithm
Dániel András Drexler∗, Levente Kovács∗

∗Obuda University, EKIK Physiological Controls Group
Bécsi út 96/b H-1034 Budapest, Hungary

Emails: drexler.daniel@gmail.com, kovacs.levente@nik.uni-obuda.hu

Abstract—A general approach to solve the inverse kinematics
problem of series manipulators, i.e. finding the required joint
motions for the desired end effector motions, is based on
the linear approximation of the forward kinematics map and
discretization of the continuous problem. Due to the linearization,
first velocities are calculated, so numerical integration needs
to be done to get the joint variables. This general solution is
just a numerical approximation, thus improving the tracking
performance of the inverse kinematics algorithm is of great
importance. The application of several numerical integration
techniques (implicit Euler, explicit trapezoid, implicit trapezoid)
is analyzed, and a fix point iteration is given that can be used
to calculate implicit solutions. The tracking performance of the
spatial inverse positioning problem of a spatial manipulator is
analyzed by checking the tracking error in the desired direction
(i.e. along the derivative of the desired end effector path) and in
the plane perpendicular to the desired direction. The application
of the explicit and implicit trapezoid methods yielded much better
tracking performance in the directions orthogonal to the desired
direction when the end effector had to track a linear path, while
the tracking performance in the desired direction was similar
for all the methods. Simulations showed that the application of
implicit and second-order methods in the numerical integration
may greatly improve the tracking performance of the closed-loop
inverse kinematics algorithm.

Index Terms—differential inverse kinematics, numerical inte-
gration, explicit Euler, implicit Euler, explicit trapezoid, implicit
trapezoid

I. INTRODUCTION

The inverse kinematics problem (i.e. finding the required
joint motion for the desired end effector motion) of serial robot
manipulators is a key problem in robot control that does not
have an analytical solution in the general case (see e.g. [1],
[2], [3]). A general solution to the inverse kinematics problem
that can be used for real-time applications is based on the
linear approximation of the forward kinematics map that maps
joint motion to end effector motion [4]. The Jacobian of the
forward kinematics map gives a point-wise linear relationship
between the joint velocities and the end effector velocities,
so calculation of the required joint velocities can be done by
solving a linear system of equations. In the practical case,
the problem is discretized in time, so the joint variables are
acquired from the joint velocities by numerical integration.

The widely used numerical integration technique is the explicit
Euler method, i.e. the joint variable is updated each time by
adding the joint difference (discrete-time velocity) multiplied
by the sampling time (see e.g. [5], [6], [7]). This algorithm
is usually refered to as the differential inverse kinematics
algorithm.
The tracking performance of the differential inverse kine-

matics algorithm can be improved by adding the tracking error
of the end effector to the desired end effector velocity after
being multiplied by a feedback gain parameter. Since this
results in a closed-loop system, this algorithm is called the
closed-loop inverse kinematics (CLIK) algorithm in the litera-
ture (see e.g. [8]), being discussed in Section II. Increasing the
feedback gain parameter leads to better tracking performance,
however the system becomes unstable when the gain parameter
exceeds a certain limit (for recent results on the bound on this
limit the reader is referred to [8]). Thus the CLIK algorithm
only has limited potential in tracking performance increase.
Moreover, the stability margin of the system depends on the
singular values of the Jacobian matrix, that depends on the
joint configuration. This implies that in practice the gain
parameter should be kept relatively low to avoid unstable
operation, or it should be recalculated in each step, that would
lead to unpredictable behavior of the algorithm.
The tracking performance of the differential inverse kine-

matics or CLIK algorithm can also be improved by using
higher-order explicit numerical integration techniques, as it
was shown in [9]. Introduction of implicit methods may
also bring further improvement, as it was shown in [10].
However, implicit techniques require the knowledge of the
joint variables in the next time instant, albeit the goal of the
inverse kinematics problem is to locally calculate the joint
variables in the next time instant, so these quantities are
not known in advance. However, an iteration can be used
to calculate the implicit solutions. This iteration was first
introduced in [10], and is further developed and generalized in
Section III where the existence of its unique fixed-point (that
is the implicit solution) is proved.
The implicit Euler, explicit trapezoid and implicit trape-

zoid methods and their application in the CLIK problem are
discussed in Section IV, and the modified CLIK algorithms

2016 IEEE International Conference on Systems, Man, and Cybernetics • SMC 2016 | October 9-12, 2016 • Budapest, Hungary

978-1-5090-1897-0/16/$31.00 ©2016 IEEE SMC_2016 003362

using these integration techniques are given. The algorithms
are described for the general inverse kinematics problem, i.e.
it does not matter if e.g. only the position, the orientation, or
both the position and orientation of the end effector of the
manipulator is concerned.
The numerical integration schemes are tested on an example

when the spatial position of the end effector is concerned in
Section V. In order to gain more insight into the tracking per-
formance, the tracking error (i.e. the difference of the desired
and current end effector position) is transformed into a new
base at each time instant, whose first basis vector is the tangent
of the desired end effector path at each time instant (it will
be called a regular path direction), and the other two mutually
orthogonal basis vectors are orthogonal to the regular path
direction (these will be called singular path directions, however
they should not be confused with manipulator singularities).
If the tracking error has great components in the singular
path directions, then it means that the end effector leaves the
predefined curve, however, if these components are small, then
the end effector moves on the desired end effector path. For
example, if the desired end effector path is a line segment,
and the tracking error component is zero in the singular path
directions, then it means that the end effector moves on a path
with the shape of a straight line, even if the tracking error
component in the regular path direction is not zero.
It turns out, that application of the explicit and implicit

trapezoid methods greatly increase the tracking performance
in the case if the desired path is a straight line by having sig-
nificantly smaller tracking error in the singular path directions.
The results are summarized in Section VI.

II. CLOSED-LOOP INVERSE KINEMATICS ALGORITHM

Let the vector of joint variables be denoted by θ, with its
ith component θi being the joint variable of the ith joint of
the manipulator. Note that θ is a function of (positive) time
that assigns the value of the joint variables to each t time
instant such that t ≥ 0. Let the forward kinematics mapping
be denoted by f , i.e. f(θ) is the end effector pose (position
and orientation). Suppose that the orientation is represented as
a vector, e.g. the components of the vector are rotations around
the basis vectors of a fixed spatial frame. Let the desired end
effector pose be xd, while the desired end effector velocity be
ẋd. Denote the Jacobian of the mapping f at the joint variable
θ by J(θ), then the relationship between the θ̇ joint velocities
and the ẋ end effector velocities is given by

ẋ = J(θ)θ̇. (1)

The goal is to find one of the (generally not unique) functions
θd that satisfy

ẋd = J(θd)θ̇d. (2)

This is usually done by first discretizing the functions θ and
xd by defining θ[k] := θ(kTs) and xd[k] := xd(kTs) with Ts
being the sampling time and k being a nonnegative integer.
Then the velocities become differences, i.e. ∆θ[k] := θ̇(kTs)

and ∆xd[k] := ẋd(kTs). The discretized version of (2) is thus

∆xd[k] = J(θd[k])∆θd[k], k = 0, 1, 2, . . . (3)

Each iteration of the differential inverse kinematics algorithm
consists of a solution of a linear system of equations

∆xd[k] = J(θ[k])∆θ[k], k = 0, 1, 2, . . . (4)

to acquire ∆θ[k], and then the numerical integration step

θ[k + 1] = θ[k] + α∆θ[k] (5)

to update the joint variable vector. Note that this numerical
integration is the explicit Euler method [11]. Given an initial
value θ[0], if we substitute the series θ[1], θ[2], . . . acquired
using the iteration of steps (4) and (5) into the function f , the
values f(θ[0]), f(θ[1]), f(θ[2]), . . . may be different from the
values xd[0], xd[1], xd[2], . . ., especially if f(θ[0]) 6= xd[0]. In
the latter case, the algorithm does not converge at all.
In order to overcome this problem, the feedback term

α (xd[k]− f(θ[k])) needs to be added to the desired velocity,
so the first equation to be solved in each iteration step becomes

∆xd[k]+α(xd[k]−f(θ[k])) = J(θ[k])∆θ[k], k = 0, 1, 2, . . .
(6)

so the joint variable difference ∆θ[k] is calculated as

∆θ[k] = J#(θ[k]) (∆θ[k] + α(xd[k]− f(θ[k]))) (7)

where the J# denotes the (generalized) inverse of the Ja-
cobian. The algorithm whose first step is (7) and second
step is the numerical integration (5) in each iteration is
called the CLIK algorithm. This algorithm has better track-
ing performance than the differential inverse kinematics al-
gorithm without the feedback term. Generally the distance
between the elements of the series f(θ[0]), f(θ[1]), f(θ[2])
and xd[0], xd[1], xd[2], . . . becomes smaller as α is increased,
until the stability margin is reached, at which point the
algorithm becomes unstable. If the stability margin is reached,
the tracking performance can not be increased further by
increasing the parameter α. However, further increase in
the tracking performance can be achieved by replacing the
numerical integration step (5) by a different technique that
will be discussed in the upcoming Sections.
The CLIK algorithm can be generalized for the general

inverse kinematics problem by introducing the terms task
space, task Jacobian and the task vector. The task space is
the subspace of the linear space where f maps to, e.g. if
only the positioning problem is concerned, than this subspace
is the 3-dimensional Euclidean space describing end effector
positions, if only the planar position of the end effector is
concerned, then this subspace is a 2-dimensional Euclidean
space, if only the end effector orientation is concerned, this is
the 3-dimensional Euclidean space defining the orientation of
the end effector in the representation given in the beginning of
this Section, and so on. Given the task space, the task Jacobian
is the projection of the analytical Jacobian to this task space,
while the task vector is the sum of the desired end effector

2016 IEEE International Conference on Systems, Man, and Cybernetics • SMC 2016 | October 9-12, 2016 • Budapest, Hungary

SMC_2016 003363

velocity given in the task space, and the tracking error given
in the task space multiplied by the feedback term.
In the remainder of the paper we suppose that J is the task

Jacobian, xd and ẋd are given in the task space, and f maps
to the task space, so the task vector in the discrete time step
k is given by

t(θ[k], k) = ∆xd[k] + α (xd[k]− f(θ[k])) , (8)

and the first step (7) of the CLIK algorithm is written as

∆θ[k] = J#(θ[k])t(θ[k], k). (9)

III. ITERATION TO CALCULATE THE IMPLICIT SOLUTIONS

The numerical integration in (5) can be replaced by other
methods to increase the tracking performance of the in-
verse kinematics algorithm. For example, in [9], the authors
considered the application of higher-order explicit methods.
However, there are numerous numerical integration methods
that are implicit, i.e. the update law depends on θ[k + 1] as
well. Let the general form of the update law be

θ[k + 1] = φ(θ[k], θ[k + 1]) (10)

for some function φ. For example, for the implicit Euler
method, the function φ is

φ : (θ[k], θ[k + 1]) 7→ θ[k] + Ts∆θ[k + 1], (11)

and since ∆θ[k+1] = J#(θ[k+1])t(θ[k+1], k+1), this can
be written as

φ : (θ[k], θ[k+1]) 7→ θ[k]+TsJ
#(θ[k+1])t(θ[k+1], k+1).

(12)
However, the goal of the inverse kinematics algorithm is to
calculate θ[k + 1] in each discrete time step k, so we do not
know its value in advance. Further note that usually the sym-
bolic expressions for the implicit update are so complex, that
we can not express θ[k+1] from these expressions explicitly.
In order to calculate the implicit solution, an iteration was
proposed in [10] to calculate the implicit Euler solution.

Algorithm 1. Iteration for the implicit Euler solution.

1) First initialize the estimation θ̃[k + 1] with the explicit
Euler method:

θ̃[k + 1] = θ[k] + Ts∆θ[k]. (13)

2) Calculate the difference ∆θ̃[k+1] based on θ̃[k+1] as

∆θ̃[k + 1] = J#(θ̃[k + 1])t(θ̃[k + 1], k + 1). (14)

3) Recalculate θ̃[k + 1] with the new ∆θ̃[k + 1]:

θ̃[k + 1] = θ[k] + Ts∆θ̃[k + 1]. (15)

4) Repeat steps 2 and 3 until the alteration of θ̃[k + 1]
is small enough or a certain number of iterations is
reached.

We further develop and generalize this algorithm for the
general update law (10). Write the update law φ in the form

φ = θ[k] + Tsψ(∆θ[k],∆θ[k + 1]). (16)

Algorithm 2. Iteration for implicit solution with update law
(16).

1) First, calculate ∆θ[k] using the expression

∆θ[k] = J#(θ[k])t(θ[k], k) (17)

and calculate ∆θ[k + 1] using the expression

∆θ[k + 1] = J#(θ[k])t(θ[k], k + 1), (18)

and compute θ̃[k + 1] using the update law (16).
2) Calculate the difference

∆θ̃[k + 1] = J#(θ̃[k + 1])t(θ̃[k + 1], k + 1). (19)

3) Update θ̃[k + 1] using the expression (16) as

θ̃[k + 1] = θ[k] + Tsψ(∆θ[k],∆θ̃[k + 1]). (20)

4) Repeat steps 2 and 3 until the alteration of θ̃[k + 1]
is small enough or a certain number of iterations is
reached.

Theorem 1. Suppose, that we are far from singular configu-

rations, i.e. we are moving in the connected set U of the joint
space, such that there exists a positive number η > 0 such
that

∥

∥J#(θ)
∥

∥

∞
≤ η for all θ ∈ U , moreover there exists a

positive number ν such that

max
i

‖∂θiJ(θ)‖∞ ≤ ν (21)

for all θ ∈ U . Let ∆θ[k + 1] be the implicit difference and
∆θ[k] be the explicit difference of joint variables. Suppose that
ψ is a continuously differentiable function of ∆θ[k+1]. Then
if α satisfies the inequality

α <
1

Ts
∥

∥∂∆θ[k+1]ψ(∆θ[k],∆θ[k + 1])
∥

∥

∞

−nνη ‖∆θ[k + 1]‖
∞

(22)
where n is the number of the joints of the robot, then θ[k+1]
is the fix point of the function (10) with ∆θ[k+1] = J#(θ[k+
1])t(θ[k + 1], k + 1) and Algorithm 2 converges to this fixed
point.

Proof: We will show that with the above conditions the
mapping φ is a contraction mapping (in the ∞-norm), i.e. if
the conditions of the theorem hold then there exists a number
0 ≤ q < 1 such that for all a, b ∈ U

‖φ(a)− φ(b)‖
∞

≤ q ‖a− b‖
∞
. (23)

Since ψ in (16) is continuously differentiable, the mapping
(10) is also continuously differentiable due to the conditions
of the theorem (since J is nonsingular thus J# exists and is
continuously differentiable), so condition (23) is equivalent to
the existence of a Lipschitz-constant q such that

∥

∥∂θ[k+1]φ
∥

∥

∞
≤ q. (24)

We will show that
∥

∥∂θ[k+1]φ
∥

∥

∞
< 1 implies (22) if the other

conditions of the theorem hold. Applying the chain rule, the
differential ∂θ[k+1]φ can be written as

∂θ[k+1]φ = Ts∂∆θ[k+1]ψ(∆θ[k + 1])∂θ[k+1]∆θ[k + 1], (25)

2016 IEEE International Conference on Systems, Man, and Cybernetics • SMC 2016 | October 9-12, 2016 • Budapest, Hungary

SMC_2016 003364

where we have omitted the argument ∆θ[k] of ψ for clarity.
The derivative ∂θ[k+1]∆θ[k + 1] is a matrix with its ith

column being ∂θi[k+1]∆θ[k+1]. For the sake of simplicity, in
the remainder of the proof we will omit the argument [k+ 1]
and use the notations θ := θ[k+1] and ∆θ := ∆θ[k+1]. Since
∆θ is calculated as ∆θ = J#(θ)t(θ, k + 1), the derivative of
∆θ with respect to the scalar θi is

∂θi∆θ = ∂θi
(

J#(θ)t(θ, k + 1)
)

=
(

∂θi
(

J#(θ)
))

t(θ, k + 1)

+J#(θ)∂θi (t(θ, k + 1)) . (26)

The differential of the task vector is

∂θi (t(θ, k + 1)) = ∂θi (∆xd[k + 1] + α (xd[k + 1]− f(θ)))

= −α∂θif(θ)

= −αJ(θ)(·, i), (27)

where J(θ)(·, i) denotes the ith column of the matrix J(θ)
with the notation used e.g. in [12], [13]. Substituting this into
the second term in (26) yields

J#(θ)∂θi (t(θ, k + 1)) = J#(θ) (−αJ(θ)(·, i))

= −αei, (28)

where ei is the ith unit vector of Rn.
The differential of the Jacobian pseudoinverse is

∂θi
(

J#(θ)
)

= −J#(θ) (∂θiJ(θ)) J
#(θ), (29)

so the first term in (26) becomes
(

∂θi
(

J#(θ)
))

t(θ, k + 1) = −J#(θ) (∂θiJ(θ))∆θ, (30)

so (26) reduces to

∂θi∆θ = −J#(θ) (∂θiJ(θ))∆θ − αei. (31)

The norm of the function ∂θφ can be bounded from above by

‖∂θφ‖∞ ≤ Ts ‖∂∆θψ‖∞ ‖∂θ∆θ‖∞ (32)

provided that Ts > 0. Since the ∞-norm of a matrix is its
maximal absolute column sum,

‖∂θ∆θ‖∞ = max
i

{

1n
∣

∣−αei − J#(θ)∂θiJ(θ)∆θ
∣

∣

}

(33)

where 1n is a row vector of length n whose each element is
one and | · | is the element-wise absolute value function. Due
to the triangle inequality

‖∂θ∆θ‖∞ ≤ α+max
i

{

1n
∣

∣−J#(θ)∂θiJ(θ)∆θ
∣

∣

}

, (34)

and since the absolute column sum is not greater than the
product of the length of the column and the absolute value of
the element of the column that has the greatest absolute value,
the inequality becomes

‖∂θ∆θ‖∞ ≤ α+ nmax
i

∥

∥J#(θ)∂θiJ(θ)∆θ
∥

∥

∞
(35)

from which we obtain

‖∂θ∆θ‖∞ ≤ α+ n
∥

∥J#(θ)
∥

∥

∞
‖∆θ‖

∞
max

i
∂θiJ(θ). (36)

Substituting the bounds from the conditions of the theorem
into (36), and substituting the result into (32) yields

‖∂θφ‖∞ ≤ Ts ‖∂∆θψ‖∞ (α+ nνη ‖∆θ‖
∞
) . (37)

This derivative is smaller than one and thus φ is contractive
and has a unique fixed-point θ if

α <
1

Ts ‖∂∆θψ‖∞
− nνη ‖∆θ‖

∞
(38)

that is the result we were looking for.
Note that usually ‖∂∆θψ‖∞ is a constant as it will be shown

in the next Section.

IV. IMPLICIT AND SECOND ORDER NUMERICAL

INTEGRATION ALGORITHMS

The application of implicit Euler, explicit trapezoid and
implicit trapezoid methods is tested in order to check if an
increase in the tracking performance can be achieved by using
these methods instead of the explicit Euler integration method
in step (5). The implicit Euler and implicit trapezoid methods
are implicit methods, so they require the iteration described in
Section III.

A. Implicit Euler method

The update law (10) for the implicit Euler method is

φ = θ[k] + Ts∆θ[k + 1] (39)

so the function ψ in (16) is

ψ(∆θ[k],∆θ[k + 1]) = ∆θ[k + 1], (40)

and the ∞-norm of the differential of this function with regard
to ∆θ[k + 1] is

∥

∥∂∆θ[k+1]ψ
∥

∥

∞
= 1. (41)

In each iteration, the implicit solution θ[k+1] can be calculated
with the iteration described in Algorithm 2, with the update
law (39).

B. Explicit trapezoid method

In the explicit trapezoid method the difference ∆θ[k+1] is
approximated using the joint variable value θ[k], i.e. the joint
difference ∆θ[k + 1] is acquired by first calculating

∆θ[k] = J#(θ[k])t(θ[k], k), (42)

then using this quantity to approximate θ[k + 1] using the
explicit Euler method, i.e.

θ̃[k + 1] = θ[k] + Ts∆θ[k]. (43)

Finally, the difference ∆θ[k + 1] is calculated as

∆θ[k + 1] = J#(θ̃[k + 1])t(θ̃[k + 1], k + 1). (44)

The update law for the explicit trapezoid method is

φ = θ[k] +
1

2
Ts (∆θ[k] + ∆θ[k + 1]) , (45)

however it is only applied once, so there is no iteration
required when using this method.

2016 IEEE International Conference on Systems, Man, and Cybernetics • SMC 2016 | October 9-12, 2016 • Budapest, Hungary

SMC_2016 003365

C. Implicit trapezoid method

The update law for the implicit trapezoid method is the same
as in the case of explicit trapezoid method, i.e.

φ = θ[k] +
1

2
Ts (∆θ[k] + ∆θ[k + 1]) , (46)

thus the function ψ is

ψ(∆θ[k],∆θ[k + 1]) =
1

2
(∆θ[k] + ∆θ[k + 1]) (47)

and the ∞-norm of its derivative with respect to ∆θ[k+1] is

∥

∥∂∆θ[k+1]ψ
∥

∥

∞
=

1

2
. (48)

The implicit trapezoid method can be applied by using Algo-
rithm 2 with the update law (46).

V. EXPERIMENTAL RESULTS

The different numerical integration techniques were applied
for the solution of the inverse positioning problem of an elbow
manipulator, a manipulator architecture consisting of three
revolute joints that is widely applied in the practice. The three
joint axes of the manipulator in the home configuration (i.e.
in the configuration where θ = 0) defined in a fixed frame are

ω1 =

0
0
1

 ω2 =

1
0
0

 ω3 =

1
0
0

 , (49)

while some points on the joint axes 1, 2 and 3 respectively
are

q1 =

0
0
0

 q2 =

0
0
0

 q3 =

0
0
l1

 , (50)

with l1 = 1 being the length of the second segment of the
manipulator, while the position of the end effector in the home
configuration is

p(0) =

0
0

l1 + l2

 (51)

with l2 = 1 being the length of the third segment of
the manipulator. Based on these design parameters one can
calculate the forward kinematics map in the task space and
the task Jacobian in every configuration using techniques from
e.g. [1], [14].
The initial configuration of the robot arm was θ[0] =

(0, 0, π/2)⊤ that is a nonsingular configuration, i.e. J(θ[0]) is
regular. The desired end effector path and end effector velocity
were

xd[k] =

0
−1
1

+
k − 1

N

0
0.5
−1

 (52)

∆xd[k] =
1

N

0
0.5
−1

 . (53)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

Feedback parameter α

‖
e

r
e
g
‖
∞

EE

IE

ET

IT

0 1 2 3 4 5 6 7 8 9 10
0

2

4
x 10

−3

Feedback parameter α

|e
s
in

,1
‖ ∞

0 1 2 3 4 5 6 7 8 9 10
0

5
x 10

−3

Feedback parameter α

‖e
s
in

,2
‖ ∞

Fig. 1. The maximal absolute values of the tracking errors along the
regular and the two singular path directions for different value of the feedback
parameter α

The number of iterations for the CLIK algorithm was N = 30,
so k = 0, 1, . . . , N , the sampling time was Ts = 0.1sec. The
CLIK algorithm was solved using the explicit Euler, implicit
Euler, explicit trapezoid and implicit trapezoid methods for
different α feedback parameters. The initial value of α was
zero, then it was increased by 0.1 in each step until it reached
the value α = 10.
For every value of α the tracking error was calculated and

transformed into a base for each discrete time k = 0, 1, . . . , N
whose basis vectors are:
1) The regular path direction, that is ∆xd[k] after normal-

ization for each k = 0, 1, . . . , N ; components of this
basis are denoted by the subscript reg.

2) The first singular path direction, that is a unit vector
perpendicular to ∆xd[k] for each k = 0, 1, . . . , N ;
components of this basis are denoted by the subscript
sin1.

3) The second singular path direction, that is a unit vector
perpendicular to ∆xd[k] and the first singular path
direction for each k = 0, 1, . . . , N ; components of this
basis are denoted by the subscript sin2.

Note that for each value of α, the tracking error is a series in
the three new components {ereg[k]}, {esin1[k]}, {esin2[k]} for
k = 0, 1, . . . , N , so along each component, the absolute value
is taken and the maximal element is chosen. Thus for each α
we take the ∞-norms of the series {ereg[k]}, {esin1[k]} and
{esin2[k]} that are the values max ‖ereg‖, max ‖esin1‖ and
max ‖esin2‖. These values are plotted for different values of
α in Figure 1, where different curves correspond to different
integration methods, the solid curve corresponds to the explicit
Euler (EE) method, the dash-dot curve corresponds to the
implicit Euler (IE) method, the dashed curve corresponds to
the explicit trapezoid (ET) method, while the dotter curve
corresponds to the implicit trapezoid (IT) method.
The maximal errors along the regular path direction are

similar for all of the methods, however there is a significant
improvement in the tracking error along the singular path
directions if the second-order trapezoid methods are used.
Table I shows the value of the errors for some specific α
values in the first singular path direction.
The explicit trapezoid method gave slightly better results

2016 IEEE International Conference on Systems, Man, and Cybernetics • SMC 2016 | October 9-12, 2016 • Budapest, Hungary

SMC_2016 003366

α = 0 α = 5 α = 10

EE 7.73 · 10−5
1.56 · 10−3

8.48 · 10−4

IE 7.74 · 10−5
2.42 · 10−4

2.72 · 10−3

ET 1.67 · 10−8
4.74 · 10−4

7.48 · 10−4

IT 2.98 · 10−8
1.72 · 10−5

3.73 · 10−4

TABLE I
THE ∞-NORMS OF THE TRACKING ERROR COMPONENTS IN THE FIRST

SINGULAR PATH DIRECTION (‖esin1‖∞) FOR DIFFERENT VALUES OF

FEEDBACK GAIN α AND FOR DIFFERENT NUMERICAL INTEGRATION

METHODS

in the singular path directions for low values of α, however
for greater values of α the implicit trapezoid method gave
better results in the singular path directions. Thus the tracking
error of the end effector in the regular path direction was
similar with all methods, however the errors in the singular
path directions were much smaller with the trapezoid methods,
which means that the end effector moved much closer to a
linear path than in the case of the explicit Euler method. This
can be very useful if preserving the shape of the path is an
important goal, e.g. when approaching an object in a narrow
corridor or putting an object into a hole.

VI. CONCLUSION

An iterative algorithm was given to solve the CLIK al-
gorithm using implicit methods in the numerical integration
process with update laws of the form (16). It was proved,
that this update law has a unique fixed point and the iteration
in Algorithm 2 converges to this fixed point (that is the
implicit solution) if certain conditions hold. These conditions
require that the Jacobian is regular (thus the ∞-norm of its
pseudoinverse is bounded from above), the ∞-norm of the
change of the Jacobian is bounded from above, the functions
in the update law are continuously differentiable, and that the
feedback gain parameter is chosen such that it satisfies the
inequality (22). This inequality depends on the ∞-norm of
the differential of the function ψ in the update law (16) with
respect to ∆θ[k + 1] that was shown to be a constant for the
typical numerical methods, and it also depends on the∞-norm
of the implicit difference ∆θ[k + 1]. This difference can be
estimated if we know the initial path tracking error, the desired
velocity and the bound on the norm of the pseudoinvese of the
Jacobian.
Simulations showed that the improvement in the path track-

ing caused by the application of the second-order methods
appeared in the directions orthogonal to the desired end
effector movement if the desired path is a straight line in space.
This means that the resulting end effector motion will be much
closer to a straight motion if the second-order methods are
applied which can be useful in many applications. Application
of the implicit trapezoid method even gave better results than
the explicit trapezoid method for values of feedback gain
parameters that are not close to zero.

ACKNOWLEDGEMENTS

The work is supported by the European Research Council
Starting Grant ERC-StG 679681. The first author is also sup-

ported by a Marie Curie International Research Staff Exchange
Scheme Fellowship within the 7th European Community
Framework Programme, FP7-PEOPLE-2012-IRSES-316338.

REFERENCES

[1] R. M. Murray, S. S. Sastry, and Z. Li, A Mathematical Introduction to
Robotic Manipulation. CRC Press, 1994.

[2] J. Selig, Geometric Fundamentals of Robotics (Second Edition).
Springer, 2005.

[3] L. Sciavacco and B. Siciliano, “A solution algorithm to the inverse
kinematic problem for redundant manipulators,” IEEE Transactions on
Robotics and Automation, vol. 4, no. 4, pp. 403–410, 1988.

[4] B. Siciliano, L. Sciavicco, S. Chiaverini, P. Chiacchio, L. Villani, and
F. Caccavale, “Jacobian-based algorithms: A bridge between kinematics
and control,” in Proceedings of the Special Celebratory Symposium In
the honor of Professor Bernie Roth’s 70th Birthday, 2003, pp. 4–35.

[5] T. Sugihara, “Solvability-unconcerned inverse kinematics by the
Levenberg-Marquardt method,” IEEE Transactions on Robotics, vol. 27,
no. 5, pp. 984–991, 2011.

[6] Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with sin-
gularity robustness for robot manipulator control,” Journal of Dynamic
Systems, Measurement, and Control, vol. 108, no. 3, pp. 163–171, 1986.

[7] F. Caccavale, S. Chiaverini, and B. Siciliano, “Second-order kinematic
control of robot manipulators with Jacobian Damped Least-Squares
inverse: Theory and experiments,” IEEE/ASME Transactions on Mecha-
tronics, vol. 2, no. 3, pp. 188–194, 1997.

[8] P. Falco and C. Natale, “On the stability of closed-loop inverse kine-
matics algorithms for redundant robots,” IEEE Transactions on Robotics,
vol. 27, pp. 780 –784, 2011.

[9] E. Sariyildiz and H. Temeltas, “Performance analysis of numerical
integration methods in the trajectory tracking application of redundant
robot manipulators,” International Journal of Advanced Robotic Systems,
vol. 8, no. 5, pp. 25–38, 2011.

[10] D. A. Drexler, “Solution of the closed-loop inverse kinematics algorithm
using the Crank–Nicolson method,” in Proceedings of the 2016 IEEE
14th International Symposium on Applied Machine Intelligence and
Informatics (SAMI), Herlány, Slovakia, January 2016.

[11] U. M. Ascher and C. Greif, A First Course in Numerical Methods.
Society for Industrial and Applied Mathematics, 2011.

[12] P. Érdi and J. Tóth,Mathematical Models of Chemical Reactions. Theory
and Applications of Deterministic and Stochastic Models. Princeton,
New Jersey: Princeton University Press, 1989.

[13] D. A. Drexler and J. Tóth, “Global controllability of chemical reactions,”
Journal of Mathematical Chemistry, pp. 1–24, 2016.

[14] D. A. Drexler and I. Harmati, “Regularized Jacobian for the differential
inverse positioning problem of serial revolute joint manipulators,” in
Proceedings of the IEEE International Symposium on Intelligent Systems
and Informatics, Subotica, Serbia, September 2013.

2016 IEEE International Conference on Systems, Man, and Cybernetics • SMC 2016 | October 9-12, 2016 • Budapest, Hungary

SMC_2016 003367

