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ABSTRACT 

In this minireview, we provide an account of the current state-of-the-art developments in the area of 

mono- and binuclear non-heme enzymes (NHFe and NHFe2) and the smaller NHFe(2) synthetic models, 

mostly from a theoretical and computational perspective. The sheer complexity, and at the same time 

the beauty, of the NHFe(2) world represent a challenge for both experimental as well as theoretical 

methods. We emphasize that the concerted progress on both theoretical and experimental side is a 

conditio sine qua non for future understanding, exploration and utilization of the NHFe(2) systems. 

After briefly discussing the current challenges and advances in the computational methodology, we 

review the recent spectroscopic and computational studies of NHFe(2) enzymatic and inorganic systems 

and highlight the correlations between various experimental data (spectroscopic, kinetic, 

thermodynamic, electrochemical) and computations. Throughout, we attempt to keep in mind the most 

fascinating and attractive phenomenon in the NHFe(2) chemistry which is the fact that despite the strong 

oxidative power of many reactive intermediates, the NHFe(2) enzymes perform catalysis with high 

selectivity. We conclude with our personal viewpoint and hope that further developments in quantum 

chemistry and especially in the field of multireference wave function methods are needed to have a 

solid theoretical basis for the NHFe(2) studies, mostly by providing benchmarking and calibration of the 

computationally efficient and easy-to-use DFT methods. 

 

1. Introduction  

Iron in any of its oxidation states is one of the most abundant transition metal ions in biological 

systems.[1] It can be mostly found in hemes which not only store and transport O2, but are also 

cofactors of many enzymes.[2] Besides hemes, one finds iron in the iron-sulfur clusters ([Fe-S] 

clusters) which are cofactors in numerous proteins with important redox, catalytic, or regulatory 

properties.[3,4] Putting aside hemes and [Fe-S]-containing metalloenzymes, there remains a large 
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family of non-heme iron enzymes (NHFe).[5] Typically, these enzymes contain mono- or binuclear 

iron sites (NHFe and NHFe2) with (O,N)-containing ligands and catalyze a broad set of oxidation 

reactions including H-atom abstraction for hydroxylation, halogenation, desaturation, peroxidation, 

ring closure of a substrate, electrophilic aromatic substitution for mono- or dioxygenation, or even 

phosphate-bond hydrolysis.[5,6] It is not the purpose of this minireview to provide an exhaustive report 

on non-heme iron chemistry and spectroscopy which can be found in extensive reviews (e.g. Ref. [5]). 

Neither do we attempt to give a full acount of various reaction mechanisms of NHFe(2) enzymes studied 

by quantum chemical methods which have been also reviewed quite recently.[7] Instead, we want to 

highlight current challenges in the theoretical treatment of NHFe(2) sites in biological systems – mostly 

metalloproteins - and correlate the enzymatic activity with the catalytic properties of the small NHFe(2) 

synthetic models.[8,9,10] 

From a theoretical perspective, the NHFe(2) systems are considered as one of the greatest challenges for 

contemporary computational chemistry. On top of usual problems encountered in modeling of 

metalloproteins, such as the construction of an appropriate model (e.g., full protein vs. cluster 

representing the active site), selection of the methodology [e.g., molecular dynamics (MD) sampling, 

combined quantum mechanical and molecular mechanical (QM/MM) techniques, free-energy 

perturbation, (FEP)], basis set considerations (large basis sets are required for many wave function 

techniques to obtain converged results), one may add the multitude of spin states available for the 

NHFe(2) systems [11,12] including spin-state crossings and potentially large self-interaction errors 

when it comes to the description at the density functional theory (DFT) level.[13] 

At the same time, we are of the opinion that only concerted experimental and theoretical efforts [14] 

may lead to a deeper understanding of the fundamental question why nature selected iron as one of the 

most versatile transition metal ions to catalyze broad spectrum of reactions (see above). Were iron 

containing metalloproteins selected by evolution because they were the most efficient catalysts for the 
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particular purposes? Or was it purely accidental, perhaps governed by the high abundance of iron in 

nature? What makes iron in its biological sites so special? Is it its intrinsic and remarkable electronic 

structure and the availability of the different spin states? Or does the variability of readily accessible 

oxidation states contribute to the reactivity? Or is the iron chemistry about the facile formation of the 

reactive intermediates, such as the FeIV=O compounds (which are at the same time a source of 

inspiration for the synthesis of small catalytic systems)? These and others are the open or semi-solved 

questions in NHFe(2) chemistry. We may not provide definite anwers to these questions; this 

minireview rather aspires to provide inspiration for future studies in the field that may bring us closer 

to these long-sought answers. 

There is one noticeable and slightly overlooked consequence of the often-emphasized “happy 

marriage” between theory and experiment in bioinorganic chemistry: the fact that many fundamental 

developments in modern quantum chemistry were driven by the complex electronic structure of 

transition metal containing systems. Adjectives, such as highly open-shell, strongly correlated, 

entangled, spin-coupled, were in last decades both nightmares for quantum chemists as well as fuels for 

the development of new methods, techniques and approaches. Still, we feel that the absence of a robust 

and reliable ab initio wave function-based method that would enable calibration of popular DFT 

methods is the major obstacle and challenge in the bioinorganic chemistry and even more so in the 

realm of NHFe(2) systems. Recent developments in this field represented by density matrix 

renormalization group (DMRG, vide infra) or various sophisticated constructions of the restricted 

active space multireference calculations (RASSCF/RASPT2) are quite promising, though these 

methods have not yet proven to be on par with what the single-reference coupled cluster methods, such 

as CCSD(T), are in small-molecule closed-shell chemistry. 

The organization of this paper is as follows: prior to embarking on a short tour through the recent 

methodological advances, we will shortly mention the importance of the correlation of spectroscopy 
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and quantum/theoretical chemistry. The latter provides complementary information to experimental 

spectra, most notably the energy/structure mapping. The methodological overview will be then 

followed by selected examples in NHFe(2) chemistry where theory significantly contributed to 

unraveling new mechanisms and phenomena. These were selected to highlight the importance of 

computational studies in understanding NHFe(2) chemistry. 

We may conclude the introductory paragraph by our personal experience from the studies of NHFe(2) 

systems; experience most likely shared by others: correlation of calculated results with experimental 

data - crystallographic, kinetic, electrochemical, spectroscopic - resembles more than anything else a 

meticulous detective’s work, at various stages frustrating and strenuous, but at the end often revealing 

and rewarding. 

 

2. Quantum Chemical Methods in Bioinorganic Chemistry and in 

Spectroscopy 

Spectroscopy is a chemist’s eye into the molecular world. This is especially true for the biological 

NHFe and NHFe2 active sites and their synthetic mimics whose complex electronic structures result in 

remarkable spectroscopic properties, often manifested by well-defined spectral fingerprints. As such, 

experimental spectra provide a unique source of information on geometric and ground/excited 

electronic structure properties. However, it is often, if not always, necessary to correlate the 

spectroscopic data with quantum-chemical (QC) calculations. For many biological systems, it is also 

advantageous to carry out the QC/spectroscopic correlations for smaller crystallographically 

characterized synthetic models. Thus, the spectral features obtained on well-defined geometric 

structures of smaller models not only provide us with direct experimental information of structural 

arrangements in complex sites in biological systems (e.g. metalloproteins), but it is also an excellent 

opportunity for calibration of electronic-structure theory (Figure 1). Such a calibration can be, for 
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example, realized by selecting an appropriate QC method and basis set, incorporating/changing the 

amount of the Hartree-Fock electronic-exchange interactions in a DFT method, or determining and 

including a set of relevant orbitals into complete or restricted active spaces in multireference wave 

function theories. The calibrated QC method can be then effectively employed for (i) understanding 

spectroscopic properties of similar (biological) NHFe active sites, which also allows to determine their 

geometric structures (if unknown otherwise), and (ii) providing an insight into their electronic structure 

properties (e.g., frontier molecular orbitals, spin density distributions, etc.) that can be directly 

correlated to reactivity and reaction mechanisms (Figure 1). Calibration of the QC approaches against 

experimental spectroscopy complements benchmarking them against reliable “gold standard” quantum 

chemical methods, because these “reference” methods, in the context of bioinorganic chemistry, may 

be applicable only to strongly simplified models or may not exist at all. Still, such benchmarking, and 

the accumulated general experience about the strengths and weaknesses of QC methods anyway form a 

basis for the choice of a particular method and for gaining confidence in its results. Indeed, in many 

successful computational studies, the small-model calibrations were the only guidelines. Nevertheless, 

calibration against spectroscopy can provide significant further support for the computational 

predictions and conclusions, or it can help choose the appropriate method where benchmarking and 

sufficient experience are either unavailable or inconclusive. 
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Figure 1. The combined spectroscopic/theoretical approach for the investigation of 

geometric/electronic structures of enzymatic NHFe intermediates and their catalytic properties.  

 

2.1 Density Functional Theory Calculations of Spectroscopic Properties of NHFe(2) Species 

Due to the increase in computational power and efficiency of the algorithms, DFT and time-

dependent DFT (TDDFT) methods can nowadays be routinely applied to predict various spectroscopic 

properties of model complexes or truncated enzyme active sites on the order of ~100–200 atoms or 

even more.[15] The treatable system size and the accuracy are often sufficient to reasonably link 

infrared (IR) and Raman, UV and visible absorption (UV/Vis Abs), circular dichroism (CD), electron 

paramagnetic resonance (EPR) and Mössbauer spectroscopic data to molecular geometries and to 

interpret the individual transitions in terms of the electronic structure, particularly if the exchange-

correlation functionals are carefully chosen. Here, we present a selection of the cutting-edge problems 

that have been recently solved using a combination of DFT and spectroscopic techniques, grouped 
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according to the roles played by the two methods. We also briefly mention the most interesting 

developments of methodology to make further branches of spectroscopy amenable to DFT/TDDFT 

treatment. 

First, in spite of the wealth of information provided by the spectroscopic techniques themselves, 

DFT is often helpful to elucidate the nature of the observed spectral features. In a recent study of an 

FeIV-oxo complex of a tetramethylcyclam (TMC; 1,4,8,11-tetramethyl-1,4,8,11-

tetraazacyclotetradecane; see Figure 2) ligand with a pendant amide, formation of an unusual blue 

chromophore was observed upon deprotonation, which could be assigned using TDDFT to a ligand-to-

metal charge transfer transition from the enolate-like amide donor to a vacant (Fe d + O p)* orbital.[16] 

TDDFT was also found to be helpful for understanding the observed changes in Fe/α-ketoglutarate (α-

KG) π* metal-to-ligand charge transfer upon variations of H-bonding, and 5/6-fold coordination, which 

reflect stabilization of the α-KG π* orbital directly influencing O2-reactivity in α-KG-dependent 

enzymes.[17] 
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Figure 2. Structures of some ligands employed in biomimetic non-heme iron complexes. 

 

The degree of reliability of DFT/TDDFT allows the correlation of spectroscopic data with atomic 

level structures and makes it possible to choose from energetically comparable structural candidates. 

For example, with reference to computed Mössbauer data, a model of the TauD-J enzyme intermediate 

could be assigned to [FeIV(O)(TQA)(NCMe)]2+ instead of the five-coordinate and triflate-bound 

alternatives (TQA = tris(2-quinolylmethyl)amine; see Figure 2).[18] Similar correlations of Mössbauer 

data led to the suggestion of a protonated peroxo moiety in the peroxo intermediate of toluene/o-xylene 

monooxygenase hydroxylase (ToMOH),[19] while prediction of UV/Vis data allowed the identification 

of an unprotonated FeII-superoxo complex as the T1 intermediate in superoxide reductase.[ 20 ] 

Modeling of the UV/Vis, magnetic circular dichroism (MCD), and resonance Raman data established 
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the binding mode of 4-hydroxyphenylpyruvate to the 3His-active site of the diketone cleaving 

dioxygenase Dke1 as the enolate.[21] Structures of intermediates in the NHFe2 enyzmes AurF,[22] Δ9 

desaturase,[23] methane monooxygenase (MMO),[24] and M ferritin[25] as well as in the NHFeMn 

enzyme class Ic ribonucleotide reductase (RNR) [26] and the relevant conformers of the ferrous 

soybean lipoxygenase[27] have also been established using this methodology. Prediction of Mössbauer 

spectral changes allowed to conclude the proton source in the radical transfer of a class Ia RNR to be 

the iron-bound water molecule.[28] 

On the other hand, correlation with spectroscopic data can be used to validate or actually choose 

(“calibrate”) the DFT methodology for the description of electronic structure or reactivity. This 

approach was chosen in a comparative study of the high-spin/low-spin FeIII-OOH O–O bond stretch, 

where confidence in B3LYP reaction coordinate calculations was gained from the successful 

reproduction of Abs and variable-temperature, variable-field (VTVH) MCD spectroscopic data.[11] In 

a study of nitrile hydratase, DFT was used both as a tool for spectral assignments and reaction 

coordinate calculations, with BP86 chosen because B3LYP overstabilized the high spin states, and 

BP86+10%HF did not reproduce well spectral differences between various forms of the active site.[29] 

At the same time, BP86+10%HF was selected for the investigation of the O2 reactivity of 4-

hydroxyphenylpyruvate dioxygenase (4-HPPD) on the basis of calibration on NO complexes (a widely 

employed O2 surrogate for spectroscopic purposes), with B3LYP underestimating the charge transfer 

from Fe to NO.[30] Interestingly, the success of spectral predictions showed B3LYP to be appropriate 

for describing the electronic structure of NO bound to cysteine dioxygenase model complexes.[31] 

Finally, for a functional model complex of iron superoxide dismutase, modeling of absorption and 

Raman spectra suggested the preference for X-ray crystallographic instead of DFT-optimized 

geometries.[32] In a more general sense, validation against experimental spectroscopic data has also 

been used to provide general benchmarks of computed Mössbauer data.[33,34] 
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Beyond the UV/Vis/near-IR electronic transitions, the IR/Raman-based vibrational spectra, and the 

EPR and Mössbauer data, theoretical developments have turned to new spectroscopic approaches. 

Recently, it has been shown that the 1H NMR spectra of paramagnetic species, specifically, FeIV-oxo 

complexes, can be predicted to a reasonable accuracy, allowing correlation of NMR data to structures 

and spin states.[35] Promising advances in TDDFT or DFT/CI-based (CI, configuration interaction) 

approaches have been made towards the calculation of various X-ray absorption and emission features 

relevant for iron complexes,[36,37,38,39] again with the potential of structural assigment or electronic 

structure calibration.[40,41] Nuclear resonance vibrational spectroscopy (NRVS), selectively probing 

the iron-containing vibrational modes using nuclear excitations with synchrotron radiation, has lately 

become an important tool in the bioinorganic chemistry of iron systems. DFT methods usually perform 

well in predicting NRVS spectra, and the accumulation of reference data concerning spectral features 

of structurally well characterized NHFe(2) model complexes has been initiated.[ 42 , 43 ] NRVS 

spectroscopy in conjunction with DFT has already demonstrated its potential in the structural 

assignment of samples, as shown for the FeIV-oxo intermediate in the α-KG-dependent halogenase 

SyrB2 (see Figure 3),[ 44 ] and for the FeIII-bound and activated forms of the anticancer drug 

bleomycin.[45] NRVS with DFT has also proven useful in defining steric effects in NHFe model 

complexes.[46] As part of the development efforts, the necessary size of active site models has been 

explored for NRVS[47] and also for Mössbauer parameter modeling.[48] 
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Figure 3. Iron(IV)-oxo intermediate of the α-KG-dependent halogenase SyrB2 and its reaction with the 

substrate. 

 

 

2.2 Correlated Wave Function Theory Calculations of Spectroscopic Properties of NHFe(2) 

Species 

Although most of the quantum chemical calculations on NHFe(2) species are carried out employing 

computationally highly efficient Kohn-Sham DFT (KS-DFT), this methodology might not be always 

well suited for these and many other systems of bioinorganic interest. Electronic structure of open-shell 

NHFe systems, and especially of the magnetically coupled binuclear NHFe2 sites may possess strongly 

multiconfigurational character even in - otherwise less problematic - high-spin states. Their electronic 

structure may not be correctly described with currently available DFT functionals. In addition, most of 

spectroscopic properties require calculation of not only ground, but also excited electronic states. 

Therefore, it is highly desirable to be able to perform computationally more demanding calculations 

based on methods of correlated wave functions. These methods can be, depending on the reference 

wave function, divided into two main classes – single-reference (SR) and multireference (MR). 

As was shown by Taylor already in early 90s,[49] the computationally most affordable SR method – 

Møller-Plesset second-order perturbation theory (MP2) – tends to produce fairly poor results for 

transition metal compounds, and one thus should use rather higher-level methods. Among these, 

coupled-cluster method with single and double (and perturbative triple) excitations - CCSD(T) – is 

usually the method of choice. The canonical CCSD(T) method with formal scaling of ~O(N7), or more 

precisely ~O(O3V4), where N is some appropriate measure of the size of the system whereas O and V 

are the number of occupied and virtual orbitals, respectively, is quite expensive and this fact limits its 

application to small model complexes (we consider 30-40 atoms as a practical limit). However, 
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significant progress has been made in the development of “linear-scaling” approximations based on 

local correlation, see e.g. Refs. [50,51,52]. The approximate coupled-cluster methods are presently 

applicable to systems containing several tens of atoms, which is the size of many metalloenzyme 

active-site cluster models. For example, Dieterich et al. have reported calculations for the molybdenum 

active site of aldehyde oxidoreductase, [53] while Neese and co-workers carried out coupled cluster 

calculations for the carbonmonoxyheme center. [54] Although the development and increasing range of 

applicability of SR coupled-cluster methods for theoretical studies in bioinorganic chemistry are highly 

promising, there remains a problem in the reliance on a single-reference wave function and treatment of 

static correlation. Sometimes, it can be circumvented by performing calculations with broken-

symmetry reference, or by using completely renormalized CCSD(T) [CR-CCSD(T)] [55] which has 

been successfully applied to the theoretically challenging problem of Cu2O2 core isomerization. [56] 

However, the inadequacy of using a single determinant for the reference wave function is the main 

reason for prevalence of MR ab initio methods in the realm of NHFe(2) systems - one of the most 

difficult species in this respect. 

The multireference treatment is usually based on the complete active space self-consistent field 

(CASSCF) reference wave function, which is constructed as a linear combination of all possible 

configurations with particular spin and spatial symmetry arising from distribution of N electrons in M 

orbitals, referred to as CASSCF(N,M). This method has already proven useful for large variety of 

chemical problems, including applications in bioinorganic chemistry. Just to mention few studies – 

Roos et al. have conclusively assigned oxidation state of iron in chloroiron corrole, [57] and Chen et al. 

and Nemukhin et al. studied Fe-O2 bonding in heme and non-heme active sites by combined 

QM(CASSCF)/MM methodology.[58,59] Although CASSCF brings in a highly valuable insight into 

the electronic structure of complex systems, and it is an exact method in the sense that it converges to 

full-CI solution upon enlargement of the active space, it has two problems which should be stressed 
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here. The first problem is that its exponential scaling severely limits the size of active space used in 

practice. Taking into account the usual C1 symmetry of metalloenzymatic active sites, calculations with 

active spaces larger than approximately 15 electrons in 15 orbitals are prohibitively expensive and this 

practical limit has been around for a decade. This limitation becomes especially important for systems 

with multiple metal centers like NHFe2. Secondly, CASSCF is far from being a “black box” method, 

and proper choice of the active orbitals requires substantial experience and experimentation. In a 

conventional manner, the former can be often avoided by use of approximate approaches, such as 

restricted/generalized active space SCF (RASSCF/GASSCF) methods, where limited excitation levels 

from/to various active-orbital subspaces are used.[60,61,62] 

An interesting alternative to these methods emerged in the recent development of density matrix 

renormalization group (DMRG) theory, first proposed for quantum chemistry by White,[63] and 

thoroughly reviewed by various groups since then.[64,65,66,67,68] The reduced polynomial scaling of 

DMRG-CASSCF with respect to the size of active space enables the inclusion of up to approximately 

40 active orbitals in general, or even 100 orbitals in special cases, which is already sufficient for many 

applications concerning multi-center active sites. Recent calculations of the electronic structure of 

Mn4CaO5 cluster of photosystem II [69] and low-energy spectra of iron-sulfur clusters [70] can serve as 

a demonstration of its capabilities. However, because the DMRG wave function is only an 

approximation to the active-space full-CI solution, its quality may quite strongly depend on the shape 

and ordering of active orbitals. For a typical calculation concerning metalloenzymatic active site, 

carefully ordered localized active MOs are usually the best choice according to our experience. The 

selection of appropriate active space is a non-trivial task for any active-space-based calculation, and 

only very recently Stein and Reiher reported an attempt to develop an automated method for active 

space selection using DMRG entanglement analysis.[71] It remains to be seen whether this procedure 

can substitute human intuition and chemical experience in selecting an appropriate active space. 
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Due to the limitations of the active space size, which for the molecules typically studied, contains only 

a fraction of the valence-shell orbitals and electrons, thus leaving the rest of them uncorrelated, active-

space-based calculations are nowadays almost always complemented by associated methods for 

treatment of dynamic correlation. Similar to SR case, the most accurate methods “available” are based 

on multireference coupled-cluster (MRCC) theory. In its explicit form, MRCC theory is highly 

complex and has been applicable only to small molecules so far. However, when a fully internally 

contracted scheme is used, as in the case of canonical transformation (CT) theory, [72] dramatic 

reduction of the complexity is achieved and therefore, the method can be of interest for bioinorganic 

chemistry in the near future. For example, DMRG-CT with large active space has been already applied 

to the model complexes of Cu2O2 core. [73,74] Similar limitations, although less strict, apply also to 

the multireference configuration interaction (MRCI), unless it employs either full internal contraction 

[75] (see Ref. [76] for a recent study on the splitting of low-lying states in iron-oxo porphyrins), or a 

posteriori selection of configurations. [77,78] Thus, most of the present MR calculations rely on the 

second-order perturbation theory (PT2) methods, such as complete/restricted active space PT2 

(CASPT2/RASPT2), or N-electron valence space PT2 (NEVPT2), which overcomes some of the 

peculiarities of the former approaches. Although these methods are fairly efficient and can be used for 

relatively large systems, the lower-level treatment of dynamic correlation by perturbation theory brings 

in some difficulties – usually illustrated on the correlation of transition metal valence d orbitals, which 

may require inclusion of higher-shell d orbitals into the active space in order to obtain realistic results 

(the so-called “double-shell” effect – see, for example, Ref. [79]). In addition to general problems 

related to the CAS treatment (see above), when using RASPT2 or CASPT2 methods one has to deal 

with yet another technical issue, the so-called IPEA (ionization potential-electron affinity) shift. The 

concept of IPEA shift was put forward by Roos and co-workers to correct systematic errors due to the 

imbalanced treatment of closed and open shells, and a value of 0.25 au was suggested semi-
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empirically.[80] Recently, however, several authors have shown that the spin state energies depend 

drastically on the value chosen for it. Some have argued for a value of 0.50, while others have proposed 

value of 2.0.[12] The PT2-based approaches with conventional reference wave functions have been 

applied to both NHFe and NHFe2 representative active sites or geometrically related model 

complexes.[81,82,83,84] Recently, a DMRG-CASPT2 study for the active site of NHFe2 Δ
9 desaturase 

(Δ9D) was reported, showing that this state-of-the-art methodology can be readily used also for 

metalloenzymatic reactivity.[85] In this study, it has been shown that a set of respectable DFT 

functionals provide quite varying activation energies for the first hydrogen abstraction step in the 

desaturation reaction and cannot provide an unambiguous answer as to whether hydrogen is abstracted 

as a hydrogen radical or a hydride anion. 

Although MR methods can treat not only dynamic, but also static correlation, one should be aware that 

this is done with limited accuracy, especially for larger complex species like metalloenzyme active 

sites. These methods have also some other advantages over DFT and SR methods used for calculation 

of spectroscopic properties. Many of these, such as spin-spin J coupling constants or absorption 

spectra, can be accessed by MR calculations directly, without the need for any additional computational 

effort. Others, which involve spin-orbit coupling, Zeeman and other effects, can be calculated either by 

means of linear-response theory, common to DFT and SR correlated methods, or by means of quasi-

degenerate perturbation theory (QDPT), also referred to as state interaction (SI) method in this 

particular case. Spectroscopic properties like, for example, electronic paramagnetic resonance (EPR) g- 

and A-tensors, MCD spectra, zero-field splitting (ZFS), are nowadays becoming widely accessible in 

available quantum-chemical codes. 

In summary, we believe that recent developments in the field of correlated ab initio methods are highly 

encouraging, and these methods are expected to be of an increasing interest in the near future, not only 

to theoretical bioinorganic chemists. 
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2.3. Theoretical Tools for Description and Analysis of Electronic Structure. 

Electronic states of various spin quantum numbers are, in transition metal compounds, often “near-

degenerate”, as a consequence of the small energetic splitting of the transition metal d orbitals. This is 

especially true if multiple metal centers are present. Then, the spin multiplicity of the ground electronic 

state can vary depending on the chemical surroundings of the metal ions. Moreover, metal d orbitals 

may act as electron donating as well as electron accepting orbitals. Thus, multiple reaction pathways, 

involving various spin states, are in principle possible and the origin of the measured spectroscopic 

parameters may be uncertain as well. Given these difficulties, theory can provide highly valuable 

information, supplementing the initial understanding obtained by experiments. Detailed analysis of the 

calculated wave functions may answer key questions regarding, for instance, the oxidation states of the 

metal centers and surrounding atoms, the changes in electronic structure during reactions, the character 

of spectral transitions etc. In this section, we will briefly discuss the main aspects of electronic structure 

analysis and some of the tools introduced recently. 

Owing to the fact that quantum-chemical methods almost exclusively rely on the MO-LCAO ansatz 

(molecular orbitals as linear combinations of atomic orbitals), the key ingredient of any electronic 

structure analysis is the characterization of the composition of occupied MOs. The MO occupation 

numbers are usually restricted to integers (e.g., in DFT and HF calculations), but they can be defined 

by real numbers as well, reflecting the electron correlation accounted for by SR and MR methods. This 

analysis involves the assignement of the AOs with dominant contributions to the particular MO which 

also reveals information about the MO type (e.g. σ, π etc.). By doing so the theoretical results 

calculated at any level of theory can be to some extent “mapped” onto the traditional molecular-orbital 

diagrams. Such mapping has been found to be useful and important for the qualitative understanding of 

the nature of the bonding in transition and other metal systems. For example, the oxidation state of a 
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metal center can be deduced from the number of electrons in MOs with predominantly metal-d 

character, and its possible spin states from the number of corresponding singly occupied orbitals. It 

must be emphasized, though, that such assignments may become difficult and ambiguous for multiple 

reasons – formation of covalent metal-ligand bonds, strong delocalization of MOs, use of an 

unrestricted scheme etc. Thus, various tools that help to overcome some of these difficulties have been 

developed. 

Most of the calculations for open-shell transition-metal systems are carried out within the unrestricted 

KS-DFT (UKS) framework. UKS gives rise to two separate sets of MOs: for α and β electrons. 

Provided that the spin-contamination is small, it is useful to analyze the so-called quasi-restricted 

orbitals (QROs), which can be derived from unrestricted natural orbitals.[86] Using QROs, one 

recovers the more familiar picture of one set of doubly or singly occupied and empty MOs. In case of 

low-spin electronic states, broken-symmetry DFT solutions are often used, which imply significant 

spin-contamination. For this kind of wave function, unrestricted orbitals reordered by the 

corresponding orbital transformation (COT) can be, based on the spatial overlap for α and β pairs, 

classified as doubly occupied, spin coupled (“magnetic” pairs of singly occupied orbitals – one 

carrying α, other β electron) or unpaired (singly occupied by α electron or empty).[87] Importantly, 

analysis of the unrestricted corresponding orbitals (UCOs) obtained by COT may also give some 

insight into the strength and pathway of antiferromagnetic coupling, if multiple metal centers are 

present. Other useful information about the singly occupied orbitals of a molecule may be gained from 

spin-natural orbital (SNO) analysis. 

It can be mentioned that also traditional tools and concepts, such as Mulliken population analysis and 

frontier molecular orbitals (FMOs), bring in highly valuable insight into the electronic structure of 

molecules. In the framework of single-determinantal methods, the latter has proven to be one of the 

most powerful concepts for understanding chemical reactions, providing a link between electronic 
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structure and chemical reactivity, which are intimately coupled, as well as for the interpretation of 

experimental electron affinities and ionization potentials. The reaction mechanisms are typically 

described by the changes in the FMOs character during the reaction, and the FMOs energetic splitting 

is correlated with the activation barrier. Moreover, the ability of a molecule to undergo a certain type of 

reaction may be in many cases judged by examining the electronic structure (FMOs) of only the 

reactants. [88] The study of Srnec et al. [81] may serve as an example of FMO analysis for NHFe 

model complex. 

For conventional MR correlated wave functions, MO analysis is supplemented by the analysis of the 

so-called CI (configuration interaction) vector, which bears information about the contributions of 

particular configurations to the wave function. For a typical calculation on a transition metal complex, 

the CI vector obtained at the CASSCF level – often expressed in localized active MOs, which 

simplifies for example metal-d configuration assignment – is analyzed. Although the electronic 

character of the studied states is defined already by the natural orbitals (NOs) and their occupation 

numbers (NOONs) which are often used for basic characterization, examining the CI vector i.e., 

analyzing the nature of dominant electronic configurations and their weights in the total wave function, 

provides significantly more detailed information. The mechanisms of chemical reactions can be 

depicted in a way analogous to FMO analysis, following the changes in the active-orbital composition 

and CI coefficients. However, MR calculations provide also information about the changes in static 

correlation effects (degree of multiconfigurational character) during the reaction, which may be to 

some extent, used as a measure of the possible breakdown of DFT and SR methods for some, usually 

transition state, geometries. Regarding the importance of CI vector analysis, DMRG represents a 

somewhat special category of multiconfigurational methods, because the CI coefficients are generally 

not accessible by DMRG calculations. However, alternative tools, such as the analysis of orbital 

entanglement (mutual information) and one-orbital entropy, have been introduced to the DMRG 
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framework. These can provide a similar type of information as the CI vector analysis (see, for example, 

Refs. [69,70] for their applications to the electronic structure analysis of complex transition metal 

compounds). 

 

3. NHFe(2) Reactivity: Correlating Theoretical Calculations with 

Thermodynamic and Kinetic Experimental Data 

Besides correlating the QC calculations with spectroscopy - which is in fact also the structure/energy 

mapping - theoretical data also provide a unique opportunity to relate the overall thermodynamics and 

kinetics of the catalyzed reactions with the mechanistic view of individual chemical transformations 

occurring in the studied catalytic cycle. In the following, we will mostly focus on reaction coordinates 

as descriptors that greatly assist in elucidation of various steps in reaction mechanisms of NHFe(2) 

compounds. By calculating reaction barriers (activation energies) for plausible pathways one can 

distinguish elementary steps in the overall process (O2 activation, hydrogen atom abstraction, etc). 

Ideally, the calculated activation energies have to match the experimental rate constants and unravel or 

confirm the rate determining step (RDS) whereas the primary and secondary H/D kinetic isotope 

effects observed experimentally provide further supportive evidence of whether and how a transfer of 

hydrogen is involved in the RDS. Nevertheless, inaccuracies in the computed activation energies often 

preclude the unambiguous assignment of the reaction mechanism or unique reaction coordinate and 

rather allow for separation of a set of several “competing” pathways from other ones. In redox-active 

NHFe(2) chemistry, the overall thermodynamics is also controlled by the electron accepting or donating 

properties of the reactive intermediates involved. This is quantified by the reduction potentials 

(amenable to fairly accurate computations).[89] Last but not least, most of the NHFe(2) catalyzed 

reactions involve proton transfer(s) that are controlled by the acidity constants of the species involved, 
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and presumably fine-tuned to support the proton transfer at the specific step of the overall reaction. 

These and related issues will be subject of the following chapters. 

 

3.1 Modelling O2 and H2O2 Activation Pathways. 

In order to be usefully reactive toward the singlet closed-shell organic substrates, triplet O2 must be 

activated by converting it to a reactive species, some kind of iron-oxygen intermediate in the case of 

NHFe(2). Many common themes are known by now, but the diversity of the enzymes and the 

complexity of the processes (including controlled oxygen access to the active site and substrate binding 

order, the nature of the reactive intermediates, and the factors that poise them toward specific reaction 

channels) still provide us with new conundrums. In this section, the most recent contributions to this 

area are overviewed to highlight the pertinent challenges in theoretical modeling. Studies on the related 

H2O2 activation processes by bioinspired non-heme iron complexes are also touched upon briefly. 

3.1.1 α-KG-dependent Enzymes 

Wide family of NHFe enzymes carry out 2e– oxidation of their substrate while the remaining 2e– 

required for O2 reduction come from the oxidation of their co-substrate, α-ketoglutarate (α-KG) into 

succinate and CO2. It has been proven that co-substrate oxidation happens first, ultimately producing a 

reactive FeIV=O species utilized in subsequent chemistry (Figure 4). Following co-substrate and 

substrate coordination, the initiating step of the actual chemistry is the binding of O2 to the FeII-α-KG 

complex to yield presumably FeIII─superoxo (I). As a prerequisite, the last H2O ligand of iron 

dissociates upon binding of all the organic substrates, and computations were carried out to identify 

factors promoting the dissociation. Substrate steric effects, H-bonding toward the second sphere, and 

the electron donating character of α-KG were found to cooperate in the well-timed expulsion of H2O, 

which contributes to the selectivity of the catalysis by avoiding the unwanted generation of high-valent 

oxygen species.[90] The actual binding of O2 is also influenced by many factors. In a study of the 



 

 

22 

JMJD2A histon demethylase, carrying out energy decomposition on the basis of MD+QM/MM data, 

the favorability of this step was shown to be sensitively dependent on the extended protein 

environment.[91] Small models may thus not be capable of explaining the effects of mutants and 

inhibitors on O2 binding. The role of the canonical (2His-1Asp/Glu) and alternative (3His) facial triads 

in determining the fate of the ketoacid co-substrate has also been addressed, and it was concluded that 

the 3His triad induces a different binding mode of the substrate (as dianion instead of monoanion), 

which triggers different reactivity (C2–C3 instead of C1–C2 cleavage).[21] Furthermore, additional 

mechanistic complexity may arise in certain cases from a flexible α-KG binding, leading to multiple 

coordination sites for the incoming O2 or multiple isomers of the resulting FeIV=O, which may 

contribute to enhancing the selectivity toward the desired iron oxidant for substrate 

conversion.[44,92,93] 

 

Figure 4: Consensus mechanism of the oxygen activation in α-KG-dependent enzymes 

Besides all the above issues, the mechanism of the conversion of FeII + O2 to FeIV=O seems also not to 

be settled yet, because the electronic structure, and even the existence, of some intermediates are very 

sensitive to the DFT functional used. A study using B3LYP predicted the first O2 adduct to be an end-

on Fe-dioxygen species (as I in Figure 4), with the S = 1,2,3 states lying close in energy and exhibiting 

various contributions from FeII-dioxygen and FeIII-superoxo resonance structures. [94] The bicyclic 

intermediate (II), formed upon the subsequent attack of the distal O on the α-keto group of α-KG, is a 
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TS rather than local minimum on the favored quintet and septet PESs, and the associated reaction also 

involves C–C breakage. On the triplet surface, II is a high-lying minimum. In contrast, BP86+10%HF 

calculations indicated that the first step of O2 activation is appreciably more favored on the triplet PES 

and directly yields an FeIV-peroxo bicylic intermediate (similar to II on Figure 4 with FeIV instead of 

FeIII) that further undergoes the decarboxylation process through S = 1 → S = 2 crossover leading to the 

S = 2 FeIV=O product. The S = 2 and S = 3 O2 adducts have end-on structures (I) and lie higher in 

energy. [30] BP86+10%HF was chosen because it provided good description of spectroscopic 

properties of NO adducts and correctly predicted the amount of charge transfer from Fe to NO. [94] 

B3LYP underestimated the latter; yielding structures too close to FeII-NO• instead of FeIII-NO–, and it 

was argued that the same underestimation is the reason why formation of the FeIV-peroxo was not 

favored. [94] On the other hand, B3LYP was supported by CCSD(T) and NEVPT2 benchmarks on 

small models of the proposed intermediates; [30] nevertheless, the benchmarks were carried out with 

B3LYP geometries, and they did not include the triplet bicyclic structure. As neither approach for 

validating the employed functionals refers directly to the involved O2 adducts, the question remains 

open until more accurate computations are available. 

3.1.2 Ring-cleaving Dioxygenases 

Ring-cleaving dioxygenases catalyze the 4e– oxidation of hydroxylated aromatic rings into open-chain 

aldehyde/carboxylic acid products using O2. Classic examples involve catechol dioxygenases cleaving 

the 1,2-dihydroxylated ring in 1,2 (intradiol) or 2,3 (extradiol) positions (Figure 5, part A). Challenges 

in modeling the O2 activation stem from the fact that besides the variations in the iron-O2 system, the 

substrate itself may also be 1e– oxidized to a semiquinone (SQ) form, and the enzyme environment is 

crucial in tuning the relative stabilities of the various partially oxidized/reduced structures. In this 

respect, in the extensively studied FeII-containing extradiol homoprotocatechuate 2,3-dioxygenase (2,3-

HPCD), experiments with the H200C mutant led to the characterization of a SQ•-FeIII–hydroperoxo 
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species, formed by PCET from FeIII–superoxo and shown by the computations to be catalytically 

competent (Figure 5, part B, species I).[95] At the same time, FeIII–superoxo (II) and hybrid FeIII–

superoxo/SQ•-FeII–superoxo (hybrid II/III) species were claimed to be active in wild type 2,3-HPCD 

with 4-nitrocatechol[ 96 ] and a native substrate, [ 97 ] respectively, pointing to the difference in 

providing electrons for O2 reduction between the two substrates. However, the hybrid species was not 

reported in an earlier study using a cluster model of the enzyme active site, highlighting the essential 

contributions of the environment in stabilizing SQ•-FeII structures.[ 98 ] Moreover, the different 

enzymatic environment provided by 3-hydroxyanthranilate 3,4-dioxygenase[99] seems not to stabilize 

the hybrid species either. Structures along the energy profile of 2,3-HPCD have also been the subject of 

research, and computational studies proved invaluable in cross-checking conclusions from indirect 

experimental evidence, including the question of homolytic/heterolytic cleavage of the O–O bond in 

the peroxo intermediate[ 100 ] and the nature of the crystallographically observed gem-diol 

structure.[101]  

 

Figure 5: A) Reactions catalyzed by intradiol- and extradiol-cleaving catechol dioxygenases. B) Some 

possible structures of the active species in 2,3-HPCD. Note that in the semiquinone forms (I and III), 

the delocalization of the organic radical is not depicted. 

Theoretical studies of O2 activation have also been done recently on other related systems. For 

salicylate dioxygenase,[102] a hybrid of FeII–O2 and “SQ•”-FeII–superoxo electronic structures was 

found to prevail, with FeII playing a key role in mediating the synergism between substrate and O2 
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activation. Using models of intradiol dioxygenase enzymes, several aspects of intradiol cleavage were 

addressed, including partial dissociation of the substrate to allow O2 activation on the metal,[103] 

stereoelectronic reasons for intradiol selectivity,[ 104 ] and the possible non-innocence of the 

coordinating tyrosine ligand.[105] 

3.1.3 Miscellaneous Monoiron Systems 

The O2 activation reactivity at certain NHFe centers may be less amenable to classification into some 

of the big families. The involved diverse chemistries can provide important additional information 

about the possible tuning of O2 activation. For example, theory revealed the roles of the iron oxidation 

state,[106] the spin state and solvent exposure,[107] the axial cysteine ligand,[108] and the H-bonds 

toward this ligand [109] in controlling the Fe–O vs. O–O bond breakage and the protonation of the Fe–

O–O complex in superoxide reductase, as well as information about the overall mechanism.[110] 

Studies on cysteine dioxygenase[111] and on its model complex[112] clarified the full O2 activation 

mechanism; clues as to the role of the thiolate ligand[113] and to the differences in pertinent O2 

activation pathways explaining why the enzyme cannot oxidize selenocysteine were also 

obtained.[114,115] O2 activation[116,117] and the preceding required water dissociation[118] was also 

investigated in the tetrahydrobiopterin-iron amino acid hydroxylases. 

The detailed inclusion of environmental effects is often required to achieve realistic conclusions about 

O2 reactivity. For example, in hydroxyethylphosphonate dioxygenase (HEPD), water molecules 

trapped in the active site were identified to directly participate in the catalytic process,[ 119 ] 

highlighting an aspect that was overlooked in the earlier QM-only study.[ 120 ] In lipoxygenase, 

computations on a QM-only model suggested exothermic formation, hence, possible catalytic 

relevance, for a seven-coordinate intermediate with the substrate peroxyl bound to the iron center 

(referred to as the purple intermediate; see Figure 6).[121] Detailed protein modeling showed that this 

intermediate is significantly destabilized, and its formation cannot compete with direct proton-coupled 



 

 

26 

electron transfer from iron-bound H2O to the peroxyl radical.[ 122 ] Protein dynamics, typically 

neglected in computational studies, were found to influence the energetics of the O–O cleavage step by 

several kcal/mol in isopenicillin-N-synthase (IPNS), highlighting also the potential of such effects in 

the further fine-tuning of reactivity.[123] 

 

Figure 6: Key steps of the lipoxygenase reaction mechanism. 

 

The above studies illustrate that as more and more simplifications are used to treat a protein system, the 

probability of getting qualitatively wrong conclusions increases. The effect of simplifications in our 

computational models cannot be assessed within the model itself. One can gain confidence in the 

conclusions from a computational model when a large amount of experimental data is available and it 

can all be explained, when there are higher-level studies of closely related systems indicating the 

validity of the approximations, and when chemical intuition suggests a high level of error cancellation 

for the investigated steps. In this respect, it is interesting to mention the QM-cluster study on the 

chemistry of hydroxypropylphosphonic acid epoxidase (HppE), where favorable binding of O2 to the 

iron center and reasonable barriers for substrate oxidation were obtained using DFT. [124] However, it 
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transpired from later experiments that the enzyme is inactive with O2; it hardly even binds it, and it 

actually employs H2O2 as oxidant.[125] Answering why the QM-cluster calculations failed to detect the 

flaw in the assumptions would need a separate, higher-level study, but one can expect that the effects of 

the neglected or approximated environment may be quite significant for the step when O2 is transferred 

from aqueous solution through the protein cavities to the iron within the active site pocket, and may be 

less so for the inner-sphere chemistry occurring thereafter. Indeed, the suggested substrate oxidation 

pathway starting from a FeII-hydroperoxo-iron(II) structure (which was a proposed intermediate of O2 

activation) remains consistent with the new experimental observations. 

3.1.4 Diiron Systems 

NHFe2 systems present further challenges for modeling due to the immense variety of possible isomers 

and the complicated electronic structure with a typical antiferromagnetic coupling between their high-

spin iron centers. Selective formation of one or the other oxidant may be the result of precise tuning, 

understanding of which requires a multi-level approach. This was demonstrated in a study comparing 

O2 activation in methane and toluene monooxygenases, where the crucial role of the conformation of a 

second-shell threonine was identified.[19] Detailed studies including energy decomposition were also 

done on myo-inositol oxygenase (MIOX) to characterize the contributions to O2 binding.[126] A 

comparison of O2 cleavage using MnMn, MnFe, and FeFe active sites in ribonucleotide reductases 

allowed to explain the choice for the MnFe version in the absence of the radical-bearing tyrosine.[127] 

In spite of these successes, the diiron centers may sometimes present unsurmountable challenges for 

DFT. As mentioned above, we have recently undertaken a study on O–O bond cleavage and various 

other mechanistic aspects in Δ9D using large-scale multireference ab initio calculations and found that 

no DFT functional could adequately predict the preferences toward various pathways.[85]  

3.1.5 Model Systems 
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Besides modeling the enzymatic systems, calculations proved useful in enhancing our understanding of 

bioinspired NHFe complexes. They contributed to the consistent mechanistic picture of the 

carboxylate-assisted NHFe/H2O2 epoxidation of organic substrates using PDP (2-({(S)-2-[(S)-1-

(pyridin-2-ylmethyl)pyrrolidin-2-yl]pyrrolidin-1-yl}methyl)pyridine) or TPA (tris(2-

pyridylmethyl)amine) ligands (see Figure 2 for structures), clarifying the role of ferric peracetate and 

perferryl acetate complexes.[ 128 , 129 ] A related system [Fe(pytacn)] for C–H oxidation without 

carboxylic acids was also studied successfully (pytacn = 1-(2-pyridylmethyl)-4,7-dimethyl-1,4,7-

triazacyclononane; see Figure 2).[130] Analysis of sulfoxidation by [Fe(TMC)OOH]2+ provided useful 

qualitative rules for homolytic or heterolytic O–O cleavage depending on d orbital occupations.[131]  

The power of computations was elegantly demonstrated in an exhaustive DFT and CCSD(T) study of 

the possible isomers and spin states of the ferric superoxo complex [Fe(TMC)(O2)]
2+, corroborating 

previous experimental data.[132] 

As the most simplified “model” system of high-valent iron-oxo chemistry, the Fenton reaction, i.e., 

that of aqueous Fe2+ + H2O2, was also considered from a theoretical perspective. It turned out that 

various DFT functionals give different energetics for the possible pathways; however, when selected on 

the basis of high-level benchmark computations, it was possible to arrive at conclusions in accordance 

with experimental data.[133] H2O2 activation leading to FeIV=O was also successfully modelled for 

Fe(TMC)2+ in the presence of an added base.[134] 

 

3.2. Modelling H-atom Abstraction Pathways 

One of the most prominent reactivity features of mono and binuclear non-heme iron species is their 

capability of homolytic cleavage of strong aliphatic C─H as well as O─H/N─H bonds (= H-atom 

abstraction abbreviated as HAA) that initiates various chemical transformations such as substrate 

hydroxylation, desaturation, halogenation etc., making NHFe(2) (bio)chemistry incredibly rich and 
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powerful (Figure 7). From this perspective, it is not surprising that there has been an enormous 

experimental and computational effort in understanding the HAA reactivity of NHFe and NHFe2 

complexes and its effect on reaction (enzymatic) selectivity.[135] Selected theoretical contributions 

advancing the knowledge in the field are briefly discussed below. 

 

 

Figure 7. The reactive NHFe species are competent for a wide range substrate chemical 

transformations. 

 

 

3.2.1 Mononuclear Ferryl Active Site: C─H + O=FeIV → C• + HO─FeIII  

Theoretical studies in combination with spectroscopy, kinetics and product analyses, were applied to 

various mononuclear synthetic and biological NHFeIV=O active sites (e.g., in -ketoglutarate or pterin-

dependent NHFe enzymes) that allowed detailed understanding of electronic properties of FeIV=O and 

their contribution to HAA reactivity.[6,136,137,138,139,140] 



 

 

30 

It was demonstrated that three different mechanisms exist for HAA, depending on the spin state of the 

complex (S = 1 vs. S = 2).[81,141,142] The triplet state, as the ground spin state of many synthetic 

NHFeIV=O compounds, effectively operates only through a “ channel” with the C─H bond ideally 

oriented perpendicular to the Fe─oxo axis that allows the overlap of the substrate C─H orbital with one 

of the Fe=O d* FMOs.[141] In contrast, the quintet state which is the ground spin state in enzymatic 

NHFeIV=O structures,[143] has three HAA channels available: one “ channel” that requires the C─H 

bond oriented in line with the FeO moiety (d* FMO overlapping with C─H) and two “ channels” 

that both involve a d* FMO but differ in the spin distribution of the FeIII center (SFe=5/2 vs. 

SFe=3/2).[81,140]  This HAA reactive channel flexibility hinted the importance of the S = 2 state for 

enzymatic selectivity.[144] Recently, the low temperature MCD spectroscopy in combination with 

CASPT2 and DFT calculations were used to define electronic structure of the NRVS-determined S=2 

FeIV=O active site in the halogenase SyrB2 and its contributions to H-atom abstraction that was shown 

to proceed via the (SFe=5/2) channel and to favor halogenation over hydroxylation enzymatic 

selectivity. [145] 

It was also shown that S = 1 NHFeIV=O species may be as reactive as the S = 2 systems, i.e., the HAA 

barrier associated with the S = 1  pathway has a comparable height as that corresponding to the S = 2 

 pathway as long as there is no significant steric hindrance from steric crowding preventing the 

perpendicular access of the C─H bond.[46,142] Finally, the two-state S = 1/S = 2 pathway for HAA can 

be operative for the S = 1 NHFeIV=O systems that contain bulky ligands and thus the only access for 

the C─H bond is along the Fe=O axis, favoring the S = 2  attack.[139,146]  

Concerning the synthetic non-heme ligand design, the pioneering works of Wieghardt and Que 

[147,148] demonstrated that a non-heme non-enzymatic environment could support the iron-oxo active 

intermediate. Since then a substantial effort has been directed on synthesizing and improving ligands 

for HAA, and open a broad field for the joint experimental and theoretical efforts. The computational 
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effort focused initially on model complexes. Baerends and co-workers noted the crucial importance of 

the energy of the acceptor orbital. In a series of studies on simple complexes with H2O and NH3 

ligands, they were able to tune the energy of the acceptor orbital by the nature of the axial ligand and 

adjust the HAA barriers, [149,150] while the efficiency of iron over other transition metals was also 

demonstrated.[151] A recent contribution [152] offers a modification over the popular TMC ligand via 

an ethylene bridge that constricts the monodentate ligand (MeCN) to the equatorial position with 

respect to the Fe-oxo-bond. Computational analysis attributes the reason for the manifested increase in 

reactivity in the tested HAA and oxygen atom transfer (OAT) reactions to the increased spin density of 

the oxo oxygen in the modified ligand, in a typical high spin reactivity scenario. 

Another case of modification to a popular ligand was reported recently simulating the histidine 

environment of the enzyme by replacing one or two of the pyridyl moieties of N4Py (N,N-

bis(pyridylmethyl)-N-bis(2-pyridyl)methylamine; see Figure 2) by benzimidazol.[ 153 ] The HAA 

reactivity is increased by each replacement – weakening of the ligand field opens the high-spin 

pathway – and the DFT calculations are able to follow this trend with respect to the high-spin barriers. 

It is evident from the few works selected above and the several mentioned throughout section 3 of the 

current minireview, that theory can be utilized not only to rationalize the experimental findings but also 

to assist in the design of ligands tuned for HAA. An invaluable tool is the thermodynamic driving force 

described by the Bordwell-Evans-Polanyi linear relations (BEP, vide infra).[154] This relation is 

confirmed linear in a series of heme and non-heme complexes[155] and in a meta-analysis of thirteen 

literature studies where high-spin states are found more reactive, but only in 70% of the cases.[156] 

Complementing the reaction driving force, from an electronic structure perspective, is an effort to 

catalogue HAA iron complexes according to a simple descriptor.[88] The energies of the acceptor 

orbitals of a diverse, extensive set of iron-oxo complexes were found to correlate linearly with the 

reaction barrier of the hydrogen abstraction, regardless of charge/spin ground state or solvation. As in 
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the case of the BEP relations, low/intermediate spin reaction pathways were shown to be as effective. 

The established correlation, since it relies on obtaining the electronic structure of only the initial 

complex, allows for a fast screening of potential catalysts.  

General strategies for HAA ligand design stemming from the above and other computational studies 

include the requirement to utilize a weak equatorial and the weakest possible axial ligand field, as well 

as the employment of non-polar solvents. These were dominant criteria in the aforementioned examples 

of improving the reactivity of existing iron-oxo complexes[152,153] (i.e. blocking the axial position for 

acetonitrile and employing weaker donor ligands).  

 

3.2.2. Mononuclear Ferric-Hydroperoxo Active Site: C─H + HOO─FeIII → C• + H2O + O=FeIV 

The low-spin (S = 1/2) FeIII─OOH structure was experimentally identified as the “activated form” of an 

anticancer metallopeptidic agent, bleomycin, and shown to be reactive towards HAA from DNA.[45] 

On the other hand, the high-spin (S = 5/2) FeIII─OOH intermediate, proposed to be formed in Rieske 

dioxygenases (RDO),[157,158,159] should have oxidant ability in electrophilic aromatic substitution 

reactions (note that alternative intermediates in RDO were also proposed[160,161]). While information 

on the biological NHFeIII─OOH active sites are limited (e.g., direct detection for the S = 5/2 

FeIII─OOH intermediate remains elusive), considerable advances have been achieved in experimental 

and theoretical chemistry of low-weighted NHFeIII─OOH species.[6,9,135] 

Recently, Solomon and coworkers investigated two synthetic S = 1/2 (N4Py)FeIII─OOH and S = 5/2 

(TMC)FeIII─OOH complexes in attempt to elucidate differential electronic-structure (spin-state) effects 

on reactivity. Indeed, they showed that both S = 1/2 and S = 5/2 systems are capable of HAA (with a 

comparable barrier height) but the reaction coordinates are very different.[11] In the comparative study, 

the B3LYP method reproduced the experimental activation free energies and enthalpies obtained from 

Eyring plots, giving credence to the computational findings. Initially, the HAA transition state (TS) at 
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the S =1/2 surface was calculated to be late in the O─OH bond length (2.38 Å), whereas the C─H bond 

stayed intact (1.12 Å). Electronically, the TS corresponds to a hydroxyl (OH•) attack on the C─H bond. 

Subsequently, the HAA TS at the S = 5/2 surface was characterized as early in O─OH (1.79 Å) and 

further along in C─H coordinate (1.17 Å), with an electron partially transferred from the substrate to 

the Fe─OOH moiety. From these analyses, it has been shown that the HAA reactivity of the S = 5/2 

state is clearly dependent on the substrate properties, which is not the case for the S = 1/2 system. 

Indeed, calculations revealed a strong linear dependence of the activation energy for the S = 5/2 HAA 

reaction on the substrate ionization potential (and C─H bond strength) that was not observed for the S 

= 1/2 HAA reactions. Thus, the high-spin NHFeIII─OOH active site was proposed to be more effective 

in controlling biochemical and environmental processes than their low-spin cognates (see also 

FeIII─OOH in section 3.3).[11] 

  

3.2.3. Mononuclear Ferric-Superoxo Active Site: C─H + −•OO─FeIII → C• + HOO─FeIII 

A mononuclear FeIII─OO•− intermediate, capable of substrate C─H bond activation, has been proposed 

for enzymes such as IPNS [162] and HEPD,[163] while in other mononuclear NHFe enzymes is 

responsible for the electrophilic oxidation of an aromatic ring instead of HAA [164] (the NHFe2 MIOX 

is the only enzyme proved to use FeIII─OO•− for HAA - more in section 3.2.4). Among the NHFe 

model complexes, the first synthetic (TAML-supported) non-heme FeIIIO2
•− structure (with O2

•− in a 

side-on binding mode; TAML: tetraamido macrocyclic ligand; see Figure 2) was crystallographically 

defined only as late as in 2014.[165] This synthetic system was shown to undergo both an aliphatic 

C─H activation and nucleophilic oxidation reaction. In any case, due to the limited body of 

experimental data, theoretical insight on reaction mechanisms that would involve the ferric-superoxo 

structure are therefore of particular importance. 
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In the study on IPNS, Brown et al. [162] used a spectroscopically calibrated DFT method (the BP86 

functional with 10% HF exchange admixture) to describe the electronic structure of the ferric superoxo 

site as a high-spin (S = 5/2) FeIII center anti-ferromagnetically coupled to the O2
•− moiety, giving rise to 

a total spin of S = 2 (the quintet state was also reported for the ferric superoxo intermediate of other 

enzymes: 2,3-HPCD [164] and cysteine dioxygenase (CDO) [166] although the S = 2 state in CDO was 

suggested to arise from the ferromagnetic coupling of O2
•−  to S = 3/2 FeIII; note also that both 2,3-

HPCD and CDO are not operative in HAA but rather in electrophilic aromatic substitution and S-

oxidation, respectively). DFT calculations also revealed that substrate (thiolate) binding to the iron 

center in IPNS makes the formation of this ferric superoxo structure exergonic. The formation of the 

product of dioxygen activation by FeII would be otherwise unfavorable in the resting H2O-bound form. 

The thermodynamic driving force was therefore attributed to the stabilizing effect of thiolate charge 

donation. In addition, the description of how substrate charge donation influences the FMO of the S = 2 

FeIII─OO•− unit and thus makes it well-oriented for selective HAA was provided. Despite all these 

findings, the energetics of the HAA reaction by the S = 2 FeIII─OO•− site (and the subsequent steps of 

the catalytic cycle) was not evaluated in ref. [162]. 

This was done by Lundberg et al.[167] who modeled the whole catalytic cycle of IPNS using the 

B3LYP/MM approach and calculated the free-energy barrier of HAA to be ~12 kcal mol-1 (the 

experimentally derived value is ~17 kcal mol-1) that is associated with the S = 2 FeIII─OO•− species. 

However, it is noticeable that B3LYP favors the septet (S = 3) as the ground spin state, which is much 

less reactive towards HAA. The same issue with the ground spin state of the FeIII─OO•− unit was also 

brought up in the QM(B3LYP) and QM(B3LYP)/MM study on the reaction mechanism of the HEPD 

system.[168] Nevertheless, the cited work provided a plausible mechanistic picture of the catalytic 

transformation of two different substrates in HEPD, both activated through HAA by S = 2 FeIII─OO•−. 
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HAA reactivities of FeIII─OO•− versus FeIV=O species were examined and compared at the DFT level 

of theory in ref. [169]. This comparison included both heme and non-heme model complexes and 

covered different binding modes of the O2
•− moiety. Their results showed that FeIII─OO•−  is not, in 

general, a better oxidant than ferryl compounds and in fact its oxidation power strongly depends on the 

HAA reaction energy. Namely, they showed that for both types of oxidants, the HAA activation 

energies correlate well with reaction energies, thus obeying the BEP principle (see also section 3.2.5). 

For a given reaction energy the HAA barrier is smaller for ferric superoxo than for ferryl by ~7 

kcal.mol-1 in average. Finally, the spin-state effects of FeIII─OO•− on HAA reactivity were investigated, 

validating the S = 2 state to be more reactive than S = 1 or S = 3. Specifically for the S = 2 state, Chen 

et al. employed the B3LYP and CCSD(T) methods to demonstrate[132] that the nature of magnetic 

interactions between the superoxyl radical and ferric ion depend on the FeOO angle (i.e., the side-on vs. 

end-on binding mode corresponding to the ferromagnetic vs. antiferromagnetic configuration). 

 

3.2.4. H-atom Abstraction by Binuclear NHFe2 Active Sites 

The presence of diferrous centers in NHFe2 active sites makes strategies for the O2 activation pathways 

very complex and diverse from those adapted by mono NHFe biocatalysts (see also section 3.1). In 

brief, the common theme for most of NHFe2 enzymes is the two-electron reduction of dioxygen by the 

FeIIFeII center that produces low-spin (S = 0) peroxo-bridged biferric intermediates (“P” intermediates). 

Frequently, the P intermediate can be further converted to other intermediates such as for example the  

bis--oxo FeIVFeIV  intermediate (“Q” intermediate) of methane monooxygenase that is thought to 

initiate the CH4 → CH3OH transformation by HAA. Alternatively to MMO, the P intermediate in 

ribonucleotide reductase (RNR) is converted to an oxygenated FeIIIFeIV (so-called X) intermediate that 

is responsible for the homolytic O─H cleavage in the tyrosine residue.[170] 
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Another NHFe2 enzyme (structurally related to MMO and RNR) that performs the catalytic 

transformation of a substrate through an HAA process is the soluble 9 desaturase (9D), catalyzing the 

dehydrogenation of the stearoyl substrate to oleic acid. In 9D, the P intermediate has been structurally 

characterized by correlating QM(DFT)/MM calculations with spectroscopic data and shown to be 

unreactive towards HAA from the substrate.[23] This initiated an extensive computational search for an 

intermediate that can be formed from P (by structural rearrangement or/and protonation or/and water 

binding or/and 1e− reduction) and can attack effectively the aliphatic C─H bond of the stearoyl 

substrate.[23,85] In Ref. [23] the authors also pointed out discrepancies in the prediction of energetics 

of the OO bond cleavage step from P using different DFT functionals.  For this reason, the large-scale 

multireference DMRG-CASPT2 method carried out for the QM(DFT)/MM structural models was 

employed for the calculation of energetics of nine different reactions, potentially relevant for HAA or a 

step that would precede HAA.[85] This led to the following suggestion: the P (S = 0 1,2- peroxide 

FeIIIFeIII) intermediate is upon protonation of the peroxide moiety transformed into low-spin (S = 0) 

1,1- OOH− FeIII
(S=5/2)FeIII

(S=5/2) that is potent to abstract the first H-atom from the substrate. In 

addition, the performance of several popular DFT functionals was calibrated against the “reference” 

DMRG-CASPT2 values. However, we admit that it can be a matter of debate whether (DMRG-

)CASPT2 may develop into a true benchmark method for strongly correlated systems, analogously to 

what the CCSD(T) method is in the realm of smaller closed-shell systems. It needs to be emphasized 

that the accuracy of all tested DFT functionals remained modest (TPSSH, B3LYP, M06) or poor 

(B2PLYP, M06L, BP86). Also, it is important to note that the whole trajectory for C─H bond 

activation by 1,1- OOH− FeIIIFeIII was found to be an unsolved issue, i.e., most DFT-based 

calculations predict the hydride (H+,2e−) abstraction (with two-electron transfer proceeding after TS) 

instead of HAA. This would lead to hydroxylation of the substrate instead of desaturation. The DMRG-

CASPT2 results were inconclusive since the comparison of hydride versus H-atom abstraction 
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energetics was carried out for the reactant-like TS structure. All these intricacies associated with DFT 

methods support an urgent requirement for large-scale multireference methods (discussed in section 

2.3) that would allow a quantitatively correct electronic-structure description and hence energetics in 

binuclear NHFe systems.  

One NHFe2 enzyme that uses a “less common” mixed-valent FeIIFeIII active site for O2 activation [171] 

which does not involve a peroxy-level intermediate prior to the HAA step is MIOX, catalyzing the 

oxidative conversion of myo-inositol to D-glucuronate.[172] Instead, a superoxo-diferric species (the 

so-called G intermediate) was suggested as the key oxygenated NHFe intermediate activating the 

substrate through HAA .[140] Hirao and Morokuma predicted geometric/electronic properties of the G 

intermediate and its HAA reactivity using QM(B3LYP)/MM modelling.[173] According to their 

calculations, the G intermediate can be characterized as a S = 1/2 side-on O2
•− FeA

III 
S=5/2FeB

III
S=5/2 

complex (two Fe centers are anti-ferromagnetically coupled) but with O2 moiety to be only partially 

reduced to superoxide. Nevertheless, such a complex could be competent for HAA with a barrier of 

~18 kcal mol-1 that is lower than the putative subsequent step involving the O─OH bond cleavage (this 

would be in line with measured steady-state kinetic isotope effect, KIE ~1).  

 

3.2.5. Reduction potential / basicity correlated to H-atom abstraction reactivity  

In the work of Sastri et al.[174] HAA reactivity of FeIV=O complexes was correlated with their 

reduction potentials. Within the series of TMC-supported FeIV=O cognates that differ by a ligand in the 

trans position with respect to the oxo group, a surprising relationship between the HAA reaction rate 

and the reduction potential was found: a lower reduction potential of the FeIV=O species correlates with 

its increased HAA reactivity. In this line, the work reported by Lacy et al.[175] proved that both S = 

5/2 (H3buea)FeIIIO and S = 2 (H3buea)FeIVO complexes (H3buea3- = an urea-based tripod; see Figure 2) 

with very low reduction potentials (i.e., -0.9 V and lower than -2.0 V vs. Fc0/+, respectively) can 
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abstract an H-atom from sufficiently weak organic substrates. Following Mayer’s protocol,[154] the 

strength of the O─H bond in the HAA product (e.g., FeIII─OH) can be expressed as a function of the 

reduction potential and basicity of the oxidizing agent (e.g., FeIV=O). From the thermodynamic point of 

view, the stronger O─H bond reflects the stronger propensity of an oxidant for H-atom (H+,e−) 

abstraction from a substrate. Then, this stronger propensity for HAA implies the faster HAA rate 

according to the BEP principle. The BEP principle was invoked in many kinetic studies on NHFe 

species, demonstrating a correlation between a decreased C─H bond strength and an increased HAA 

reaction rate – see for example refs [176, 177]. Thus, high basicity can explain why some NHFe 

complexes are competent for HAA despite their very low reduction potential (and vice versa). Indeed, 

the importance of basicity contributions to the HAA reactivity was revealed for the thiolate and heme-

bound FeIV=O center in cytochrome P450.[178] It is also reasonable to expect such a basicity-driven 

HAA reaction to be operative in some non-heme iron enzymes that could use a low reduction potential 

in order to avoid unwanted oxidations of the fragile protein structure. 

In a theoretical work, Usharani et al.[179] linked the basicity of the FeIV=O oxidant with a mechanism 

for HAA, i.e., the concerted H-atom transfer (HAT) versus the proton-coupled electron transfer 

(PCET). Using valence bond based arguments, they concluded that a less basic oxidant exhibits a 

higher oxyl character on the oxo group that is required for the more concerted HAT (more homolytic) 

process. In contrast, a more basic oxidant tends to cleave bonds more heterolytically (through PCET) 

and is therefore operative for N─H, O─H or more acidic C─H bonds. For an understanding of PCET 

processes (among which HAT is considered as a specific case of PCET) we recommend the Refs. 

[180,181]. 

As described above, the reduction potentials and the acidity constants are the key thermodynamic 

quantities that are directly related to HAA reactivity. Despite their importance in NHFe(2) chemistry, 

their calculations remain challenging due to large environmental effects that have to be properly 
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described. This can be achieved by the inclusion of explicit solvent molecules [182] and/or remote 

parts of a protein through the QM/MM(+FEP) scheme [183], but this also usually requires an extensive 

sampling of the conformational space. On the other hand, the implicit solvent models are simplistic and 

do not account sufficiently for solvation-energy differences between protonated/deprotonated or 

oxidized/reduced species.[184] It is noticeable that Bím et al. [89] recently suggested an implicit 

solvent based protocol for the calculation of one-electron reduction potentials of multiple-charged 

species. In their approach, the reduction potential of a charged species is calculated by means of the 

reduction potential of its neutralized (protonated/deprotonated) cognate, employing one or several H-

atom addition/abstraction thermodynamic cycles. This includes a separation of one-electron reduction 

from protonation/deprotonation through the temperature dependence. 

 

3.2.6. Kinetic Isotope Effect  

Many inorganic and enzymatic reactions involving HAA exhibit a large primary kinetic isotope effect 

(KIE > ~10), such as KIE = 35 observed in NHFe taurine dioxygenase,[185] KIE = 60 in NHFe prolyl-

4-hydroxylase, [ 186 ] that usually indicates significant tunneling effects on reaction dynamics. 

Consequently, a large primary KIE serves for evincing HAA as the rate-determining step in a reaction 

and is therefore very useful for modelling a reaction mechanism (experimental KIE data are mostly 

reflected in calculations by searching for a mechanism in which the HAA step would be associated 

with the highest free-energy barrier along a reaction coordinate). However, direct KIE calculations 

remain a very difficult task. The simplest approximations to KIE that incorporate Wigner or Bell 

tunneling corrections to the Eyring’s transition state theory (TST) are quantitatively incorrect for 

reproducing large KIEs.[187,188] 

Recently, Shaik and co-workers [188] calculated tunneling contributions to HAA reactivity within the 

series of the TMC-supported FeIV=O complexes by employing the Eckart method [ 189 ,190] in 
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combination with TST in attempt to rationalize the “anti-electrophilic” trend [46] in HAA (i.e., the 

stronger an electron-donating axial ligand X in the TMC-supported X─FeIV=O complex is, the faster 

the HAA reaction).[188] Note that these S = 1 NHFeIV=O systems undergo a two-state S = 1 / S = 2  

pathway (see section 3.2.1).[139,146] To evaluate tunneling effects, the Eckart barrier function (EF) 

was fitted to an “one-dimensional” adiabatic barrier (calculated along an intrinsic reaction coordinate) 

and the tunneling transmissions, , were then calculated by integrating an energy-dependent penetration 

probability through EFs. As a result, the TST-determined activation barrier is effectively lowered by 

RT×ln. Their calculated KIEs correlate with the barrier widths, i.e., a larger barrier width is reflected 

by a lower tunneling effect on KIE and thus a smaller KIE value. These calculations were found to 

provide results comparable to experimental data (e.g., KIEcalcd = ~14 vs. KIEexpt = 10 for 

(CH3CN)(TMC)FeIV=O; KIEcalcd = ~25 vs. KIEexpt = 17 for (azide)(TMC)FeIV=O). The authors also 

predicted that the -controlled S = 1 HAA pathway would be associated with much larger KIE.  

However, the “larger-width-smaller-KIE” correlations from ref. [188] seem to contrast with 

calculations of Hammes-Schiffer [191] who studied the HAA reaction in the mononuclear NHFe 

soybean lipoxygenase using non-adiabatic PCET theory (i.e., C─H + HO─FeIII → C• + H2O─FeII; note 

that unlike the majority of known NHFe enzymes that activate dioxygen for attack of a substrate, 

lipoxygenase activates a substrate for the attack of O2; see Figure 6). Applying this theory, Hammes-

Schiffer and coworkers [191] reproduced the experimental value of the KIE as well as its temperature 

dependence (applicability of non-adiabatic formulation of the theory was tested for HAA in this 

system). Moreover, a non-intuitive dependence of KIE on the equilibrium distance between C[substrate] 

and O[FeOH] was shown: a larger C---O separation, implying a larger barrier width for H-atom transfer, 

leads to a larger KIE value (this dependence reflects different overlaps between the reactant and 

product proton/deuteron vibrational wave functions). From the Hammes-Schiffer’s PCET theory, 

“larger-width-larger-KIE” predictions can be expected as long as other parameters (e.g., the frequency 



 

 

41 

associated with donor-acceptor distance motion) are fixed and only ground vibronic state contributions 

to the rate constant are important.[191] Such a prediction was experimentally verified for the NHFe 

lipoxygenase and its single or double-mutant forms.[192,193] 

From a brief discussion above, it is clear that the KIE  (and its temperature dependence) has a potential 

of being a sensitive probe of some structural/mechanistic details about the rate-determining HAA step 

(e.g., separation and/or orientation of the substrate C─H bond with respect to a reactive NHFe unit, 

spin-state effects etc.). However, it is fair to admit that quantitative primary KIE evaluations are 

extremely challenging for quantum chemistry due to the requirements on the accuracy of calculated 

reaction barriers, their curvatures (widths) and hydrogen/deuterium nuclear quantum effects. 

 

3.3. Modelling Oxygen-Atom Transfer Reactions 

As we discussed in the previous sections, many classes of NHFe enzymes exhibit considerable 

diversity in their biological functions. We already mentioned the importance of different oxygenated 

intermediates for the activity of NHFe enzymes toward HAA from organic substrates. In this section, 

we will discuss the electrophilic oxidation reactivities of such intermediates, focusing mainly on the 

OAT reactions (i.e., direct electrophilic attack of O-atom on organic substrates). Enzymes that are able 

to incorporate oxygen into the substrate structures play a crucial role in several important metabolic 

pathways as they are converting aliphatic and aromatic compounds into alcohols or epoxides, thiols to 

sulfenic or sulfinic acids, sulfides to sulfoxides, phosphines to phosphine oxides, etc. In order to 

understand the possible roles of the key oxygenated intermediates as active oxidants, many low-

weighted biomimetic models were synthesized.[135,136] 

 

3.3.1 Mononuclear Ferryl Active Site 
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The S = 2 FeIV=O intermediate was trapped in several pterin-dependent hydroxylases (i.e., 

tyrosine,[194] phenylalanine,[195] or tryptophan[196,197] hydroxylases). These enzymes hydroxylate 

the aromatic substrates by the electrophilic substitution mechanism that proceeds formally through 2e− 

transfer from the oxo group to FeIV and direct OAT as depicted in Figure 8. 

 

Figure 8: Two mechanisms of electrophilic aromatic substitution: a single step two-electron transfer 

(upper part) vs. two sequential one-electron transfers (lower part). 

 

The electrophilic aromatic substitution mechanism was also suggested for 4-hydroxyphenylpyruvate 

dioxygenase (HPPD).[144,198] HPPD together with 4-hydroxymandelate synthase (HMS) belong to 

the α-ketoacid dependent dioxygenases that have structurally similar active sites but differ considerably 

in reactivity. While HMS performs benzylic hydroxylation of 4-hydroxyphenylpyruvate (HPP), HPPD 

is responsible for aromatic hydroxylation of the same substrate (see Figure 9). According to DFT 

calculations performed on small model systems,[144,198,228] dioxygen activation in both HMS and 

HPPD produces the S = 2 FeIV=O intermediate capable of OAT (in HPPD) or HAA (in HMS), 

depending on the substrate orientation with respect to the FeIV=O moiety. In particular, the 

spectroscopically-based work of Neidig et al. [144] provided a detailed mechanistic insight for the 

OAT versus HAA reaction. Notably, the OAT-controlled -attack on substrate in HPPD leads to an S = 
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5/2 spin state on the generated FeIII center, whereas HAA-controlled -attack in HMS gives rise to 

S(FeIII) = 3/2 (the notion of  vs.  attack is discussed in section 3.2.1). A recent QM/MM study[229] 

extended the knowledge about the mechanism of aromatic and benzylic hydroxylation in HPPD and 

HMS by completing their catalytic cycle.  

 

Figure 9: Key steps of the reactions of the HMS and HPPD enzymes. 

 

An FeIV=O intermediate competent for OAT was also proposed for CDO.[199] CDO catalyzes S-

oxygenation of cysteine (RS−) to cysteine sulfinic acid (R-SO2) through a mechanism that has been 

suggested as follows (Figure 10). First, the cysteine-bound FeIII─superoxo intermediate, which was 

observed experimentally,[200] initiates the electrophilic attack on the cysteinyl sulfur lone pair with a 

subsequent 1e- transfer from the superoxide back to FeIII center, resulting in the formation of an S = 2 

four-membered (FeII─O─O─S) ring intermediate.[111,114] This intermediate then undergoes the O─O 

bond cleavage that produces the FeIV─oxo moiety and the sulfenic intermediate. A spin-crossover was 
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suggested prior to O─O bond cleavage, that would lead to the S = 1 state for the FeIV─oxo and was 

calculated to be significantly lower in energy (8.3 kcal.mol-1) than the S = 2 state (B3LYP).[111] 

However, these findings contrast with the S = 2 ground spin state that was observed for all 

spectroscopically characterized FeIV─oxo intermediates. Thus, the computationally proposed S = 1 

state for the FeIV─oxo intermediate in CDO would be very unique, raising a question about its 

functional role in a subsequent OAT step that completes the oxidation of Fe-bound sulfur. In the study 

of biomimetic complexes, it was demonstrated that ferryl undergoes OAT through different 

mechanisms, depending on the ground spin state (vide infra).[146] 

 

Figure 10: Proposed mechanism of CDO.[114] 

 

It was earlier predicted by the theoretical calculations [142,201] that S = 2 FeIV=O species are more 

reactive in the oxidative reactions than their S = 1 analogues. It should be, however, noted that the 

direct experimental evidence is still lacking. While the S = 1 FeIV=O species are common in 

biomimetic NHFe chemistry, the S = 2 complexes were synthesized only recently. [136] Moreover, it 

was demonstrated that S = 2 state models show only comparable (or even lower) reactivity towards 

OAT or HAA.[202,203,204,205] These observations emphasized the need for the correlation of 

reactivity with electronic structure as well as the geometric and steric properties of a complex. The 

study of Sastri et al. [174] provided a comprehensive correlation between the electronic structure 

properties (reflected by the reduction potentials) and reactivity. In the context of HAA reactivity, this 
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was discussed in the Section 3. Analogously, the OAT reactivity that involves two-electron transfer 

from substrate to the iron center was probed in a series of S = 1 [FeIV(O)(TMC)(X)]n+ and 

[FeIV(O)(TMCS)]+  species (with X = 1-NCCH3, 1-OOCCF3 and 1-N3; TMCS = 1-mercaptoethyl- 

4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecane; see Figure 2) by investigating the oxidation of PPh3 

to Ph3PO. It was revealed that the decrease in electrophilicity of the axial ligand, which causes a 

decrease in the reduction potential of the complex, results in a decrease of OAT rates (the opposite 

trend was observed for HAA). B3LYP calculations further revealed that an increase in the electron-

donating ability of axial ligands results in the decrease of the S = 2 / S = 1 energy difference gap, which 

in turn suggested an increased availability of S = 2 for OAT reactivity (the S = 2 TS for OAT was 

found lower in energy than the S = 1 TS, suggesting the S = 1 → S = 2 mechanism for OAT). The 

correlation between OAT rates and reduction potentials (or quintet-triplet gap differences) was found in 

other studies as well.[16,206,207] 

The systematic work of Wilson et al. [146] shed an additional light on OAT reactivity of NHFeIV=O 

complexes that was investigated (along with HAA reactivity) for two structurally related 

[FeIV(O)(TMC)(CH3CN)]2+ and [FeIV(O)(TBC)(CH3CN)]2+ species (TBC is 1,4,8,11-tetrabenzyl-

1,4,8,11-tetraazacyclotetradecane, i.e., it has more bulky benzyl substituents attached to the cyclam 

scaffold; see Figure 2). Unexpectedly, the rate was enhanced by two orders of magnitude for both HAA 

and OAT reactions of the TBC-supported complex (as compared to the complex with the TMC 

chelate). B3LYP calculations showed that the replacement of TMC by a more bulky TBC leads to a 

smaller energetic splitting between the S = 1 and S = 2 states of ferryl, making the S = 2 state more 

accessible for the TBC-supported complex. In addition, by inspecting the OAT reaction with the 

thioanisole substrate, the S = 2 transition state for OAT was found to be significantly lower in energy 

than the S = 1 TS. This is in line with the stabilization of the -dz2 and hence increased axial reactivity 

in going from S = 1 to S = 2 FeIV=O. As a result, the electronic structure at the S = 2 TS is characterized 



 

 

46 

as an early -attack (transfer of an -electron into dz2) that weakens both the Fe─oxo and trans-axial 

Fe─acetonitrile bonds, which in turn allows the Fe─oxo bond to move out of the cyclam plane and 

decreases the chelate steric hindrance for a “subsequent” -electron transfer througha -attack on the 

substrate. At the S = 1 TS, these - and -attacks are more concerted, which is reflected by a much 

smaller distortion of the Fe─oxo bond from the cyclam plane, and thus larger chelate steric 

contributions to the barrier for the S = 1 OAT. 

Interestingly, the complex [FeIV(O)(13-TMC)]2+ that differs by only one less methylene group in the 

structure of 13-TMC as compared with TMC (see Figure 2) exhibits larger than 105-fold reaction rate 

towards thioanisole sulfur oxidation than [FeIV(O)(TMC)]2+.[208] In line with observations for the 

series of TMC-supported complexes from ref. [174], it is tempting to link the higher reactivity in OAT 

reactions with the higher reduction potential of the complex: for [FeIV(O)(13-TMC)]2+ and 

[FeIV(O)(TMC)]2+, the reduction potentials were reported to be 0.61 V and 0.39 V vs. SCE, 

respectively.[208] 

In 2010, Fukuzumi et al. [209] reported the crystal structure of [FeIV(O)(TMC)]2+ complex with a 

bound Sc3+ ion to the oxo group that was shown to have stronger oxidizing capability than 

[FeIV(O)(TMC)]2+.[210] This again correlates with an increased OAT reaction rate.[211] Alternatively 

to metal cations, the presence of Brønsted acids in solution can also increase the OAT rate (i.e., the 

addition of HClO4 to MeCN solution of [FeIV(O)(N4Py)]2+ promotes sulfoxidation of the thioanisole by 

three orders of magnitude).[212] To rationalize these observations, it was suggested that Lewis acid 

(Sc3+) binding initiates sulfoxidation of the substrate sulfur by the outer-sphere electron transfer (lower 

part of Figure 11), whereas a Brønsted acid (HClO4) would contribute to a direct OAT mechanism (top 

part of Figure 11) through the protonation of the oxo group in [FeIV(O)(N4Py)]2+. Different 

mechanisms were attributed to differences in steric effects.[212] Nevertheless, more recent studies have 

shown that the assignment of the oxidation state of Fe-O-Sc3+ species was incorrect. DFT calculations 
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carried out by Swart [213] suggested the formation of FeIII-O-ScIII species that was also confirmed by 

spectroscopic methods.[214] These findings raise the question on how the FeIII-O-ScIII is formed from 

[FeIV(O)(TMC)]2+. The Brønsted acid activation can be utilized in tuning of the first and second 

coordination sphere of the iron center in a design of biomimetic model complexes. Later, ferryl 

complexes with ligands possessing pendant arms capable of hydrogen bonding to the FeIV=O group 

were synthesized [215,216] and shown to significantly enhance OAT reactivity. However, the detailed 

analysis of these effects on reactivity of such complexes was not provided. 

 

 

Figure 11: Oxidation of thioanisole. Difference between direct OAT pathway (upper part) and outer-

sphere electron-transfer pathway (lower part).[212] 

 

3.3.2 Mononuclear Ferric-Peroxo and Ferric-Hydroperoxo Active Site 

The S = 5/2 ferric─hydroperoxo intermediate was proposed to be competent for an electrophilic 

oxygenation reaction (aromatic hydroxylation) in RDO.[19,158,159] Nowadays, two competing 

possibilities for the role of S = 5/2 ferric─hydroperoxo in RDO are suggested: (i)  the FeIII─OOH 

species serve directly as the electrophilic oxidant;[158,217] (ii) the FeIII─OOH species is converted to 

either an FeIV=O intermediate through homolytic O─O bond cleavage[218] or an FeV=O intermediate 

through heterolytic O─O bond cleavage.[219,220,221] Many early studies claimed that the FeIV=O or 

FeV=O intermediates are being preferable due to the lack of the experimental/theoretical evidence for 
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OAT reactivity of the FeIII─OOH species in electrophilic oxidations. In an attempt to shed light on this 

problem, Ansari et al. [222] computationally investigated possible HAA vs. OAT reactivities of three 

oxidants FeIII─OOH, FeIV=O, FeV=O (derived from the [FeII(TPA)(CH3CN)2]
2+ complex). The direct 

OAT has been proposed as a more likely mechanism of action considering the ortho-hydroxylation of 

aromatic compounds. Based on their calculations, they concluded that the FeV=O intermediate is more 

reactive toward OAT than FeIV=O, while FeIII─OOH was found to be a rather sluggish oxidant in the 

studied aromatic hydroxylation. 

Similar results were obtained experimentally[223] for the nucleophilic (deformylation of aldehydes) 

and electrophilic (oxidation of sulfides and olefins) abilities of in situ generated non-heme FeIII─OOH 

complexes with N4Py, Bn-TPEN, TMC and TPA ligands (Bn-TPEN = N-benzyl-N,N',N'-tris(2-

pyridylmethyl)-1,2-diaminoethane; see Figure 2). No reactivity was observed and it was assumed that 

the FeIII─OOH complexes cannot be used either in nucleophilic reactions or in electrophilic oxidations. 

The electrophilic oxidation was ruled out also in the case of ferric─peroxo species (i.e., alkylperoxo 

species [(TPA)FeIII-(OOtBu)]2+ [ 224]). Based on the B3LYP calculations, it was concluded that the 

active oxygenation agent is a S = 1 FeIV=O system which is generated through O─O bond homolysis of 

S = 1/2 FeIII─OOR species. The calculations revealed a lower energetic barrier for the O─O bond 

activation of FeIII─OOR in comparison with direct OAT to organic substrates (~23 kcal.mol-1 for the 

O─O activation vs. >25 kcal.mol-1 barrier for direct ethylene epoxidation). It is noteworthy that none of 

these complexes was stable, and detailed characterization is therefore lacking. Goldberg prepared the 

rare thiolate-ligated S = 1/2 [FeIII([15]aneN4–2H)(SC6H4-p-Cl)(OOH)]+ species (see Figure 2).[225] 

Neither was this complex reported as reactive towards PPh3 oxidation. 

A considerable progress was achieved after the isolation and characterization of a side-on FeIII─peroxo 

complex [FeIII(TMC)(OO)]+.[226] It allowed the generation and characterization of all key species 

(FeIII─peroxo, FeIII─hydroperoxo and FeIV─oxo) within one host chelate, including the investigation of 
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their mutual conversion and their reactivities. The peroxo complex was converted to S = 5/2 end-on 

hydroperoxo complex [FeIII(TMC)(OOH)]2+ and it was proved that the FeIII─hydroperoxo species is 

highly reactive in deformylation of aldehydes and has similar reactivity as the FeIV─oxo complex in 

C─H bond activation (which is in contrast with previous findings that predicted no reactivity of 

FeIII─hydroperoxo in electrophilic and nucleophilic reactions [222,223,224,225]). In addition, Nam et 

al. [131]provided experimental evidence that S = 5/2 [FeIII(TMC)(OOH)]2+ is active also in oxidation 

of sulfides to sulfoxides. Moreover, based on the reaction with p-substituted thioanisoles, it was 

suggested that the hydroperoxo group shows electrophilic character, comparable with the FeIV─oxo 

species, and that oxidation of sulfides occurs through OAT. These experimental findings were 

complemented by B3LYP calculations that allowed to formulate a comprehensive mechanistic picture 

of the OAT process. According to these calculations, sulfoxidation proceeds on S = 5/2 surface via 

heterolytic O─O bond cleavage. Contrary to that, the S = 1/2 reaction trajectory follows a homolytic 

O─O bond cleavage but with a prohibitively large activation barrier (~32 kcal mol-1). Indeed, no OAT-

driven oxidation of sulfides was observed for the S = 1/2 hydroperoxo complex [FeIII(N4Py)(OOH)]2+ 

as opposed to OAT reactivity of S = 5/2 [FeIII(TMC)(OOH)]2+. 

Recently, the capabilities of superoxide reductase (SOR) in nucleophilic and electrophilic oxidations 

through a S = 5/2 ferric-hydroperoxide intermediate were also investigated.[227] It was convincingly 

shown that SOR is able to react with aldehydes in deformylation reactions. In addition, its sulfoxidation 

was further demonstrated to proceed in the presence of SOR and 1 molar equiv. of H2O2. 

 

3.4. Reaction Selectivity 

The iron-oxygen species generated in NHFe(2) enzymes are potent oxidants, and they are, at least in 

principle, capable of reacting with the substrate at various sites. The initially formed reactive 

intermediates, quite often substrate-centered radicals, may also have more than a single channel for 
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further transformation. With their native substrates, enzymes typically show exclusive reactivity toward 

one product, and much is to be learned about how they achieve such excellent control over the 

outcome. The involvement of highly reactive species suggests that computations can prove essential in 

providing detailed insight into the selectivity-determining factors. This task is, however, challenging 

due to the necessity of taking into account a number of subtle interactions to a good accuracy in order 

to arrive at a realistic model, which can withstand thorough experimental tests (e.g., using mutated 

enzymes and alternative substrates). 

 

3.4.1. Chemoselectivity 

One excellent opportunity to study the effects governing selectivity is provided by the pair of NHFe 

enzymes HPPD and HMS (both defined in section 3.3.1). Both belong to the family of α-KG-

dependent dioxygenases and share the substrate, HPP, which as a ketoacid also serves as the surrogate 

of α-KG. The substrate-bound complex was found to be very similar in these systems [144], and 

following initial oxygen activation according to the established scheme of α-KG-enzymes, the reactions 

arrive at the common FeIV=O intermediate with complexed 4-hydroxyphenylacetic acid (see Figures 4 

and 9). At this point, the reaction pathways diverge; in HPPD, attack on the aromatic ring followed by 

migration of the carboxymethyl substituent leads to 2,5-dihydroxyphenylacetic acid (homogentisic 

acid), while in HMS, benzylic C–H abstraction and OH rebound provide the 4-hydroxymandelic acid 

product (Figure 9). Detailed MD and QM/MM studies by Borowski et al. [228,229] identified several 

key second sphere residues that, using H-bonding and steric bulk, stabilize different orientations of the 

4-hydroxyphenylacetic acid toward the oxidant, leading to different favored pathways in the two cases. 

The results were in line with mutagenesis experiments on HPPD. Nevertheless, besides protein effects, 

other factors may also be at play. In these enzymes specifically, and in NHFeIV=O species in general, 

there seems to be an intrinsic preference toward aliphatic hydroxylation,[229] particularly when 
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compared with FeIV-oxo-porphyrin radical systems. [230] The high electron affinity (opposed by the 

lower pKa to yield comparable BDEOH values) was suggested to be responsible for this trend.  

The selectivity determining step may seem to occur following the initial substrate attack. Such is the 

case of the Fe-α-KG-dependent halogenase SyrB2, where the substrate, having undergone C–H 

abstraction by FeIV=O, could rebound either to the OH or to the Cl ligand of the iron, giving rise to a 

hydroxylated or halogenated product (see Figure 3). Following seminal experiments on this system, 

[231] calculations revealed a more complicated picture indicating that the selectivity arises earlier on. It 

was shown that positioning of the substrate and H-bond interactions of the incipient OH lead to the 

selection of a C–H abstraction reaction channel that brings the newly formed substrate radical into the 

proximity of the chloro ligand. [44,232] Recent experiments fit well into the overall picture. [233] At 

the same time, it seems that intrinsic properties of the metal complex may also play a role here, as it 

was found that the synthetic [FeIV(O)(TPA)Cl]+ complex has an appreciable preference toward rebound 

to the ligand in the cis position with respect to the amine nitrogen of TPA, as a result of the different 

bond strengths. [234] However, it is noteworthy that the rebound reactivity/selectivity of low-weight 

synthetic complexes can be considerably influenced by radical escape from the solvent cage and its 

reaction with other species in solution. [235] 

In certain cases, an initial C–H abstraction may be followed by the attack of a vicinal C–H bond, 

furnishing a desaturated product. Intrinsic factors directing the chemoselectivity of OH-rebound vs. 

desaturation by FeIV–oxo complexes have been studied by Usharani et al. [236], who found that this 

preference depends on the substrate (C–H bond strength, radical delocalization, etc.) and on the oxidant 

as well (spin state, orbital structure). They also highlighted that the preferences for the σ/π channels for 

the second hydrogen abstraction by FeIII─OH are opposite to those for the first one by FeIV=O. 

Nevertheless, substrate positioning and conformational issues remain crucial, and often difficult to 

accurately predict. While theory could give an adequate explanation for the desaturation in a P450 
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isozyme through the modulation of Fe–OH conformations via hydrogen bonds, [237] it had only a 

partial success in explaining the desaturation over epimerization/hydroxylation selectivity in the α-KG-

NHFe carbapenem synthase. [92] Besides substrate positioning, oxidant positioning might be a viable 

strategy of Nature as well. In this respect, our study on the NHFe2 Δ
9D suggested that a diiron center 

can be poised in a way that the first C–H abstraction generates an FeIV=O moiety suitably aligned for a 

second C–H abstraction on the neighboring carbon atom. [85] 

Besides these prominent and complex cases, DFT calculations could identify key electronic factors 

favoring certain reaction outcomes in several further systems. In IPNS, a hydrogen bond from the 

substrate amide group was found to drive the FeII–OOH intermediate toward heterolytic cleavage 

instead of nucleophilic attack, allowing oxidase instead of oxygenase reactivity. [238] A study on a 

functional model complex of intradiol-cleaving catechol dioxygenase identified the orbital interactions, 

and the resulting geometric requirements, behind the preference for intradiol cleavage. [104] Presence 

or absence of an electron transfer concomitantly with a proton transfer was reported to be responsible 

for the drastically different products of HEPD when presented with 2- or 1-hydroxyethylphosphonate 

substrates. [168] The inability to bind O2 was found to be the reason why CDO does not convert 

selenocysteine into the corresponding seleninic acid. [114] In dimanganese class Ib ribonucleotide 

reductase, the rate by which the H2O2 oxidant is supplied seems to be of key importance in the 

selectivity toward the native tyrosyl radical generation instead of the possible catalase activity. [239] 

 

3.4.2. Regioselectivity 

Discrimination among chemically similar functional groups is a task routinely accomplished by the 

enzymes and still often challenging for synthetic catalysts. Not surprisingly, intrinsic factors often play 

a lesser role in this field. For example, in a joint mass spectrometric and computational study of 

biomimetic non-heme FeIV−oxo complexes, it was found that the preference toward specific aliphatic 



 

 

53 

hydroxylation channels is governed only by proximity effects. [240] An in silico mutagenesis study 

using MD and QM/MM techniques could identify several amino acids in rabbit 15-lipoxygenase-1 that 

are responsible for selective hydroperoxidation at C13 and hindering it at C9, obviously the result of 

steric accessibility (see Figure 6 for the general lipoxygenase mechanism). [241] In the reaction 

catalyzed by prolyl-4-hydroxylase, it was furthermore revealed that the C–H bond broken in the 

enzyme is actually stronger than those in the 3 and 5 positions, and interactions with second-sphere 

residues were responsible for the exclusive selectivity contradicting thermodynamic preferences. [187] 

As seen in the above examples, computations could help reveal important factors behind selectivity in 

many cases. Nevertheless, one has to keep in mind the possible pitfalls. In our Δ9D study, [85] we 

revealed that most DFT functionals erroneously predict hydroxylation instead of desaturation due to 

wrong electron distribution (see also section 3.2.4), pinpointing the need for accurate electronic 

structure description in selectivity studies. The accurate treatment of environment effects (including 

solvation) may also be of paramount importance, particularly when highly charged active species are 

investigated. [242] 

 

4. Conclusions  

In this minireview, we attempted to highlight the sheer complexity of the NHFe and NHFe2 chemistry 

and at the same time, briefly review the latest progress in theoretical methods of bioinorganic 

chemistry. We tried to emphasize that the concerted progress on both theoretical and experimental side 

is a conditio sine qua non for the future understanding, exploration and utilization of the NHFe(2) 

systems. This was illustrated on selected examples, including oxidative transformations that are – if 

uncatalyzed - energetically very difficult and as such, require enzymes that use highly reactive 

intermediates along their catalytic cycles. What we consider as the most fascinating and attractive 

phenomenon is the fact that despite the strong oxidative power of such intermediates, the NHFe and 
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NHFe2 enzymes perform catalysis with high selectivities. We are of the opinion that further 

development of multireference wave function methods is needed to have a solid theoretical basis for 

benchmarking computationally efficient and easy-to-use DFT methods. 
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