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ABSTRACT. In this paper we study non-linear transformations between the unitary groups of von
Neumann algebras and the twisted subgroups of positive invertible elements in unital C∗-algebras
with various preserver properties concerning the spectrum, spectral radius, and generalized dis-
tance measures. We present several results which show that those transformations are closely related
to the Jordan *-isomorphisms between the underlying full algebras. In fact, our results can easily be
used for characterizations of that sort of isomorphisms.

1. INTRODUCTION

In this paper all algebras are assumed to be complex and unital, the unit usually being denoted
by 1. Let A1, A2 be algebras and let σ(·) stand for the spectrum. A map (no linearity is assumed)
φ : A1 → A2 is called spectrally multiplicative if it satisfies

σ(φ(a)φ(b)) =σ(ab)

for all pairs a,b ∈ A1. There has recently been considerable interest in the study of such transfor-
mations since in many cases it turns out that they are closely related to isomorphisms, hence the
spectral condition displayed above may faithfully compress the linearity and multiplicativity prop-
erties of maps into one two-variable equality between sets of scalars. For a typical result we recall
that any spectrally multiplicative bijection between the algebras of all continuous complex valued
functions over compact Hausdorff spaces is an algebra isomorphism followed by multiplication
by a fixed real valued continuous function of modulus 1. In fact, for first countable spaces this was
proved in the paper [7] (which was the starting point of that line of investigations) while in [11] the
authors removed the first countability assumption. Concerning operator algebras we obtained in
[7] that for an infinite dimensional Hilbert space H , any spectrally multiplicative bijection on the
algebra of all bounded linear operators on H is either an algebra isomorphism or the negative of
an algebra isomorphism. Hence in those cases we have that any spectrally multiplicative bijective
map is a transformation which can be written as an algebra isomorphism multiplied by a central
symmetry (which is a self-adjoint unitary which is in the center of the algebra in question). (We
admit that presently Google Scholar pops up close to 90 citations to the paper [7].) For further ref-
erence we mention the survey paper [4] exhibiting a collection of recent results (mainly concerning
function algebras) as well as the interesting paper [2] where a variant of spectrally multiplicative
maps (involving three variables not only two) has been investigated on general algebras.

In this paper we continue that line of research and present results which can be viewed as char-
acterizations of Jordan *-isomorphisms between operator algebras via their spectral multiplica-
tivity properties of different kinds and their other characteristic invariance properties relating the
spectral radius. However, there is significant difference between the previous investigations and
the one we report on here. Namely, the properties we consider in this paper are assumed to be sat-
isfied not on the whole algebra but only on certain subsets which are substructures of the general
linear group. This means, and again it is the main novelty here, that the spectral multiplicativity
and other related conditions are required only on some smaller sets (the so-called twisted sub-
group of positive invertible elements, or the unitary group) but, as we shall see, they are still strong
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enough to imply that the transformations under considerations are closely related to Jordan *-
isomorphisms between the underlying full algebras. In addition to our conditions concerning the
spectral radius we investigate transformations which preserve certain distance measures of very
general kinds. Furthermore, we study spectral multiplicativity like and other conditions for pairs
of maps defined on arbitrary sets with values in the above mentioned substructures of operator
algebras.

Before presenting our results we collect the following facts concerning Jordan *-isomorphisms
between C∗-algebras. We first remind that by Proposition 1.3 in [12] every surjective Jordan homo-
morphism J between arbitrary algebras A1, A2 preserves invertibility and satisfies J (a−1) = J (a)−1

for any invertible element a ∈ A1. This implies that a Jordan isomorphism maps the general linear
group onto the general linear group and preserves the spectra of elements. We recall the important
correspondence between the spectra of the elements ab and ba, where a,b belong to an algebra
A. Namely, we always have σ(ab)∪ {0} =σ(ba)∪ {0} and hence, if a,b are invertible, it follows that
σ(ab) =σ(ba). Let now A1, A2 be arbitrary C∗-algebras and J : A1 → A2 be a Jordan isomorphism.
By Theorem 6.3.4. in [1] there exists a central projection q (by a projection we always mean a self-
adjoint idempotent) in the so-called bounded central closure of A2 (a C∗-algebra that contains A2

as a C∗-subalgebra) such that

J (ab) = q J (a)J (b)+ (1−q)J (b)J (a), a,b ∈ A.

Let a,b ∈ A1 be invertible elements. Denote x1 = q J (a), y1 = q J (b) and x2 = (1− q)J (a), y2 = (1−
q)J (b). We compute

σ(ab)∪ {0} =σ(J (ab))∪ {0} =σ(x1 y1)∪σ(y2x2)

=σ(x1 y1)∪σ(x2 y2) =σ(J (a)J (b))∪ {0}.

Since J preserves invertibility, J (a)J (b) is invertible and by the above equality we have

σ(ab) =σ(J (a)J (b))

which proves that J is spectrally multiplicative on the general linear group.
For a C∗-algebra A j , we denote by A j s the real linear subspace of all self-adjoint elements in

A j . The set of all positive elements (i.e., self-adjoint elements with non-negative spectrum) in
A j is denoted by A j+. The set A−1

j+ of all invertibles in A j+ is a so-called twisted subgroup of the
general linear group meaning that it is closed under the operation of the inverted Jordan triple
product ab−1a. For obvious reasons, it is also called the positive definite cone (or positive cone
for short). Note that A−1

j+ = exp A j s . The unitary group of A j is denoted by U j . Recall that we have
U j = exp i A j s if A j is a von Neumann algebra. We repeat that by a symmetry we mean a self-adjoint
unitary element (or, equivalently a unitary whose square is the identity).

Recall that for the spectral radius r we have the inequality r (a) ≤ ‖a‖ for every a in the C∗-
algebra A j and r (a) = ‖a‖ holds for any normal element a ∈ A j .

2. THE CASE OF THE SPACES OF POSITIVE INVERTIBLE ELEMENTS

Beside characterization via the spectral multiplicativity property, the first main result of the pa-
per, Theorem 4 contains a sort of characterization of Jordan *-isomorphisms in terms of a preserver
property relating so-called generalized distance measures. For this we need a recently obtained
very general Mazur-Ulam type result that we cite below as Theorem 3. To formulate it we need
some preparation. From the paper [8] we recall the following.

Definition 1. Let X be a set equipped with a binary operation ¦ which satisfies the following con-
ditions:

(a1) a ¦a = a holds for every a ∈ X ;
(a2) a ¦ (a ¦b) = b holds for any a,b ∈ X ;
(a3) the equation x ¦a = b has a unique solution x ∈ X for any given a,b ∈ X .

In this case the pair (X ,¦) (or X itself) is called a point-reflection geometry.
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For a C∗-algebra A and elements a,b ∈ A−1+ define a ¦ b = ab−1a. In that way A−1+ becomes a
point-reflection geometry. Indeed, the conditions (a1), (a2) above are trivial to check. Concerning
(a3) we recall that for any given a,b ∈ A−1+ , the so-called Ricatti equation xa−1x = b has a unique
solution x = a#b which is just the geometric mean of a and b defined by

a#b = a
1
2 (a− 1

2 ba− 1
2 )

1
2 a

1
2 .

This result is usually termed as Anderson-Trapp theorem.
We need another concept, the one of so-called generalized distance measures.

Definition 2. Given an arbitrary non-empty set X , the function d : X ×X → [0,∞[ is called a gener-
alized distance measure if it has the property that for an arbitrary pair x, y ∈ X we have d(x, y) = 0
if and only if x = y .

Hence, in this definition we require only the definiteness property of a metric but neither the
symmetry nor the triangle inequality is assumed. Our general Mazur-Ulam type theorem in [8]
reads as follows.

Theorem 3. Let X ,Y be non-empty sets equipped with binary operations ¦,?, respectively, with
which they form point-reflection geometries. Let d : X ×X → [0,∞[, ρ : Y ×Y → [0,∞[ be generalized
distance measures. Pick a,b ∈ X , set

La,b = {x ∈ X : d(a, x) = d(x,b ¦a) = d(a,b)}

and assume the following:

(b1) d(b ¦ x,b ¦ x ′) = d(x ′, x) holds for all x, x ′ ∈ X ;
(b2) sup{d(x,b) : x ∈ La,b} <∞;
(b3) there exists a constant K > 1 such that d(x,b ¦ x) ≥ K d(x,b) holds for every x ∈ La,b .

Let φ : X → Y be a surjective map such that

ρ(φ(x),φ(x ′)) = d(x, x ′), x, x ′ ∈ X

and also assume that

(b4) for the element c ∈ Y with c?φ(a) =φ(b¦a) we have ρ(c?y,c?y ′) = ρ(y ′, y) for all y, y ′ ∈ Y .

Then we have
φ(b ¦a) =φ(b)?φ(a).

We shall also need the following properties defined for a continuous function h :]0,∞[→R:

(c1) h(t ) = 0 holds exactly for t = 1;
(c2) for some θ > 0 real number we have |h(t )| ≥ θ for all t ∈]0,∞[ from outside a neighborhood

of 1;
(c3) h is differentiable at t = 1 and f ′(1) 6= 0;
(c4) |h(t0)| 6= |h(t−1

0 )| holds for some t0 ∈]0,∞[.

The first main result of the paper which involves the possibility of several characterizations of
Jordan *-isomorphisms reads as follows.

Theorem 4. Let A j be a C∗-algebra for j = 1,2. Suppose that φ is a surjection from A−1
1+ onto A−1

2+.
Consider the following statements:

(4.1) σ(ab−1) =σ(φ(a)φ(b)−1), a,b ∈ A−1
1+;

(4.2) r (ab−1 −1) = r (φ(a)φ(b)−1 −1), a,b ∈ A−1
1+;

(4.3) there exists a pair h1,h2 :]0,∞[→ R of continuous functions which satisfy (c1)-(c3) and we
have

‖h1(b− 1
2 ab− 1

2 )‖ = ‖h2(φ(b)−
1
2φ(a)φ(b)−

1
2 )‖, a,b ∈ A−1

1+;

(4.4) there exists a Jordan *-isomorphism J from A1 onto A2, an element b0 ∈ A−1
2+, a central pro-

jection p ∈A2 and a positive real number c such that

φ(a) = b0(p J (a)c + (1−p)J (a)−c )b0, a ∈ A−1
1+;
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(4.5) there exists a Jordan *-isomorphism J from A1 onto A2, an element b0 ∈ A−1
2+, a central pro-

jection p ∈A2 such that

φ(a) = b0(p J (a)+ (1−p)J (a)−1)b0, a ∈ A−1
1+;

(4.6) there exists a Jordan *-isomorphism J from A1 onto A2 and an element b0 ∈ A−1
2+ such that

φ(a) = b0 J (a)b0, a ∈ A−1
1+.

We have the implications (4.1) ⇒ (4.2) ⇒ (4.3) ⇒ (4.4). If h1 = h2, then we have (4.1) ⇒ (4.2) ⇒
(4.3) ⇒ (4.5). If h1 = h2 and satisfy (c4), then we have (4.1) ⇔ (4.2) ⇔ (4.3) ⇔ (4.6).

Before presenting the proof of Theorem 4 we make some useful remarks. First of all, whenever a
normal element of a C∗-algebra is plugged in a continuous real function (with domain containing
the spectrum of that element) that refers to the well-known continuous functional calculus. Let A
be a C∗-algebra.

(R1) If a continuous function h :]0,∞[→R satisfies (c1), then for any a ∈ A−1+ , the equality h(a) =
0 implies that a = 1. Indeed, by the spectral mapping theorem we have h(σ(a)) = σ(h(a)) = 0,
which implies by (c1) that σ(a) = {1}, i.e., σ(a −1) = {0} which yields a −1 = 0. It follows that the
formula

d(a,b) = ‖h(b− 1
2 ab− 1

2 )‖, a,b ∈ A−1
+

defines a generalized distance measure on A−1+ .
(R2) Observe that if a continuous function h :]0,∞[→ R satisfies (c1) and (c2), then for any se-

quence tn ∈]0,∞[ with h(tn) → 0 we have tn → 1. This easily implies that, similarly, for any se-
quence an ∈ A−1+ with h(an) → 0 in the norm topology, we have an → 1.

(R3) Let h :]0,∞[→ R be a continuous function which is differentiable at t = 1. Then the trans-
formation x → h(x), x ∈ A−1+ is Fréchet-differentiable at x = 1 and its derivative (Dh)(1)y = h′(1) · y ,
y ∈ As . Indeed, by the differentiability of the real function h we have a continuous function
ω :]0,∞[→ R with ω(1) = 0 such that h(t )−h(1)−h′(1)(t −1) = ω(t )(t −1) for all t ∈]0,∞[. It fol-
lows that h(x)−h(1)1−h′(1)(x −1) = ω(x)(x −1) holds for all x ∈ A−1+ from which we obtain that
‖h(x)−h(1)1−h′(1)(x −1)‖ ≤ ‖ω(x)‖‖x −1‖. This implies

‖h(x)−h(1)1−h′(1)(x −1)‖
‖x −1‖ → 0

as x → 1 which proves the assertion.
(R4) If h :]0,∞[→R is a continuous function which satisfies (c1) and (c3), then we have a number

K > 1 such that |h(t 2)| ≥ K |h(t )| holds for all t in an ε-neighbourhood of 1 with some 0 < ε < 1.
Indeed, we compute

h(t 2)

h(t )
= (t +1)

h(t 2)/(t 2 −1)

h(t )/(t −1)
→ 2

as t → 1 verifying our claim.

(R5) For any invertible element x ∈ A and a,b ∈ A−1+ we have that a
1
2 b−1a

1
2 is unitarily equivalent

to b− 1
2 ab− 1

2 and (xbx∗)−
1
2 xax∗(xbx∗)−

1
2 is unitarily equivalent to b− 1

2 ab− 1
2 . Indeed, as for the

former statement, we have

a
1
2 b−1a

1
2 = u∗(b− 1

2 ab− 1
2 )u,

where u is the unitary element in the polar decomposition of b− 1
2 a

1
2 ∈ A. As for the latter state-

ment, we have

(xbx∗)−
1
2 xax∗(xbx∗)−

1
2 = |b 1

2 x∗|−1(b
1
2 x∗)∗(b− 1

2 ab− 1
2 )(b

1
2 x∗)|b 1

2 x∗|−1

= v∗(b− 1
2 ab− 1

2 )v,

where v is the unitary element in the polar decomposition of b
1
2 x∗.
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(R6) For any scalar valued continuous function h on ]0,∞[, unitary u ∈ A and positive invertible
a ∈ A−1+ we have h(uau−1) = uh(a)u−1. Indeed, it follows easily from the fact that h can be uni-
formly approximated by polynomials on any compact subinterval of ]0,∞[ and from the isometric
property of the continuous functional calculus.

Proof of Theorem 4. It is obvious that (4.1) implies (4.2). To verify the implication (4.2) ⇒ (4.3)
observe that for any a,b ∈ A−1

1+ we have

σ(ab−1 −1) =σ(ab−1)−1 =σ(b− 1
2 ab− 1

2 )−1 =σ(b− 1
2 ab− 1

2 −1)

which implies that

r (ab−1 −1) = r (b− 1
2 ab− 1

2 −1) = ‖b− 1
2 ab− 1

2 −1‖.

Therefore, assuming (4.2) and defining h1(t ) = h2(t ) = t −1, t ∈]0,∞[ we plainly obtain (4.3).
The main part of the proof now follows. We assume that (4.3) holds with continuous functions

h1,h2 :]0,∞[→R satisfying (c1)-(c3). Define

d(a,b) = ‖h1(b− 1
2 ab− 1

2 )‖, a,b ∈ A−1
1+

and
ρ(a,b) = ‖h2(b− 1

2 ab− 1
2 )‖, a,b ∈ A−1

2+.

By the remark (R1) we know that d ,ρ are generalized distance measures and we have

(1) ρ(φ(a),φ(b)) = d(a,b), a,b ∈ A−1
1+.

Observe the following. Applying (R5) and (R6) we have

d(zaz∗, zbz∗) = d(a,b)

and

(2) d(bx−1b,bx ′−1b) = d(x−1, x ′−1) = d(x ′, x)

for all a,b, x ∈ A−1
1+ and invertible z ∈ A1. Clearly, similar properties hold for the generalized dis-

tance measure ρ, too.

Now define the map φ0 : A−1
1+ → A−1

2+ by φ0(a) = φ(1)−
1
2φ(a)φ(1)−

1
2 , a ∈ A−1

1+. Plainly, φ0 is a
well defined and surjective map from A−1

1+ onto A−1
2+, φ0 is unital meaning that φ0(1) = 1, and the

equality (1) holds also for φ0, i.e., we have ρ(φ0(a),φ0(b)) = d(a,b), a,b ∈ A−1
1+.

We are going to apply Theorem 3. In order to do that we need to check that the conditions in
that theorem are satisfied. Firstly, we define the point-reflection geometry structures on A−1

j+ in the
standard way, i.e., just as we did after Definition 1. The condition (b1) is fulfilled by (2).

To proceed, we claim the following. Let H be a subset of A−1
1+ with the property that there are

positive numbers α,β such that α1 ≤ y ≤ β1 holds for all y ∈ H . (This means that H is bounded
away from zero and also from above with respect to the usual order ≤ defined on the set of all self-
adjoint elements coming from the notion of positivity. Recall that positive elements are the self-
adjoint ones with spectrum within the set of non-negative reals.) Then we assert that there exists
a number δ> 0 with the property that whenever a,b ∈ H are such that ‖a −b‖ < δ, we necessarily

have ‖b− 1
2 xb− 1

2 −1‖ < ε (i.e., the spectrum of b− 1
2 xb− 1

2 is in ]1− ε,1+ ε[) for all x ∈ La,b , where ε is
the number that appears in (R4) in relation with h1. Assume for a moment that this assertion is
already proven. We can check rather easily that for a,b ∈ A−1

1+ with ‖a −b‖ < δ the properties (b2)
and (b3) are satisfied. Indeed, by the isometric property of the continuous functional calculus,
the fulfillment of (b2) is clear since h1 is bounded in the closed interval [1− ε,1+ ε]. As for (b3),
applying the second equality in (2), the first part of (R5) and (R6), we can compute

d(x,bx−1b) = d(b−1xb−1, x−1) = ‖h1(x
1
2 (b−1xb−1)x

1
2 )‖

= ‖h1((x
1
2 b−1x

1
2 )2)‖ = ‖h1((b− 1

2 xb− 1
2 )2)‖ ≥ K ‖h1(b− 1

2 xb− 1
2 )‖ = K d(x,b)

for all x ∈ La,b meaning that (b3) is also satisfied.
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Now, in order to verify the starting assertion, assume on the contrary that we have sequences

an ,bn ∈ H , xn ∈ Lan ,bn such that ‖an −bn‖ < 1
n but ‖b

− 1
2

n xnb
− 1

2
n −1‖ ≥ ε. We compute

‖b
− 1

2
n anb

− 1
2

n −1‖ = ‖b
− 1

2
n (an −bn)b

− 1
2

n ‖ ≤ ‖b−1
n ‖‖an −bn‖

and this last term converges to 0 since we have ‖b−1
n ‖ ≤ 1/α. Therefore, b

− 1
2

n anb
− 1

2
n → 1 and by (c1) it

follows that d(an ,bn) = ‖h1(b
− 1

2
n anb

− 1
2

n )‖→ 0. Since xn ∈ Lan ,bn , we have d(an , xn) = d(an ,bn) → 0

meaning that h1(x
− 1

2
n an x

− 1
2

n ) → 0. Applying the observation in (R2) one can check rather easily

that this implies x
− 1

2
n an x

− 1
2

n → 1. Therefore, for an arbitrary scalar 0 < γ < 1 we have an index n0

such that for all n ≥ n0 we obtain 1−γ1 ≤ x
− 1

2
n an x

− 1
2

n ≤ 1+γ1 which yields (1/(1+γ))an ≤ xn ≤
(1/(1−γ))an for all n ≥ n0. Since we also have b

− 1
2

n anb
− 1

2
n → 1, in a similar manner, we may also

assume that (1/(1+γ))an ≤ bn ≤ (1/(1−γ))an holds for all n ≥ n0. These imply that

(1/(1+γ)−1/(1−γ))an ≤ xn −bn ≤ (1/(1−γ)−1/(1+γ))an

for all n ≥ n0. Since γ> 0 is arbitrary and we have an ≤β1 for all n, we infer that xn −bn → 0 which

immediately yields b
− 1

2
n xnb

− 1
2

n → 1 contradicting to ‖b
− 1

2
n xnb

− 1
2

n − 1‖ ≥ ε. This proves the above
assertion and hence we have that (b2) and (b3) in Theorem 3 are satisfied. Observe that (b4) is
fulfilled, too, which can be checked just as the condition (b1) above. By Theorem 3 it follows that
there is a number δ> 0 such that whenever ‖a −b‖ < δ, a,b ∈ A−1

1+, we necessarily have

φ0(ba−1b) =φ0(b)φ0(a)−1φ0(b).

Now pick arbitrary a,b ∈ A−1
1+. We prove that the above displayed equality holds for a and b. To

verify this, consider the curve

Γ(t ) = a
1
2

(
exp

(
t log(a− 1

2 ba− 1
2 )

))
a

1
2 , t ∈ [0,2]

connecting a and ba−1b and passing through b. The range of this curve is a norm-compact subset
of A−1

1+ and hence it satisfies the condition we imposed on the subset H of A−1
1+ in the previous

part of the proof. Therefore, there is a number δ > 0 such that for any a′,b′ ∈ Γ([0,2]) we have
φ0(b′a′−1b′) =φ0(b′)φ0(a′)−1φ0(b′). By the uniform continuity of Γ, for close enough t , s ∈ [0,2] we
have ‖Γ(t )−Γ(s)‖ < δ. Now, we can select a large enough n such that for the elements ak = Γ(k/2n),
k = 0,1, . . . ,2n+1 we have ‖ak−ak+1‖ < δ. Clearly, a0 = a, a2n = b, a2n+1 = ba−1b, and ak+1a−1

k ak+1 =
ak+2 holds for every 0 ≤ k ≤ 2n+1 −2. Moreover, by the closeness of ak and ak+1 we have

φ0(ak+1a−1
k ak+1) =φ0(ak+1)φ0(ak )−1φ0(ak+1)

for every 0 ≤ k ≤ 2n+1 −1. It requires purely algebraic computations to verify that then we have

φ0(a2n a−1
0 a2n ) =φ0(a2n )φ0(a0)−1φ0(a2n ).

In fact, this is just the content of the technical Lemma 4.2 in [3]. As a0 = a and a2n = b, we get

(3) φ0(ba−1b) =φ0(b)φ0(a)−1φ0(b)

for an arbitrary pair a,b ∈ A−1
1+.

Putting b = 1 we deduce that φ0(a−1) =φ0(a)−1 for every a ∈ A−1
1+ and then we obtain that

(4) φ0(bab) =φ0(b)φ0(a)φ0(b), a,b ∈ A−1
1+.

One can trivially deduce using (3) and (4) that for any a ∈ A−1
1+ we have φ0(am) = φ0(a)m first for

any integer m and then for any rational number, too.
Pick x ∈ A1s and define S :R→ A−1

2+ by

S(t ) =φ0(exp(t x)), t ∈R.
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We assert that S is continuous with respect the norm-topology. To see this, first observe that ap-
plying (R2) for a sequence xn ∈ A−1

1+ we have

‖xn −1‖→ 0 ⇒‖h1(xn)‖→ 0 ⇒ d(xn ,1) → 0 ⇒
ρ(φ0(xn),φ0(1)) = ρ(φ0(xn),1) → 0 ⇒‖h2(φ0(xn))‖→ 0 ⇒‖φ0(xn)−1‖→ 0.

Now, picking t , t0 ∈R we compute

‖S(t + t0)−S(t0)‖ = ‖φ0(exp((t + t0)x))−φ0(exp(t0x))‖
≤ ‖φ0(exp(t0x))

1
2 ‖2‖φ0(exp(t0x))−

1
2φ0(exp((t + t0)x))φ0(exp(t0x))−

1
2 −1‖

= ‖φ0(exp(t0x))‖‖φ0

(
exp

(−t0

2
x

)
exp((t + t0)x)exp

(−t0

2
x

))
−1‖

= ‖φ0(exp(t0x))‖‖φ0(exp(t x))−1‖.

It follows that for t → 0 we have S(t+t0) → S(t0) in the norm topology implying the norm-continuity
of S. We next deduce that S is a one-parameter group in A−1

2+. Indeed, let m,n,m′,n′ be integers
with m,m′ 6= 0. We calculate

S

(
n

m
+ n′

m′

)
=φ0

(
exp

((
n

m
+ n′

m′

)
x

))
=φ0

(
exp

1

mm′ x

)m′n+mn′

=φ0

(
exp

1

mm′ x

)m′n
φ0

(
exp

1

mm′ x

)mn′

= S
( n

m

)
S

(
n′

m′

)
.

Since S is continuous, it follows that

S(t + t ′) = S(t )S(t ′), t , t ′ ∈R.

Therefore, S is a continuous one-parameter group in A2. By part (a) in Proposition 6.4.6 in [10]
there exists y ∈ A2 with

S(t ) = exp(t y), t ∈R.

Since S(t ) is self-adjoint, we deduce that y is also self-adjoint using, e.g., (c) in Proposition 6.4.6 in
[10].

Defining f (x) = y we obtain a map f : A1s → A2s for which

φ0(exp(t x)) = S(t ) = exp(t f (x)), t ∈R, x ∈ A1s .

As φ0 preserves or, better say, respects the pair d ,ρ of generalized distance measures, it is clearly
injective. This implies that f is injective, too. Consideringφ−1

0 in the place ofφ0, we clearly have an
injective map g : A2s → A1s such that φ−1

0 (exp(t y)) = exp(t g (y)) holds for every y ∈ A2s and t ∈ R.
This easily implies that y = f (g (y)) holds for all y ∈ A2s . Hence f is surjective and therefore it is a
bijection from A1s onto A2s . Note that f (0) = 0 is true by the definition of f .

Our next claim is that f is a scalar multiple of a norm-isometry. To verify this, we assert that as
t → 0, we have that

(5)
d(exp(t x),exp(t y))

|t | → |h′
1(1)|‖x − y‖

holds for all x, y ∈ A1s . Clearly,

exp(− t
2 y)exp(t x)exp(− t

2 y)−1

t

= exp

(
− t

2
y

)
(exp(t x)−1)− (exp(t y)−1)

t
exp

(
− t

2
y

)
→ x − y.

Since
d(exp(t x),exp(t y))

|t | = ‖h1(exp(− t
2 y)exp(t x)exp(− t

2 y))−h1(1)‖
|t | ,
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the validity of (5) follows from (R3) and from the chain rule. Similarly, we obtain that

ρ(exp(t x),exp(t y))

|t | → |h′
2(1)|‖x − y‖

holds for all x, y ∈ A2s . Since φ0 respects the pair d ,ρ of generalized distance measures, it now
follows that |h′

1(1)|‖x − y‖ = |h′
2(1)|‖ f (x)− f (y)‖, x, y ∈ A1s . This implies that we have a positive

scalar c such that (1/c) f is a surjective isometry from A1s onto A2s . Since f (0) = 0, by the classical
Mazur-Ulam theorem we infer that f is linear. The structure of linear isometries between the self-
adjoint parts of C∗-algebras is well-known. In fact, according to a theorem of Kadison [6, Therem
2] we obtain that (1/c) f (1) is a central symmetry in A2 and there is a Jordan *-isomorphism J from
A1 onto A2 such that

f (x) = f (1)J (x), x ∈ A1s .

Put p = (1+ (1/c) f (1))/2. Then p is a central projection in A2 and

f (x) = c(p J (x)− (1−p)J (x)), x ∈ A1s .

We now calculate

φ0(exp x) = exp(c(p J (x)− (1−p)J (x)))

=
∞∑

n=0

(c(p J (x)− (1−p)J (x)))n

n!
=

∞∑
n=0

p J ((cx)n)+ (1−p)J ((−cx)n)

n!

= p J (exp(cx))+ (1−p)J (exp(−cx)) = p J (exp x)c + (1−p)J (exp x)−c

for every x ∈ A1s . Thus

(6) φ0(a) = p J (a)c + (1−p)J (a)−c , a ∈ A−1
1+,

and we arrive at (4.4). Observe further that if we assume h1 = h2 and that the central projection p
above is non-trivial, then inserting a = t1, t ∈]0,∞[ and b = 1 into (6), and using the generalized
distance measure preserving property of φ0, we easily obtain

|h1(t )| = max{|h1(t c )|, |h1(t−c )|}
for all positive real number t . From this we first deduce that |h1(t )| = |h1(t−1)| and then that
|h1(t )| = |h1(t c )|, t ∈]0,∞[. Differentiating h1 at t = 1 we easily obtain that c = 1. Therefore, in
the case where the projection p is non-trivial, we have c = 1. Similar argument applies when p
is trivial, i.e., when |h1(t )| = |h1(t c )| or |h1(t )| = |h1(t−c )|, t ∈]0,∞[. This gives us the implication
(4.3) ⇒ (4.5).

If above we also assume that h1 = h2 and |h1(t0)| 6= |h1(t−1
0 )| holds for some t0 ∈]0,∞[, then

reconsidering the last part of the argument above, we see that p is necessarily trivial, in fact p = 1,
and c = 1 verifying the implication (4.3) ⇒ (4.6).

To complete the proof, suppose now that (4.6) holds. For any a,b ∈ A−1
1+ we infer that

σ(φ(a)φ(b)−1) =σ(b0 J (a)J (b)−1b−1
0 )

=σ(b0 J (a)J (b−1)b−1
0 ) =σ(J (a)J (b−1)) =σ(ab−1)

and hence we obtain (4.1). �

Observe that the implication (4.3) ⇒ (4.5) gives a substantial generalization of our former result
Theorem 9 in [5] about the structure of Thompson isometries between the positive definite cones
of C∗-algebras which is one of the main results in that paper. Indeed, one needs only to choose
h1 = h2 = log to obtain that result from Theorem 4.

We also remark that in [8] we have presented structural results for surjective maps between
the positive definite cones of factor von Neumann algebras which respect a pair of generalized
distance measures of the form similar to what appears in (4.3) above with the difference that in
[8] we have considered arbitrary unitarily invariant norms in the place of the unique C∗-algebra
norm ‖.‖ (operator norm). So in a sense those results concern more general distance measures but
in a more restricted context. Indeed, due to the (mainly algebraic) tools we have applied there, the
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results [8] have been obtained only for factor von Neumann algebras and not, like here, for general
C∗-algebras. Related results in the context of matrix algebras appeared in our former paper [9].

In what follows we present several sorts of extensions of our previous theorem.

Corollary 5. Let A j be a C∗-algebra for j = 1,2 and suppose that φ and ψ are surjections from A−1
1+

onto A−1
2+. Then the following assertions are equivalent:

(5.1) σ(ab) =σ(φ(a)ψ(b)), a,b ∈ A−1
1+;

(5.2) r (ab −1) = r (φ(a)ψ(b)−1), a,b ∈ A−1
1+;

(5.3) there is a continuous function h :]0,∞[→Rwhich satisfies (c1)-(c4) and we have

‖h(b
1
2 ab

1
2 )‖ = ‖h(ψ(b)

1
2φ(a)ψ(b)

1
2 )‖, a,b ∈ A−1

1+;

(5.4) there exists a Jordan *-isomorphism J from A1 onto A2 and b0 ∈ A−1
2+ such that

φ(a) = b0 J (a)b0, ψ(a) = b−1
0 J (a)b−1

0 , a ∈ A−1
1+.

Proof. The implication (5.1) ⇒ (5.2) is obvious, to see (5.2) ⇒ (5.3) set h(t ) = t −1, t ∈]0,∞[.
Suppose that (5.3) holds. For any a ∈ A−1

1+ we have

0 = ‖h(a− 1
2 aa− 1

2 )‖ = ‖h(ψ(a−1)
1
2φ(a)ψ(a−1)

1
2 )‖

which implies ψ(a−1)
1
2φ(a)ψ(a−1)

1
2 = 1, i.e., φ(a) =ψ(a−1)−1. It then follows that

‖h(b− 1
2 ab− 1

2 )‖ = ‖h(ψ(b−1)
1
2φ(a)ψ(b−1)

1
2 )‖ = ‖h(φ(b)−

1
2φ(a)φ(b)−

1
2 )‖.

Applying Theorem 4 we obtain that there is a Jordan *-isomorphism J from A1 onto A2 and b0 ∈ A−1
2+

such that

φ(a) = b0 J (a)b0, a ∈ A−1
1+.

Moreover, we infer that

ψ(a) =φ(a−1)−1 = b−1
0 J (a)b−1

0 , a ∈ A−1
1+

and obtain (5.4).
Suppose now that (5.4) holds. For any a,b ∈ A−1

1+ we calculate

σ(φ(a)ψ(b)) =σ(b0 J (a)J (b)b−1
0 ) =σ(J (a)J (b)) =σ(ab).

Thus (5.1) holds and the proof is complete. �

From the above statement we immediately obtain the following corollary which presents a com-
plete description of spectrally multiplicative maps between the positive definite cones of C∗-algebras.

Corollary 6. Let A j be a C∗-algebra for j = 1,2. Suppose that φ is a surjection from A−1
1+ onto A−1

2+.
Then the following statements are equivalent:

(6.1) σ(ab) =σ(φ(a)φ(b)), a,b ∈ A−1
1+;

(6.2) r (ab −1) = r (φ(a)φ(b)−1), a,b ∈ A−1
1+;

(6.3) there is a continuous function h :]0,∞[→R which satisfies (c1)-(c4) and we have

‖h(b
1
2 ab

1
2 )‖ = ‖h(φ(b)

1
2φ(a)φ(b)

1
2 )‖, a,b ∈ A−1

1+;

(6.4) there exists a Jordan *-isomorphism J from A1 onto A2 such that

φ(a) = J (a), a ∈ A−1
1+.

Proof. In the light of the proofs of the previous results, the only implication we need to verify is
(6.3) ⇒ (6.4). Assuming (6.3), by Corollary 6 there exists a Jordan *-isomorphism J from A1 onto A2

and b0 ∈ A−1
2+ such that

φ(a) = b0 J (a)b0, φ(a) = b−1
0 J (a)b−1

0 , a ∈ A−1
1+.

Choosing a = 1, it follows that b2
0 = b−2

0 which implies b0 = 1 and we are done. �
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With some extra efforts, from Corollary 5 we can deduce the following formally even more gen-
eral result on the structure of maps defined on arbitrary sets with values in the positive definite
cones of C∗-algebras with a specific property closely related to spectral multiplicativity.

Theorem 7. Let A j be a C∗-algebra for j = 1,2 and F a non-empty set. Suppose that Φ1 and Ψ1

are surjections from F onto A−1
1+ and that Φ2 and Ψ2 are surjections from F onto A−1

2+. The following
statements are equivalent:

(7.1) σ(Φ1(x)Ψ1(y)) =σ(Φ2(x)Ψ2(y)), x, y ∈ F ;
(7.2) r (Φ1(x)Ψ1(y)−1) = r (Φ2(x)Ψ2(y)−1), x, y ∈ F ;
(7.3) there is a continuous function h :]0,∞[→R which satisfies (c1)-(c4) and we have

‖h(Ψ1(y)
1
2Φ1(x)Ψ1(y)

1
2 )‖ = ‖h(Ψ2(y)

1
2Φ2(x)Ψ2(y)

1
2 )‖, x, y ∈ F ;

(7.4) there exists a Jordan *-isomorphism J from A1 onto A2 and an element b0 ∈ A−1
2+ such that

Φ2(x) = b0 J (Φ1(x))b0, Ψ2(x) = b−1
0 J (Ψ1(x))b−1

0 , x, y ∈ F.

Proof. Again, in the light of the previous proofs the implications (7.1) ⇒ (7.2) ⇒ (7.3) are apparent.
Suppose that (7.3) holds. To prove (7.4), we first observe that Φ1(x) = Φ1(x ′) implies Φ2(x) =

Φ2(x ′). Indeed, let x, x ′ ∈ F and assume that Φ1(x) =Φ1(x ′). Since Ψ1(F ) = A−1
1+, there exists y ∈ F

with Ψ1(y) =Φ1(x)−1. Then we have

0 = ‖h(Ψ1(y)
1
2Φ1(x)Ψ1(y)

1
2 )‖ = ‖h(Ψ2(y)

1
2Φ2(x)Ψ2(y)

1
2 )‖

implying that Ψ2(y)
1
2Φ2(x)Ψ2(y)

1
2 = 1. Thus we have Ψ2(y)−1 =Φ2(x). In a similar way we obtain

that Ψ2(y)−1 = Φ2(x ′) holds, too. It then follows that Φ2(x) = Φ2(x ′). In the same way one can
deduce that Ψ1(x) = Ψ1(x ′) implies Ψ2(x) = Ψ2(x ′). After this we define maps φ,ψ : A−1

1+ → A−1
2+

by φ(Φ1(x)) =Φ2(x), x ∈ F and by ψ(Ψ1(x)) =Ψ2(x), x ∈ F . Apparently, φ,ψ are well defined and
surjective. Rewriting the displayed equality in (7.3) we have

‖h(b
1
2 ab

1
2 )‖ = ‖h(ψ(b)

1
2φ(a)ψ(b)

1
2 )‖, a,b ∈ A−1

1+.

By Corollary 5 there exists a Jordan *-isomorphism J from A1 onto A2 and an element b0 ∈ A−1
2+

such that
φ(a) = b0 J (a)b0, ψ(a) = b−1

0 J (a)b−1
0 , a ∈ A−1

1+.

In other words, we have

Φ2(x) = b0 J (Φ1(x))b0, Ψ2(x) = b−1
0 J (Ψ1(x))b−1

0 , x ∈ F

and this proves (7.4).
Finally, in a way similar to the proof of Corollary 5 one can check that (7.4) implies (7.1) which

finishes the proof of the theorem. �

We conclude the section with a few other corollaries which provide characterizations of Jordan
*-isomorphisms of the self-adjoint parts of C∗-algebras by means of their certain spectral multi-
plicativity type properties.

Corollary 8. Let A j be a C∗-algebra for j = 1,2. Suppose that f and g are surjections from A1s onto
A2s . Then the following assertions are equivalent:

(8.1) σ(exp x exp y) =σ(exp f (x)exp g (y)), x, y ∈ A1s ;
(8.2) r (exp x exp y −1) = r (exp f (x)exp g (y)−1), x, y ∈ A1s ;
(8.3) there is a continuous function h :]0,∞[→Rwhich satisfies (c1)-(c4) and we have

‖h(exp(y/2)exp(x)exp(y/2))‖
= ‖h(exp(g (y)/2)exp( f (x))exp(g (y)/2))‖, x, y ∈ A1s ;

(8.4) there exists a Jordan *-isomorphism J from A1s onto A2s and b0 ∈ A−1
2+ such that

exp f (x) = b0(exp J (x))b0, exp g (x) = b−1
0 (exp J (x))b−1

0 , x, y ∈ A1s .

Moreover, in any of the above cases, if f (0) = 0, then we f = g = J on A1s .
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Proof. Define φ(a) = exp( f (log a)), a ∈ A−1
1+ and ψ(b) = exp(g (logb)), b ∈ A−1

1+. Apply Corollary 5 to
see the equivalence of the assertions (8.1)-(8.4). If f (0) = 0, we easily obtain b0 = 1 which implies
f = g = J on A1s . �

If we have f = g in the previous corollary, we trivially obtain the following statement.

Corollary 9. Let A j be a C∗-algebra for j = 1,2. Suppose that f is a surjection from A1s onto A2s .
Then the following assertions are equivalent:

(9.1) σ(exp x exp y) =σ(exp f (x)exp f (y)), x, y ∈ A1s ;
(9.2) r (exp x exp y −1) = r (exp f (x)exp f (y)−1), x, y ∈ A1s ;
(9.3) there is a continuous function h :]0,∞[→Rwhich satisfies (c1)-(c4) and we have

‖h(exp(y/2)exp(x)exp(y/2))‖
= ‖h(exp( f (y)/2)exp( f (x))exp( f (y)/2))‖, x, y ∈ A1s ;

(9.4) there exists a Jordan *-isomorphism J from A1s onto A2s such that f = J on A1s .

Similarly, putting g (y) =− f (−y), y ∈A1s into Corollary 8 we have the following statement.

Corollary 10. Let A j be a C∗-algebra for j = 1,2. Suppose that f is a surjection from A1s onto A2s .
Then the following assertions are equivalent:

(10.1) σ(exp x(exp y)−1) =σ(exp f (x)(exp f (y))−1), x, y ∈ A1s ;
(10.2) r (exp x(exp y)−1 −1) = r (exp f (x)(exp f (y))−1 −1), x, y ∈ A1s ;
(10.3) there is a continuous function h :]0,∞[→R which satisfies (c1)-(c4) and we have

‖h(exp(y)−
1
2 exp(x)exp(y)−

1
2 )‖

= ‖h(exp( f (y))−
1
2 exp( f (x))exp( f (y))−

1
2 )‖, x, y ∈ A1s ;

(10.4) there exists a Jordan *-isomorphism J from A1s onto A2s and b0 ∈ A−1
2+ such that

exp f (x) = b0(exp J (x))b0, x, y ∈ A1s .

Moreover, in any of the above cases, if f (0) = 0, then f = J holds on A1s .

3. THE CASE OF THE UNITARY GROUPS

In the last part of our paper we present spectral conditions for Jordan *-isomorphisms between
the unitary groups of von Neumann algebras. In the proof of our second main result Theorem 12
below we apply the next general Mazur-Ulam type result relating groups. It appeared as Proposi-
tion 20 in [8] (cf. Corollary 3.9 in [3]).

Theorem 11. Suppose that G and H are groups equipped with generalized distance measures d and
ρ, respectively. Pick a,b ∈G, set

La,b = {x ∈G : d(a, x) = d(x,ba−1b) = d(a,b)},

and assume the following:

(d1) d(bx−1b,bx ′−1b) = d(x ′, x) holds for all x, x ′ ∈G;
(d2) sup{d(x,b) : x ∈ La,b} <∞;
(d3) there exists a constant K > 1 such that

d(x,bx−1b) ≥ K d(x,b), x ∈ La,b ;

(d4) ρ(c y−1c ′,c y ′−1c ′) = ρ(y ′, y) holds for all c,c ′, y, y ′ ∈ H.

Then for any surjective map φ : G → H which satisfies

ρ(φ(x),φ(x ′)) = d(x, x ′), x, x ′ ∈G

we have
φ(ba−1b) =φ(b)φ(a)−1φ(b).
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One may ask if the above statement can be deduced from Theorem 3. The easy answer is "no",
since the natural operation ab−1a called the inverted Jordan triple product in a group does not
generally satisfy the uniqueness part of the condition in (a3).

Analogously to Section 2, below we shall consider generalized distance measures on unitary
groups obtained from continuous functions defined on the unit circle T.

For any continuous function h :T→C we shall consider the following properties:

(e1) h(z) = 0 holds exactly for z = 1;
(e2) h is differentiable at z = 1 meaning that the limit limz→1

h(z)−h(1)
z−1 exists and we assume that

it is non-zero.

Observe that just as in the remark (R4) one can prove that the condition imply that for any num-
ber 0 ≤ K < 2 we have |h(z2)| ≥ K |h(z)| for all z ∈T close enough to 1.

The second main result of the paper reads as follows.

Theorem 12. Let M j be a von Neumann algebra with unitary group U j for j = 1,2. Suppose that φ
is a surjection from U1 onto U2. The following two conditions are equivalent:

(12.1) σ(ab−1) =σ(φ(a)φ(b)−1), a,b ∈U1;
(12.2) there exists a Jordan *-isomorphism J from M1 onto M2 and an element u0 ∈U2 such that

φ(a) = u0 J (a), a ∈U1.

Moreover, the following three conditions are also equivalent:

(12.3) r (ab−1 −1) = r (φ(a)φ(b)−1 −1), a,b ∈U1;
(12.4) there exists a pair h1,h2 :T→C of continuous functions which satisfy (e1)-(e2) and we have

‖h1(ab−1)‖ = ‖h2(φ(a)φ(b)−1)‖, a,b ∈U1;

(12.5) there exists a Jordan *-isomorphism J from M1 onto M2, an element u0 ∈ U2 and a central
projection p ∈ A2 such that

φ(a) = u0(p J (a)+ (1−p)J (a)−1), a ∈U1.

Proof. We begin with the second part of the theorem. To see the implication (12.3) ⇒ (12.4) con-
sider simply the functions h1(z) = h2(z) = z −1, z ∈T.

In the rest of the proof we follow the proof of Theorem 4 rather closely in spirit. Assume that
(12.4) holds with continuous functions h1,h2 :T→C satisfying (e1)-(e2). Define

d(a,b) = ‖h1(ab−1)‖, a,b ∈U1

and
ρ(a,b) = ‖h2(ab−1)‖, a,b ∈U2.

By the property (e1) we obtain that d ,ρ are generalized distance measures and we have

(7) ρ(φ(a),φ(b)) = d(a,b), a,b ∈U1.

One can easily check that
d(zaw, zbw) = d(a,b)

and

(8) d(bx−1b,bx ′−1b) = d(x−1, x ′−1) = d(x ′, x)

are satisfied for all a,b, x, z, w ∈ U1. Clearly, similar properties hold for the generalized distance
measure ρ, too.

Define the map φ0 : U1 → U2 by φ0(a) = φ(1)−1φ(a), a ∈ U1. Plainly, φ0 is a well defined and
surjective map from U1 onto U2, it is unital meaning that φ0(1) = 1, and the equality (7) holds also
for φ0, i.e., we have

(9) ρ(φ0(a),φ0(b)) = d(a,b), a,b ∈U1.

We are going to apply Theorem 11 for G =U1, H =U2, for the above defined distance measures
d ,ρ and for the surjective mapφ0. We have seen in (8) that the conditions (d1), (d4) in Theorem 11
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are satisfied. The condition (d2) is also fulfilled as a consequence of the boundedness of the con-
tinuous function h1. Now we show that (d3) is satisfied for such a,b ∈U1 which are close enough to
each other in norm. To see this, we shall need the following simple observation: for any sequences
an ,bn in U1 we have

‖an −bn‖ = ‖anb−1
n −1‖→ 0 ⇔‖h1(anb−1

n )‖ = d(an ,bn) → 0

and similar observation holds for the generalized distance measure ρ as well. In fact, this follows
rather easily from the continuity of h1 and the property (e1). In particular, we obtain that "con-
vergence" in any of the generalized distance measures d ,ρ is equivalent to the convergence in the
norm ‖.‖.

In order to show that the condition (d3) holds for close enough a,b ∈U1, assume on the contrary
that we have sequences an ,bn ∈U1 and xn ∈ Lan ,bn such that ‖an −bn‖→ 0 and

d(xn ,bn x−1
n bn) < (3/2)d(xn ,bn)

holds for every positive integer n. This latter inequality means that

‖h1((xnb−1
n )2)‖ < (3/2)‖h1(xnb−1

n )‖
holds for all n. Since d(an , xn) = d(an ,bn) → 0, we have an x−1

n , anb−1
n → 1 in norm which appar-

ently implies that xnb−1
n → 1 in norm. On the other hand, we know that |h(z2)| ≥ (3/2)|h(z)| for

all z ∈ T which are close enough to 1. Therefore, we obtain ‖h1((xnb−1
n )2)‖ ≥ 3/2‖h1(xnb−1

n )‖ for
large enough n, a contradiction. This shows that the condition (d3) is satisfied for close enough
a,b ∈U1. Applying Theorem 11 it follows that there is δ> 0 such that for every ‖a−b‖ < δ, a,b ∈U1

we have
φ0(ba−1b) =φ0(b)φ0(a)−1φ0(b).

Just as in the first section of the proof of Theorem 1 in [5] we then deduce that

φ0(ba−1b) =φ0(b)φ0(a)−1φ0(b)

holds not only locally, but also globally, i.e., for any a,b ∈U1. Putting b = 1 we getφ0(a−1) =φ0(a)−1

for every a ∈U1 and then obtain that

(10) φ0(bab) =φ0(b)φ0(a)φ0(b), a,b ∈U1.

By the equivalence of the convergence in d ,ρ and in the norm we deduce thatφ0 is norm-continuous.
Therefore, following the proof of Theorem 1 in [5] on page 160-161 employing one-parameter uni-
tary groups, we infer that there is a bijective map f : M1s → M2s with f (0) = 0 for which

φ0(exp(i t x)) = exp(i t f (x)), t ∈R, x ∈ M1s .

Just as in the proof of Theorem 4 we claim that f is a scalar multiple of a norm-isometry. To verify
this, we observe that one can prove similarly to (5) that

d(exp(i t x),exp(i t y))

|t | → |h′
1(1)|‖x − y‖

holds for all x, y ∈ M1s as t → 0. We omit the details. Similarly, we obtain that

ρ(exp(i t x),exp(i t y))

|t | → |h′
2(1)|‖x − y‖

holds for all x, y ∈ M2s as t → 0. Since φ0 respects the pair d ,ρ of generalized distance measures,
i.e., satisfies (9), it follows that |h′

1(1)|‖x − y‖ = |h′
2(1)|‖ f (x)− f (y)‖, x, y ∈ M1s . This implies that

we have a positive scalar c such that (1/c) f is a surjective isometry from M1s onto M2s . Just as in
the proof of Theorem 4, since f (0) = 0, by Mazur-Ulam theorem we infer that f is linear and next
apply Kadison’s theorem [6, Therem 2] to obtain that (1/c) f (1) is a central symmetry in M2 and
there is a Jordan *-isomorphism J from M1 onto M2 such that

f (x) = f (1)J (x), x ∈ M1s .

Set p = (1+ (1/c) f (1))/2. Then p is a central projection in M2 and

f (x) = c(p J (x)− (1−p)J (x)), x ∈ M1s .
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Next an easy calculation yields that

(11) φ0(exp i x) = exp(c(p J (i x)− (1−p)J (i x)))

= p J (exp(i cx))+ (1−p)J (exp(−i cx))

holds for every x ∈ M1s . We assert that c is necessarily an integer. Indeed, since φ0 is unital and
satisfies (10), it follows that φ0 sends symmetries to symmetries. Therefore, for any non-zero pro-
jection q in M1, the spectrum of

φ0(exp iπq) = p J (exp(i cπq))+ (1−p)J (exp(−i cπq))

is contained in {−1,1}. Since J preserves the spectrum and p is central, it follows that at least one
of the sets {1,exp(i cπ)}, {1,exp(−i cπ)} (p might be trivial) is contained in {−1,1}. This gives as that
c is an integer and since it is assumed also to be positive, we obtain that c is a positive integer.
Therefore, by (11) we have

(12) φ0(a) = p J (ac )+ (1−p)J (a−c ), a ∈U1.

Now we prove that c = 1. Indeed, assuming that the central projection p above is non-trivial,
inserting scalars a = z1, z ∈ T and b = 1 into (12), and using the generalized distance measure
preserving property of φ0, we easily obtain

|h1(z)| = max{|h2(zc )|, |h2(z−c )|}
for all z ∈ T. Since h1,h2 has unique roots at z = 1, we infer that c must be 1. Similar argument
works also in the case where p is trivial. This completes the proof of the implication (12.4) ⇒ (12.5).

Assume (12.5) holds. We compute

(13) r (φ(a)φ(b)−1 −1) = ‖φ(a)φ(b)−1 −1‖
= ‖u0(p J (a)J (b)−1 + (1−p)J (a)−1 J (b))u−1

0 −1‖
= ‖p J (a)J (b)−1 + (1−p)J (a)−1 J (b)−1‖

= max{‖p(J (a)J (b)−1 −1)‖,‖(1−p)(J (a)−1 J (b)−1)‖}.

Furthermore, by taking adjoints we have

(14) ‖(1−p)(J (a)−1 J (b)−1)‖ = ‖(1−p)(J (b)−1 J (a)−1)‖
= ‖J (b)−1(1−p)(J (a)− J (b))‖ = ‖(1−p)(J (a)− J (b))J (b)−1‖

= ‖(1−p)(J (a)J (b)−1 −1)‖
since 1−p commutes with every element in M2. It follows from (13) and (14) that

r (φ(a)φ(b)−1 −1) = max{‖p(J (a)J (b)−1 −1)‖,‖(1−p)(J (a)J (b)−1 −1)‖}

= ‖p(J (a)J (b)−1 −1)+ (1−p)(J (a)J (b)−1 −1)‖ = ‖J (a)J (b)−1 −1‖
= r (J (a)J (b−1)−1) = r (ab−1 −1).

The last equality follows from the spectral multiplicativity of J . Thus we obtain (12.3).
Let us consider now the first part of the theorem. Assume (12.1) holds. It trivially implies (12.3)

which implies (12.5). Consequently, there exists a Jordan *-isomorphism J from M1 onto M2, an
element u0 ∈U2 and a central projection p ∈ A2 such that

φ(a) = u0(p J (a)+ (1−p)J (a)−1), a ∈U1;

It is not hard to verify that the central projection p above must be the identity and hence we obtain
(12.2). The implication (12.2) ⇒ (12.1) is trivial to check and hence the proof of the theorem is
complete.

�

Corollary 13. Let M j be a von Neumann algebra with unitary group U j for j = 1,2. Suppose that φ
and ψ are surjections from U1 onto U2. Then the following two conditions are equivalent:
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(13.1) σ(ab) =σ(φ(a)ψ(b)), a,b ∈U1;
(13.2) there exists a Jordan *-isomorphism J from M1 onto M2 and u0 ∈U2 such that

φ(a) = u0 J (a),ψ(a) = J (a)u−1
0 , a ∈U1.

Moreover the following three conditions are also equivalent:

(13.3) r (ab −1) = r (φ(a)ψ(b)−1), a,b ∈U1;
(13.4) there exists a pair h1,h2 :T→C of continuous functions which satisfy (e1)-(e2) and we have

‖h1(ab)‖ = ‖h2(φ(a)ψ(b))‖, a,b ∈U1;

(13.5) there exists a Jordan *-isomorphism J from M1 onto M2, a central projection p ∈ M2, and
u0 ∈U2 such that

φ(a) = u0(p J (a)+ (1−p)J (a)−1), ψ(a) = (p J (a)+ (1−p)J (a)−1)u−1
0 , a ∈U1.

Proof. Setting b = a−1, from both of (13.1) and (13.4) we obtain ψ(a−1) =φ(a)−1. Easy application
of Theorem 12 gives the implications (13.1) ⇒ (13.2) and (13.4) ⇒ (13.5). The rest of the proof
can be shown by arguments already employed in the previous part of the paper. For example, the
implication (13.5) ⇒ (13.3) can be proved by a reasoning similar to the one that has appeared in
the proof of the implication (12.5) ⇒ (12.3). We omit the details. �

Corollary 14. Let M j be a von Neumann algebra with unitary group U j for j = 1,2. Suppose that φ
is a surjection from U1 onto U2. Then the following conditions are equivalent:

(14.1) σ(ab) =σ(φ(a)φ(b)), a,b ∈U1;
(14.2) there exists a Jordan *-isomorphism J from M1 onto M2 and a central symmetry u0 ∈U2 such

that
φ(a) = u0 J (a), a ∈U1.

Moreover the following three conditions are also equivalent:

(14.3) r (ab −1) = r (φ(a)φ(b)−1), a,b ∈U1;
(14.4) there exists a pair h1,h2 :T→C of continuous functions which satisfy (e1)-(e2) and we have

‖h1(ab)‖ = ‖h2(φ(a)φ(b))‖, a,b ∈U1;

(14.5) there exists a Jordan *-isomorphism J from M1 onto M2, a central projection p ∈ M2, and a
central symmetry u0 ∈U2 such that

φ(a) = u0(p J (a)+ (1−p)J (a)−1), a ∈U1.

Proof. We apply Theorem 13 for ψ = φ. The only implications that need closer look are (14.1) ⇒
(14.2) and (14.4) ⇒ (14.5). Assuming (14.1) we have a Jordan *-isomorphism J : M1 → M2 and
an element u0 ∈ U2 such that φ(a) = u0 J (a) = J (a)u−1

0 , a ∈ U1. Since the unitary group linearly
generate the whole algebra, it follows that u0x = xu−1

0 holds for all x ∈ M2 which readily implies
that u0 = u−1

0 and then that u0 is central. Similar argument applies for the implication (14.4) ⇒
(14.5), the rest of the proof is either easy or can be proved by already employed arguments. �

In order to avoid overcomplications in the formulations of the remaining results, in what fol-
lows we shall omit conditions regarding the invariance properties of the transformations under
considerations with respect to generalized distance measures. We are convinced that having read
the paper carefully up to this point, it would be an easy task for the reader to complete the results
with such additional equivalent conditions.

Theorem 15. Let M j be a von Neumann algebra with unitary group U j for j = 1,2 and F a non-
empty set. Suppose that Φ j and Ψ j are surjections from F onto U j for j = 1,2. Then the following
two conditions are equivalent

(15.1) σ(Φ1(x)Ψ1(y)) =σ(Φ2(x)Ψ2(y)), x, y ∈ F ;
(15.2) there exists a Jordan *-isomorphism J from M1 onto M2 and u0 ∈U2 such that

Φ2(x) = u0 J (Φ1(x)), Ψ2(x) = J (Ψ1(x))u−1
0 , x ∈ F.
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Moreover, the following two conditions are also equivalent:

(15.3) r (Φ1(x)Ψ1(y)−1) = r (Φ2(x)Ψ2(y)−1), x, y ∈ F ;
(15.4) there exists a Jordan *-isomorphism J from M1 onto M2, a central projection p ∈ M2, and

u0 ∈U2 such that

Φ2(x) = u0(p J (Φ1(x))+ (1−p)J (Φ1(x))−1), x ∈ F

and
Ψ2(x) = (p J (Ψ1(x))+ (1−p)J (Ψ1(x))−1)u−1

0 , x ∈ F.

Proof. Suppose that (15.2) holds. We simply infer that

σ(Φ2(x)Ψ2(y)) =σ(J (Φ1(x))J (Ψ1(y))) =σ(Φ1(x)Ψ1(y)), x, y ∈ F.

Suppose now that (15.1) holds. We first observe that Φ1(x) =Φ1(x ′) implies that Φ2(x) =Φ2(x ′).
Indeed, assume that Φ1(x) =Φ1(x ′). Then we obtain

σ(Φ2(x)Ψ2(y)) =σ(Φ1(x)Ψ1(y)) =σ(Φ1(x ′)Ψ1(y)) =σ(Φ2(x ′)Ψ2(y)), y ∈ F.

Pick y ∈ F with Ψ2(y) = Φ2(x)−1. Such an element y ∈ F exists since Ψ2(F ) = U2. With this y we
have that

{1} =σ(Φ2(x)Ψ2(y)) =σ(Φ2(x ′)Ψ2(y)).

From this we infer that 1 =Φ2(x ′)Ψ2(y), thus we have

Φ2(x ′) =Ψ2(y)−1 =Φ2(x).

In the same way we see that Ψ1(x) =Ψ1(x ′) implies that Ψ2(x) =Ψ2(x ′). Define maps φ,ψ : U1 →
U2 byφ(Φ1(x)) =Φ2(x) andψ(Ψ1(x)) =Ψ2(x), x ∈ F . Clearly, φ,ψ are well defined surjections from
U1 onto U2. Moreover, we have

σ(ab) =σ(φ(a)ψ(b)), a,b ∈U1.

By Theorem 13 there exists a Jordan *-isomorphism from M1 onto M2 and u0 ∈U2 such that

φ(a) = u0 J (a), ψ(a) = J (a)u−1
0 , a ∈U1

and we easily conclude that (15.2) holds.
The implication (15.4) ⇒ (15.3) can be proved by a reasoning similar to the one that has ap-

peared in the proof of the implication (12.5) ⇒ (12.3).
Suppose now that (15.3) holds. We first observe that Φ1(x) =Φ1(x ′) implies that Φ2(x) =Φ2(x ′)

for any x, x ′ ∈ F . Indeed, assume Φ1(x) =Φ1(x ′). Then we have

r (Φ2(x)Ψ2(y)−1) = r (Φ1(x)Ψ1(y)−1) = r (Φ1(x ′)Ψ1(y)−1)

= r (Φ2(x ′)Ψ2(y)−1), y ∈ F.

As Ψ2(F ) =U2, there exists y ∈ F with Ψ2(y) =Φ2(x)−1. With this y we obtain

0 = r (Φ2(x)Ψ2(y)−1) = r (Φ2(x ′)Ψ2(y)−1).

As Φ2(x ′)Ψ2(y) is unitary, we have

‖Φ2(x ′)Ψ2(y)−1‖ = r (Φ2(x ′)Ψ2(y)−1) = 0

implying
Φ2(x ′) =Ψ2(y)−1 =Φ2(x).

In a similar way we see that Ψ1(x) = Ψ1(x ′) implies Ψ2(x) = Ψ2(x ′). Once again, define maps
φ,ψ : U1 → U2 by φ(Φ1(x)) = Φ2(x) and ψ(Ψ1(x)) = Ψ2(x), x ∈ F which turn to be well defined
and surjective. Moreover, we infer that

r (ab −1) = r (φ(a)ψ(b)−1), a,b ∈U1.

Then by Theorem 13 there exists a Jordan *-isomorphism, a central projection p ∈ M2 and u0 ∈U2

such that

φ(a) = u0(p J (a)+ (1−p)J (a)−1), ψ(a) = (p J (a)+ (1−p)J (a)−1)u−1
0 , a ∈U1.
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This apparently gives us that (15.4) holds. �

Finally, we present corollaries of the former results from which non-linear spectral multiplica-
tivity type conditions can be deduced for maps between the self-adjoint parts of von Neumann
algebras to be Jordan *-isomorphisms.

Corollary 16. Let M j be a von Neumann algebra for j = 1,2. Suppose that f and g are bijections
from M1s onto M2s . Then the following two conditions are equivalent:

(16.1) σ(exp(i x)exp(i y)) =σ(exp(i f (x))exp(i g (y))), x, y ∈ M1s ;
(16.2) there exists a Jordan *-isomorphism J from M1 onto M2 and u0 ∈U2 such that

exp(i f (x)) = u0 exp(i J (x)), exp(i g (x)) = (exp(i J (x)))u−1
0 , x ∈ M1s .

In particular, if f and g are homogeneous, then we have f = g = J and u0 = 1.
Moreover, the following two conditions are also equivalent:

(16.3) r (exp(i x)exp(i y)−1) = r (exp(i f (x))exp(i g (y))−1), x, y ∈ M1s ;
(16.4) there exists a Jordan *-isomorphism J from M1 onto M2, a central projection p ∈ M2 and

u0 ∈U2 such that

exp(i f (x)) = u0(p exp(i J (x))+ (1−p)(exp(i J (x)))−1)

and
exp(i g (x)) = (p exp(i J (x))+ (1−p)(exp(i J (x)))−1)u−1

0

for every x ∈ M1s .

In particular, if f and g are homogeneous, then we have f = g = (2p −1)J and u0 = 1.

Proof. Suppose that (16.2) holds. We infer that

σ(exp(i f (x))exp(i g (y))) =σ(u0 exp(i J (x))exp(i J (y))u−1
0 )

=σ(J (exp(i x))J (exp(i y))) =σ(exp(i x)exp(i y)), x, y ∈ M1s .

In particular, if f is homogeneous, then f (0) = 0. It follows that u0 = 1 and we have

exp(i t f (x)) = exp(i f (t x)) = exp(i t J (x)), t ∈R, x ∈ M1s .

Letting t → 0, from
(exp(i t f (x))−1)/t = (exp(i t J (x))−1)/t

we obtain f (x) = J (x), x ∈ M1s . In the same way we deduce g (x) = J (x), x ∈ M1s if g is homoge-
neous.

Suppose that (16.1) holds. Set F = M1s and defineΦ1,Ψ1 : M1s →U1 byΦ1(x) =Ψ1(x) = exp(i x),
x ∈ M1s . Also define Φ2,Ψ2 : M1s →U2 by Φ2(x) = exp(i f (x)) and Ψ2(x) = exp(i g (x)), x ∈ M1s . As
exp i M j s =U j for j = 1,2, the maps Φ j and Ψ j are surjective for j = 1,2. Apparently, we have

σ(Φ1(x)Ψ1(y)) =σ(Φ2(x)Ψ2(y)), x, y ∈ F.

Then by Theorem 15 there exists a Jordan *-isomorphism J : M1 → M2 and u0 ∈U2 such that

exp(i f (x)) =Φ2(x) = u0 J (Φ1(x)) = u0 J (exp(i x)) = u0 exp(i J (x))

and
exp(i g (x)) =Ψ2(x) = J (Ψ1(x))u−1

0 = J (exp(i x))u−1
0 = (exp(i J (x)))u−1

0

for every x ∈ M1s , and hence we obtain (16.2).
Now suppose that (16.4) holds. Then by a simple calculation we have that

exp(i f (x))exp(i g (y))

= u0(p J (exp(i x))J (exp(i y))+ (1−p)J (exp(i x))−1 J (exp(i y))−1)u−1
0 .

Using a calculation similar to the one we have applied in the proof of the implication (12.5) ⇒
(12.3) in Theorem 12 we have that

r (exp(i x)exp(i y)−1) = r (exp(i f (x))exp(i g (x))−1), x, y ∈ M1s



18 OSAMU HATORI AND LAJOS MOLNÁR

and hence we obtain (16.3). In particular, if f is homogeneous, then f (0) = 0. Thus we have

1 = exp(i f (0)) = u0(p J (exp(i 0)+ (1−p)J (exp(i 0))−1) = u0.

It follows that

exp(i t f (x)) = exp(i f (t x)) = p exp(i J (t x))+ (1−p)(exp(i J (t x)))−1

= p exp(i t J (x))+ (1−p)exp(−i t J (x)), x ∈ M1s .

Letting t → 0, from

(exp(i t f (x))−1)/i t = p(exp(i t J (x))−1)/i t + (1−p)(exp(−i t J (x))−1)/i t ,

we deduce
f (x) = (2p −1)J (x), x ∈ M1s .

In a similar manner we obtain g (x) = (2p −1)J (x), x ∈ M1s .
Suppose that (16.3) holds. Set F = M1s and once again define Φ1,Ψ1 : M1S → U1 by Φ1(x) =

Ψ1(x) = exp(i x) and Φ2,Ψ2 : M1S →U2 by Φ2(x) = exp(i f (x)), Ψ2(x) = exp(i g (x)), x ∈ M1s . Then
Φ j and Ψ j are both surjective maps for j = 1,2. Apparently, we have

r (Φ1(x)Ψ1(y)−1) = r (Φ2(x)Ψ2(y)−1), x, y ∈ M1s .

By Theorem 15 there exists a Jordan *-isomorphism J from M1 onto M2, a central projection p ∈ M2

and a unitary u0 ∈U2 such that

Φ2(x) = u0(p J (Φ1(x))+ (1−p)J (Φ1(x))−1)

and
Ψ2(x) = (p J (Ψ1(x))+ (1−p)J (Ψ1(x))−1)u−1

0

hold for every x ∈ M1s . Then

exp(i f (x)) = u0(J (exp(i x))+ (1−p)J (exp(i x))−1)

= u0(p exp(i J (x))+ (1−p)(exp(i J (x)))−1)

and

exp(i g (x)) = (p J (exp(i x))+ (1−p)J (exp(i x))−1)u−1
0

= (p exp(i J (x))+ (1−p)(exp(i J (x)))−1)u−1
0

for every x ∈ M1s . This completes the proof. �

The following statement is an easy consequence of Corollary 16, one just needs to take g = f
(and have a short look at the argument in the proof of Corollary 14 concerning centrality).

Corollary 17. Let M j be a von Neumann algebra for j = 1,2. Suppose that f is a bijection from M1s

onto M2s . Then the following two conditions are equivalent:

(17.1) σ(exp(i x)exp(i y)) =σ(exp(i f (x))exp(i f (y))), x, y ∈ M1s ;
(17.2) there exists a Jordan *-isomorphism J from M1 onto M2 and a central symmetry u0 ∈U2 such

that
exp(i f (x)) = u0 exp(i J (x)), x ∈ M1s .

In particular, if f is homogeneous, then we have f = J and u0 = 1.
The following two conditions are also equivalent:

(17.3) r (exp(i x)exp(i y)−1) = r (exp(i f (x))exp(i f (y))−1), x, y ∈ M1s ;
(17.4) there exists a Jordan *-isomorphism J : M1 → M2, a central projection p ∈ M2 and a central

symmetry u0 ∈U2 such that

exp(i f (x)) = u0(p exp(i J (x))+ (1−p)(exp(i J (x)))−1), x ∈ M1s .

In particular, if f is homogeneous, then we have f = (2p −1)J and u0 = 1.
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Our last statement is again a simple consequence of Corollary 16, one needs to consider the
map g (y) =− f (−y), y ∈ M1s .

Corollary 18. Let M j be a von Neumann algebra for j = 1,2. Suppose that f is a bijection from M1s

onto M2s . Then the following two conditions are equivalent:

(18.1) σ(exp(i x)(exp(i y))−1) =σ(exp(i f (x))(exp(i f (y)))−1), x, y ∈ M1s ;
(18.2) there exists a Jordan *-isomorphism J from M1 onto M2 and u0 ∈U2 such that

exp(i f (x)) = u0 exp(i J (x)), x ∈ M1s .

In particular, if f is homogeneous, then we have f = J and u0 = 1.
The following two conditions are also equivalent:

(18.3) r (exp(i x)(exp(i y))−1 −1) = r (exp(i f (x))(exp(i f (y)))−1 −1), x, y ∈ M1s ;
(18.4) there exists a Jordan *-isomorphism J : M1 → M2, a central projection p ∈ M2 and unitary

u0 ∈U2 such that

exp(i f (x)) = u0(p exp(i J (x))+ (1−p)(exp(i J (x)))−1), x ∈ M1s .

In particular, if f is homogeneous, then we have f = (2p −1)J and u0 = 1.
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