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Abstract

We give a new proof that a finitely generated congruence-distributive variety has finitely
determined syntactic congruences (or equivalently, term finite principal congruences), and
show that the same does not hold for finitely generated congruence-permutable varieties,
even under the additional assumption that the variety is residually very finite.
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1. Introduction

The notion of term finite principal congruences (TFPC) was introduced by
D.M. Clark, B. A. Davey, R. S. Freese and M. Jackson [6] and is a natural
generalisation of definable principal congruences: instead of bounding the
number of different principal-congruence formulæ, we bound only the set
of possible terms appearing in such formulæ. This property is very closely
related to several other congruence conditions. For example, a variety of al-
gebras of finite signature has TFPC if and only if it has finite Mal’cev depth,
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also known as finite principal length, as studied by J. Wang [17]. These prop-
erties have been used by K.A. Baker, G. F. McNulty and J. Wang [2] and by
K.A. Baker and J. Wang [3] to establish finite basis theorems for the equa-
tions of finite algebras. More locally, an individual algebra has TFPC if and
only if it has finitely determined syntactic congruences (FDSC), a property
that arises naturally in the study of compact topological algebras [6]. For
example, a Boolean topological algebra with FDSC is topologically residu-
ally finite ([10], [13, Lemma VI.2.7] or [6, Lemma 4.2]). Moreover, FDSC is
the most general known structural property guaranteeing topological resid-
ual finiteness (algebraic residual finiteness is not sufficient in general; see
Jackson [12]). The notion of FDSC arises naturally in the study of the
axiomatizability of classes of Boolean topological algebras [8].

Wang [17] showed that every finitely generated congruence-distributive
variety of finite signature has finite Mal’cev depth and consequently also has
TFPC and FDSC. (An updated version of Wang’s proof, in English, appears
in Baker and Wang [3].) Thus, every finitely generated variety of lattices
has TFPC and FDSC. On the other hand, D. J. Clinkenbeard [9] gave an
example of a Boolean topological modular lattice that is not topologically
residually finite. So the variety of modular lattices (and any larger variety)
has neither TFPC nor FDSC.

We present a new proof of Wang’s result that avoids any assumption on
the signature. To contrast this result, we construct a four-element non-
associative algebra over GF(2) that generates a variety that is congruence
permutable and residually very finite (that is, has a finite bound on the size
of its subdirectly irreducible algebras) but fails to have FDSC.

2. Preliminaries

Let V be a variety of algebras. Let A ∈ V be an algebra and c, d ∈ A.
We write cg

A
(c, d) to denote the smallest congruence of A containing the

pair (c, d). For m ∈ ω, let T (m)
x denote the set of all (m+1)-variable terms

t(x, z1, . . . , zm) in the signature of V, and let Tx denote the union of the
sets T (m)

x , for m ∈ ω.
Mal’cev’s Lemma (see S. Burris and H. P. Sankappanavar [4, V.3.1], for

example) states that (a, b) ∈ cg
A
(c, d) if and only if there exist

(1) non-negative integers k and m,
(2) elements a = a1, . . . , ak+1 = b in A,
(3) terms t1(x, z1, . . . , zm), . . . , tk(x, z1, . . . , zm) in Tx, and
(4) elements e1,1, . . . , e1,m, . . . , ek,1, . . . , ek,m in A
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such that, for all i ∈ {1, . . . , k}, we have

{tAi (c, ei,1, . . . , ei,m), tAi (d, ei,1, . . . , ei,m)} = {ai, ai+1}.

Let F ⊆ Tx. Given an algebra A and c, d ∈ A, we say that F deter-

mines the principal congruence cg
A
(c, d) if, for all (a, b) ∈ cg

A
(c, d), the

terms ti(x, z1, . . . , zm) in (3) above can all be chosen from F . Likewise, F
determines the principal congruences on A if it determines each principal
congruence of A, and F determines principal congruences in a class K if F
determines the principal congruences on each member of K.

Clearly Tx determines principal congruences in any class of algebras of the
appropriate signature; however it is common that some subset of Tx suffices.
The singleton {z1xz2} is sufficient to determine principal congruences in the
variety of groups for example; see [6] for many other examples.

We say that a class K of algebras has term finite principal congruences

(TFPC) if there is a finite subset of Tx that determines principal congruences
in K.

The congruence condition TFPC is a natural generalisation of definable
principal congruences: a variety V has first-order definable principal congru-

ences if and only if we can fix a finite bound on the length m of the chain
in item (2) of Mal’cev’s Lemma, as well as fixing a finite set F ⊆ Tx for the
possible choices of terms in item (3) (see [4, Exercise V.3.5] for example).
There are many interesting results that can be proved in the presence of
definable principal congruences; however it is a rather special property. For
example, a finite lattice generates a variety with definable principal congru-
ences if and only if it is a distributive lattice [15]. On the other hand, we
will show that every finitely generated congruence-distributive variety has
TFPC.

Finite Mal’cev depth is defined by specifying the subset of Tx that should
determine principal congruences in V: a variety V has finite Mal’cev depth

k if principal congruences on algebras in V are determined by the subset of
Tx consisting of terms of nesting depth (in terms of fundamental operations)
at most k.

Finally, we wish to review the notion of finitely determined syntactic
congruences. Let A be an algebra and θ an equivalence relation on A. The
largest congruence contained in θ is called the syntactic congruence of θ and
is denoted by syn(θ). For any subset F ⊆ Tx we write θF to denote the
relation given by (a, b) ∈ θF if and only if

(∀t ∈ F )(∀e0, e1, . . . ∈ A)
(

tA(a, e1, e2, . . .), t
A(b, e1, e2, . . .)

)

∈ θ.
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The relation θF is an equivalence relation and satisfies syn(θ) ⊆ θF . More-
over, syn(θ) = θTx

. We say that F determines syn(θ) if θF = syn(θ). The
set F determines syntactic congruences on A if θF = syn(θ) for every equiv-
alence relation θ on A, and we say that F determines syntactic congruences

in a class K if F determines syntactic congruences on each member of K.
If there is a finite set F ⊆ Tx that determines syntactic congruences in K,
then we say that K has finitely determined syntactic congruences (FDSC).

The name syntactic congruence has its roots in the theory of formal lan-
guages (see the discussion at the start of Section 2 of [6]), and the property
FDSC has quite a lengthy history in relation to topological residual finite-
ness: see [1], [5], [6], [10] and [13], for example.

The following lemma is obvious but useful.

Lemma 2.1. Let F ⊆ Tx and let t(x, z1, . . . , zk) and s(x, z1, . . . , zk) be

terms in Tx. If the set F∪{t(x, z1, . . . , zk)} determines principal congruences

in a class K that satisfies t(x, z1, . . . , zk) ≈ s(x, z1, . . . , zk), then the set

F ∪ {s(x, z1, . . . , zk)} also determines principal congruences in K.

The definition of FDSC is certainly reminiscent of that of TFPC, but
much more is true.

Lemma 2.2. [6, Lemma 2.3] A subset F of Tx determines syntactic con-

gruences on an algebra A if and only if it determines principal congruences

on A.

In particular, a class K of algebras has FDSC if and only if it has TFPC.
The proof of Lemma 2.2 is based on the following lemma, which is useful in
its own right.

Lemma 2.3. [6, Lemma 2.2] Let A be an algebra and θ be an equivalence

relation on A. For all a, b ∈ A, we have (a, b) ∈ syn(θ) if and only if

cg
A
(a, b) ⊆ θ.

We shall require the following equational characterisation of when a subset
F of Tx determines syntactic congruences in a variety.

Lemma 2.4. [6, Section 3] Let K be a class of algebras and assume that

Wω is an ω-generated K-free algebra. The following are equivalent for a

subset F of Tx:
(1) F determines syntactic congruences in K;
(2) F determines syntactic congruences on Wω;
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(3) for every term t(x, z1, . . . , zn) in Tx, there exists ` ∈ ω, there exist

terms s1(x, z1, . . . , zm), . . . , s`(x, z1, . . . , zm) in F and there exist m`
terms wi,j(x, y, z1, . . . , zm), for 1 ≤ i ≤ ` and 1 ≤ j ≤ m, such that K

satisfies the following equations:

t(x, z1, . . . , zn) ≈ s1(v1, w1,1, . . . , w1,m),

...

si(v
′
i, wi,1, . . . , wi,m) ≈ si+1(vi+1, wi+1,1, . . . , wi+1,m),

...

s`(v
′
`, w`,1, . . . , w`,m) ≈ t(y, z1, . . . , zn),

where {vi, v
′
i} = {x, y}, for 1 ≤ i ≤ `.

Following [6], when a subset F of Tx and a term t(x, z1, . . . , zn) ∈ Tx

satisfy the conditions of this lemma, we say that F shadows t(x, z1, . . . , zn).
We close this section with two corollaries of Lemma 2.4.

Corollary 2.5. Let K be a class of algebras containing an ω-generated

free algebra. Assume that F and G are subsets of Tx that determine syntactic

congruences in K. If G is finite, then there is a finite subset of F that

determines syntactic congruences in K.

Proof. By Lemma 2.4, the set F shadows every t(x, z1, . . . , zn) ∈ G. As
each “shadowing” of a term t in G involves only a finite subset Ft of F (the
number ` in Lemma 2.4), the subset

⋃

t∈G
Ft is a finite subset of F that

determines syntactic congruences in K.

Corollary 2.6. Let V be a variety and let F be a subset of Tx. If F
determines syntactic congruences on the finitely generated V-free algebras,

then F determines syntactic congruences in V.

Proof. It follows from Mal’cev’s description of principal congruences
that, for any algebra A and elements a, b, c, d ∈ A, we have (a, b) ∈ cg

A
(c, d)

if and only if (a, b) ∈ cg
B
(c, d), for some finitely generated subalgebra B of A

that contains {a, b, c, d}. Hence the class of algebras on which F determines
principal congruences is closed under directed unions. As the countably
generated V-free algebra in V is a union of a chain of finitely generated
V-free algebras, the result follows from Lemmas 2.2 and 2.4.
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3. Congruence distributive varieties

Recall that a variety V is congruence distributive if and only if there are
terms D0(x, y, z), . . . , Dm(x, y, z), for some m ≥ 2, such that V satisfies the
following Jónsson equations (B. Jónsson [14]):

D0(x, y, z) ≈ x;(J1)

Dm(x, y, z) ≈ z;(J2)

Di(x, y, x) ≈ x;(J3i)

Di(x, x, y) ≈ Di+1(x, x, y), for i even;(J4i)

Di(x, y, y) ≈ Di+1(x, y, y), for i odd.(J4i)

Three-variable polynomials d0(x, y, z), . . . , dm(x, y, z) on an algebra B, for
which the Jónsson equations hold, will be called Jónsson polynomials. Of
course if B lies in a congruence-distributive variety, then Jónsson terms
will be Jónsson polynomials in B. However it is possible to have Jónsson
polynomials on algebras that do not have Jónsson terms. This fact plays
an important role in McKenzie’s decidability results for finite algebras [16],
which is one of the motivating reasons for presenting these ideas in this more
general setting.

For an algebra B and subset F ⊆ Tx, we use the notation PolF1 (B) to
denote the unary polynomials p(x) on B that arise as tB(x, e1, , . . . , em), for
some t(x, z1, . . . , zm) ∈ F and e1, . . . , em ∈ B. To simplify the notation, we
shall denote finite sequences of elements or variables, of unspecified length
n ∈ ω, by ~c. Note that, while ci stands for the ith element of the sequence ~c,
the notation ~ci is an abbreviation for a finite sequence ci,1, ci,2, . . . .

Lemma 3.1. Let K be a class of algebras and assume that F ⊆ Tx de-

termines syntactic congruences in K. Assume that B is a subdirect prod-

uct of finitely many algebras from K and that B has Jónsson polynomials

d0(x, y, z),. . . , dm(x, y, z) built from terms D0(x, y, z, ~w),. . . , Dm(x, y, z, ~w),
for some m ≥ 2. The subset

F+ :=
{

Dj(y1, t(x, ~z), y2, ~w)
∣

∣ 0 ≤ j ≤ m and t(x, ~z) ∈ F
}

of Tx determines syntactic congruences on B.

Proof. Assume that for some ` > 0, the algebra B is a subdirect product
of M1, . . . ,M`, with Mi ∈ K for all i. Suppose, by way of contradiction,
that θ is an equivalence relation on B and that F + does not determine the
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congruence syn(θ). Thus, there exists (e, f) ∈ θF+\ syn(θ). By the definition

of θF+ and Lemma 2.3, we have (p(e), p(f)) ∈ θ, for all p ∈ PolF
+

1 (B), but
cg

B
(e, f) * θ. For u ∈ B, we denote the ith coordinate on u by u[i] and, for

u, v ∈ B, we define

[[u = v]] :=
{

i ∈ {1, . . . , `}
∣

∣ u[i] = v[i]
}

.

Assume that (a, b) ∈ cg
B
(e, f)\θ and the size of E := [[a = b]] is maximal over

all such pairs. Without losing generality, we may assume that a[1] 6= b[1],
whence 1 /∈ E. We shall derive the contradiction (a, b) ∈ θ.

We have (a[1], b[1]) ∈ cg
M1

(e[1], f [1]). Since, by Lemma 2.2, the set
F determines principal congruences on M1, there is a chain of elements
in M1, say a[1] = a1, . . . , ak+1 = b[1], such that, for all i ∈ {1, . . . , k}, we
have {qi(e[1]), qi(f [1])} = {ai, ai+1}, where qi(x) = tM1

i (x,~ci), for some term
ti(x, ~z) ∈ F and finite sequence ~ci of elements of M1. As the projection from
B to M1 is surjective, for each i ∈ {1, . . . , k}, there is a finite sequence ~gi of
elements of B with gi,j [1] = ci,j , for all j = 1, 2, . . ..

Let pi(x) denote the polynomial of B given by tBi (x,~gi), and fix j ≤ m.

For all i ∈ {1, . . . , k}, we have dj(a, tBi (x,~gi), b) ∈ PolF
+

1 (B), whence

(∗) dj(a, tBi (e,~gi), b) θ dj(a, tBi (f,~gi), b), for all i ∈ {1, . . . , k}.

We now establish two claims.

Claim 1: For all c, d ∈ B with c[1] = d[1], we have dj(a, c, b) θ dj(a, d, b).

As (a, b) ∈ cg
B
(e, f), the Jónsson equation (J3j) shows that

(

dj(a, c, b), dj(a, d, b)
)

∈ cg
B
(e, f).

Now E ⊆ [[dj(a, c, b) = dj(a, d, b)]], using Equation (J3j) again, while

1 ∈ [[dj(a, c, b) = dj(a, d, b)]]

by assumption. As 1 /∈ E, the maximality assumption on the choice of
a, b ∈ B now shows that dj(a, c, b) θ dj(a, d, b).

Claim 2: dj(a, b, b) θ dj(a, a, b).

For notational convenience, we define elements ui, vi ∈ B, for i ∈ {1, . . . , k},
by

ui :=

{

e, if qi(e[1]) = ai,

f, if qi(f [1]) = ai,
and vi :=

{

f, if qi(f [1]) = ai+1,

e, if qi(e[1]) = ai+1.
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Note that, pi(ui)[1] = qi(ui[1]) = ai and pi(vi)[1] = qi(vi[1]) = ai+1, for each
i ∈ {1, . . . , k}. Hence the horizontal relations in the following chain follow
from Claim 1. The vertical relations follow from (∗). We show the case in
which k is even, but the case where k is odd is similar and ends on the left
instead of the right.

dj(a, a, b) θ dj(a, p1(u1), b)

θ

dj(a, p2(u2), b) θ dj(a, p1(v1), b)

θ

dj(a, p2(v2), b) θ dj(a, p3(u3), b)

θ

...
...

θ

dj(a, pk(uk), b) θ dj(a, pk−1(vk−1), b)

θ

dj(a, pk(vk), b) θ dj(a, b, b).

By transitivity, we obtain dj(a, a, b) θ dj(a, b, b).
Now to complete the proof of the lemma. The following chain demon-

strates how Claim 2 (vertically) and the Jónsson equations (J1), (J2) and
(J4i) (horizontally) give the desired contradiction, namely (a, b) ∈ θ. Here
m is odd, but again the case in which m is even is similar.

a = d0(a, a, b) = d1(a, a, b)

θ

d2(a, b, b) = d1(a, b, b)

θ

d2(a, a, b) = d3(a, a, b)

θ

...
...

θ

dm−1(a, b, b) = dm−2(a, b, b)

θ

dm−1(a, a, b) = dm(a, a, b) = b.
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This completes the proof.

Appropriate finiteness conditions on the class K in Lemma 3.1 guarantee
that the set F can be chosen to be finite, in which case the set F + will also
be finite.

Lemma 3.2. Assume that K consists of algebras of bounded finite cardi-

nality n ≥ 1.
(i) The set F = T (n)

x determines syntactic congruences in K.

(ii) Assume that K is a subset of a locally finite variety. Then there is a

finite subset F of T (n)
x that determines syntactic congruences in K.

Proof. When Mal’cev’s Lemma is applied in an algebra of cardinality
at most n ∈ ω, each tuple ei,0, ei,1, . . . , ei,m in item (4) involves at most n
distinct elements, and hence it suffices to choose terms in item (3) with at
most n + 1 variables. This proves (i). If K lies in a locally finite variety V,
then by Lemma 2.1 we need only choose one term from each equivalence
class of the (n+1)-generated V-free algebra, whence (ii) follows.

Our main result now follows easily.

Theorem 3.3. Let A be a finite algebra and assume that the variety

Var(A) generating by A is congruence distributive. Then Var(A) has FDSC

and TFPC.

Proof. As A is finite, by Corollary 2.6 it suffices to show that the class
of finitely generated Var(A)-free algebras has FDSC. Let Wk denote the
k-generated Var(A)-free algebra.

The free algebra Wk is a subdirect product of a finite set K of algebras
of cardinality at most |A|. (Indeed, Wk is a subdirect product of subdi-
rectly irreducible algebras in Var(A), which by Jónsson’s Lemma [14] lie in
the class HS(A). It is also a subalgebra of A|A||X|

, and so is a subdirect
product of algebras in S(A).) By Lemma 3.2(ii), there is a finite subset F
of T |A|

x that determines syntactic congruences in K. Hence, by Lemma 3.1
there is a finite subset F + of T (|A|+2)

x that determines syntactic congruences
on Wk. Because the choice of F + depends only on A, we conclude that F +

determines syntactic congruences on every finitely generated Var(A)-free
algebra. Thus, Var(A) has FDSC by Corollary 2.6, and so has TFPC by
Lemma 2.2.

To get a bound on the number of terms required to determine syntactic
congruences in Var(A), let Wk denote the k-generated Var(A)-free algebra
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and let |A| = n. Note that |Wk| ≤ nnk

. When forming the subset F of T n
x

used in the proof of Theorem 3.3, we need only pick one term t(x, z1, . . . , zn)
for each element of Wn+1. Since the terms in F should depend on x, an
upper bound for the number of terms required is |Wn+1| − |Wn| ≤ nnn+1

.
Thus, if there are m + 1 Jónsson terms D0, . . . , Dm, then

|F +| = (m − 1)|F | ≤ (m − 1)nnn+1

.

If we do not know the number of Jónsson terms, then working in Wn+3

gives |F +| ≤ nnn+3

. One can also obtain an upper bound for the nesting
depth of the terms required. Easy observations show that every term in
F+ is equivalent to one of nesting depth at most nnn+3

. (Essentially, if t is
represented in shortest fashion then no subterms of t can be equivalent in
Var(A) to a term of smaller depth. So the depth of t is bounded by the size
of Wn+3). All of these bounds are probably excessive.

4. Congruence permutable varieties

The variety of lattices is congruence distributive and, as we pointed out
earlier, fails to have FDSC. However, the varieties of groups and of rings
are congruence permutable and do have FDSC. This suggests some possible
variants of Theorem 3.3. The proof of Theorem 3.3 does not make it clear
precisely what role is played by the finite residual bound of a finitely gener-
ated congruence-distributive variety. (Having a finite residual bound is not
a property shared by finitely generated congruence-permutabile varieties.)

In this section we show that one obvious variant of Theorem 3.3 does not
extend to congruence-permutable varieties. We find a four-element algebra
A generating a residually very finite congruence-permutable variety that
fails to have FDSC.

Define A = 〈{0, a, b, a + b}; +, ·, 0〉, where + and · are given by the tables
below. The additive reduct of A is isomorphic to the group Z2×Z2 and it is
easy to check that the left and right distributive law holds. Hence we may
view A as a non-associative algebra over GF(2), where the word algebra is
used in the more classical sense.

+ 0 a b a + b

0 0 a b a + b
a a 0 a + b b
b b a + b 0 a

a + b a + b b a 0

· 0 a b a + b

0 0 0 0 0
a 0 0 a a
b 0 0 0 0

a + b 0 0 a a
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We shall use Lemma 2.4 to prove that Var(A) does not have FDSC. For
this we need to develop a detailed understanding of the equational properties
of A. Let Σ denote the set consisting of the following three equations:
(a) x(yz) ≈ 0,
(b) (xy)y ≈ xy,
(c) (xy)z ≈ (xz)y.

We write xi0xi1 . . . xin−1
xin

to abbrieviate the left-bracketed multiplicative
term ((. . . (xi0 ·xi1) · . . .) ·xin−1

) ·xin
. We also refer to xi0 as the first variable

in such a term. More generally, if u1, . . . , un are terms, then u1 · u2 · · · · · un

is assumed to be left bracketed and so stands for (. . . ((u1 · u2) · . . . ) · un.

Lemma 4.1. Every multiplicative term t(x0, . . . , xn) in which each of the

variables x0, . . . , xn occurs is equivalent modulo Σ and the usual multiplica-

tive properties of 0 to either 0 or a term xi0xi1 . . . xim−1
xim

, with m ∈
{n, n + 1}, such that i1 < i2 < · · · < im, and {i0, . . . , im} = {0, . . . , n}.

Proof. Certainly law (a) ensures that if t contains a right bracketing
then we can derive t(x0, . . . , xn) ≈ 0. Otherwise, t(x0, . . . , xn) contains
only left bracketing, and laws (b) and (c) can be used to rearrange and
remove repetitions amongst the variables appearing to the right of the first
variable.

We refer to a term of the form xi0xi1 . . . xim−1
xim

, with i1 < i2 < . . . < im,
as a reduced multiplicative term. It is clear that we are able to rewrite every
non-zero term as a sum w1 + · · · + wn of multiplicative terms. Lemma 4.1
shows that we may further assume that each multiplicative term in such a
sum is in reduced form.

Lemma 4.2. Let n ≥ 1 and let w1, . . . , wn be pairwise distinct reduced

multiplicative terms. Then the equation w1 + · · · + wn ≈ 0 fails in A.

Proof. Assume without loss of generality that w1 = xi0xi1 . . . xim
and

that m is a minimal amongst the wi. Let Wω denote the Var(A)-free algebra
with free generating set {xi | i ∈ ω }.
Case 1. i0 6= ij , for all j ∈ {1, . . . ,m}.
Define ϕ : Wω → A by ϕ(xi0) = a, ϕ(xij

) = b for 1 ≤ j ≤ m, and ϕ(xi) = 0
for all other generators. Now ϕ(w1) = a, but by minimality, and the fact
that the wi are pairwise distinct we have ϕ(wi) = 0, for i 6= 1. Hence
∑m

i=1 ϕ(wi) = a 6= ϕ(0), showing that w1 + · · · + wn ≈ 0 fails in A.
Case 2. i0 = ij , for some j ∈ {1, . . . ,m}.
The idea is the same, but we define ϕ by ϕ(xi0) = a + b, ϕ(xi) = b for
1 ≤ j ≤ m, and ϕ(xi) = 0 for all other generators.
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Lemmas 4.1 and 4.2 show that Σ is a basis for the equational theory of
A within the variety of all algebras over GF(2), as the following argument
shows. Lemma 4.1 and the axioms for an algebra over GF(2) imply that
every term reduces to either 0 or one of the form w1 + · · · + wn, for some
reduced multiplicative terms w1, . . . , wn. However, Lemma 4.2 implies that
no two distinct terms of this form, with their multiplicative terms in lexico-
graphic order, induce the same term function on A. Indeed, if the equation
w1 + · · ·+wn ≈ v1 + · · ·+vm holds, then w1 + · · ·+wn +v1 + · · ·+vm ≈ 0 also
holds. After removing repeats (using x+x ≈ 0), Lemma 4.2 implies that the
left hand side must reduce to 0, showing that {w1, . . . , wn} = {v1, . . . , vm}.
(Lemma 4.2 also shows that the reduced multiplicative terms over an al-
phabet X form a vector basis for the Var(A)-free algebra freely generated
by X.) Let us say that a sum of distinct reduced multiplicative terms ap-
pearing lexicographically in the sum is a normal form. We have just argued
that every term reduces to a unique normal form.

For n ∈ ω, define terms fn and gn by

fn(x, z1, . . . , zn) := xz1z2 . . . zn−1 + zn,

gn(x, z1, . . . , zn) := z1xz2 . . . zn−1 + zn,

and note that f0 = g0 = x.

Lemma 4.3. The set F := { fn(x, ~z) | n ∈ ω } ∪ { gn(x, ~z) | n ∈ ω }
determines syntactic congruences in Var(A).

Proof. Let t(x, z1, . . . , zn) be a term. We shall prove that F shadows t. If
the variable x does not appear in t, there is nothing to do (choose ` = 0 in the
definition of shadowing: see Lemma 2.4). We can assume that t is written in
the form w1 + · · ·+wm with each multiplicative subterm wi in reduced form,
and that these subterms have been arranged so that x appears in w1. So w1

can be written in one of the forms xy1 . . . yk or y0 . . . yj−1xyj+1 . . . yk, where
{y0, . . . , yk} ⊆ {x, z1, z2, . . .}. If w1 can be written in the form xy1 . . . yk,
then we have:

w1 + · · · + wm ≈ xy1 . . . yk + w2 + · · · + wm

≈ fk+1(x, y1, . . . , yk, w2 + · · · + wm)

and

fk+1(y, y1, . . . , yk, w2 + · · · + wm) ≈ yy1 . . . yk + w2 + · · · + wm
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If w1 is of the form y0 . . . yj−1xyj+1 . . . yk, then we have

w1 + · · · + wm ≈ y0 . . . yj−1xyj+1 . . . yk + w2 + · · · + wm

≈ gk−j+1(x, y0 . . . yj−1, yj+1, . . . , yk, w2 + · · · + wm)

and

gk−j+1(y, y0 . . . yj−1,yj+1, . . . , yk, w2 + · · · + wm)

≈ y0 . . . yj−1yyj+1 . . . yk + w2 + · · · + wm

By moving each multiplicative term wi involving x to the front, in turn, and
repeating this process we can replace each occurrence of x in the term t by
y and thereby show that F shadows t.

This lemma and Corollary 2.5 show that in order to prove that Var(A)
does not have FDSC it suffices to prove that, for every n ∈ ω, the set

Fn := {fk(x, ~x) | k ≤ n} ∪ {gk(x, ~x) | k ≤ n}

fails to determine syntactic congruences in Var(A). We shall show that Fn

does not shadow the term

pn(x, z1, . . . , zn) := xz1 . . . zn.

By Lemma 2.4 it will follow that Fn does not determine syntactic congru-
ences in Var(A).

Let us say that a term t is near pn if pn appears as a multiplicative term
when t is written in normal form. (It does not count if pn appears as a
proper subterm of a multiplicative term in the normal form of t.) Trivially,
pn(x, z1, . . . , zn) is near pn and pn(y, z1, . . . , zn) is not. Suppose that Fn shad-
ows pn. Then there exists ` ∈ ω, terms s1(x, z1, . . . , zm), . . . , s`(x, z1, . . . , zm)
in Fn and m` terms wi,j(x, y, z1, . . . , zm), for 1 ≤ i ≤ ` and 1 ≤ j ≤ m, such
that K satisfies the following equations:

pn(x, z1, . . . , zn) ≈ s1(v1, w1,1, . . . , w1,m),(A)

si(v
′
i, wi,1, . . . , wi,m) ≈ si+1(vi+1, wi+1,1, . . . , wi+1,m)(B)

s`(v
′
`, w`,1, . . . , w`,m) ≈ pn(y, z1, . . . , zn),(C)

where {vi, v
′
i} = {x, y}, for 1 ≤ i ≤ `. We shall prove that, for 1 ≤ i ≤ `,

and for z ∈ {x, y}, the term si(z, wi,1, . . . , wi,m) is near pn.

Lemma 4.4. Let 0 ≤ m ≤ n, let z ∈ {x, y} and let w1, . . . , wm be terms

in the variables {x, y, z1, z2, . . .}. The term fm(z, w1, . . . , wm) is near pn if

and only if wm is near pn.
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Proof. Note that fm(z, w1, . . . , wm) = zw1w2 . . . wm−1 + wm. We show
that the term zw1w2 . . . wm−1 is not near pn.

If zw1w2 . . . wm−1 has normal form 0, then we are done. Otherwise, the law
x(yz) ≈ 0 allows us to assume that, for 1 ≤ i < m, each term wi is a single
variable. So the normal form of zw1w2 . . . wm−1 cannot be the multiplicative
term pn because it has too few variables. Hence fm(z, w1, . . . , wm) is near
pn if and only if wm is.

Lemma 4.5. Let 0 ≤ m ≤ n, let z ∈ {x, y} and let w1, . . . , wm be terms

in the variables {x, y, z1, . . .}. The term gm(z, w1, . . . , wm) is near pn if and

only if wm is near pn.

Proof. Note that gm(z, w1, . . . , wm) = w1zw2 . . . wm−1 + wm. We show
that the term w1zw2 . . . wm−1 is not near pn.

If w1zw2 . . . wm−1 has normal form 0, then we are done. Otherwise, the
law x(yz) ≈ 0 allows us to assume that, for 1 < i < m, each term wi is a
single variable. Assume that w1 has normal form v1 + . . . + vk. So we have

w1zw2 . . . wm−1 ≈ v1zw2 . . . wm−1 + · · · + vkzw2 . . . wm−1.

The normal form for such an expression can include the multiplicative term
pn if and only if an odd number of the multiplicative terms vizw2 . . . wm−1

reduce to pn. However each such multiplicative term either contains a y
or an x that is not the first variable, and hence cannot reduce to pn. So
w1zw2 . . . wm−1 is not near pn. Hence gm(z, w1, . . . , wm) is near pn if and
only if wm is.

Lemmas 4.4 and 4.5 allow us to complete the proof. As pn(x, z1, . . . , zn)
is near pn, equation (A) shows that w1,m is near pn. But then a trivial
induction shows that, for z ∈ {x, y}, each term si(z, wi,1, . . . , wi,m) is near pn,
as required. Now equation (C) implies that pn(y, z1, . . . , zn) is near pn, a
contradiction. This shows that Var(A) fails to have FDSC (and therefore
fails to have TFPC).

Now we show that this variety is residually very finite. As the algebra A

has a group reduct it certainly generates a congruence-permutable variety.
Consequently, we may use commutator theory for congruence modular va-
rieties; see R. Freese and R. McKenzie [11]. In particular Theorem 10.15 of
[11] shows that Var(A) is residually very finite if and only if the implication

(RF) ν ≤ [µ, µ] ⇒ ν = [µ, ν]

holds, for every pair of congruences µ, ν on every subalgebra B of A.
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Up to isomorphism, there are 2 proper subalgebras of A: one is the trivial
subalgebra, and the other is the two-element 0-ring Z. On these algebras
the implication (RF) holds trivially, so we concentrate on calculating the
commutator on A.

We first observe that the only congruence of A that is neither the diagonal
∆ nor the universal relation ∇ is the congruence α corresponding to the two-
block partition {0, a | b, a + b}. The quotient A/α is again isomorphic to Z.
Let f : A → Z be the natural map.

As Z is a 0-ring, it is abelian and so [β, γ] = ∆Z, for all β, γ ∈ Con(Z).
Now

(†) f−1[f(∇∨ α), f(∇ ∨ α)] = [∇,∇] ∨ α,

by properties of the commutator [11, Proposition 4.4]. But as Z is abelian,
the left hand side of (†) becomes f−1(∆Z) which is α. Hence, (†) yields
[∇,∇] ≤ α.

Now we show that [∇, α] = α. Recall [11, Definition 4.7] that the alge-
bra A(∇, α) is the subalgebra of A4 (thought of as 2 × 2 matrices over A)
consisting of all matrices whose columns belong to ∇ = A2 and rows belong
to α. Also, ∆∇,α denotes the congruence on A2 (written as columns) gener-

ated by the elements of A(∇, α) of the form

(

u v
u v

)

≡

((

u
u

)

,

(

v
v

))

. As
(

a 0
a 0

)

∈ A(∇, α), right multiplication by

(

b
0

)

gives

(

a 0
0 0

)

∈ ∆∇,α. By

Theorem 4.9 of [11], we find that (a, 0) ∈ [∇, α], showing that α ≤ [∇, α].
Now, using the order-preserving properties of the commutator, we have

α ≤ [α,∇] = [∇, α] ≤ [∇,∇] ≤ α,

giving equality throughout. As ∆ is an absorbing element with respect
to the commutator product [ , ], we obtain the following partial table of
commutators:

[ , ] ∆ α ∇

∆ ∆ ∆ ∆
α ∆ ? α
∇ ∆ α α,

where the question mark is either α or ∆. We do not need to calculate
[α, α]. In both of the possible cases, the reader will easily verify that the
implication (RF) must hold.

By Theorem 10.15 of [11], we have shown that (up to isomorphism) the
variety Var(A) contains only finitely many subdirectly irreducible algebras

all of which are finite (in fact of size at most 4 + 4
(

447
)

!).
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Summarising, we have proved the following result.

Theorem 4.6. The four-element algebra A generates a residually very

finite, congruence-permutable variety that does not have finitely determined

syntactic congruences.

Let {A1, . . . ,An} be a transversal of the isomorphism classes of the sub-
directly irreducible algebras in Var(A) and define B := A1×· · ·×An. Then
we have

Var(B) = Var(A) = ISP(B).

Thus B is a finite algebra such that the quasivariety generated by B is
a variety that fails to have FDSC. The existence of such an example was
alluded to on page 373 of [6]. The original example referred to in [6] is the
three-element multiplicative subreduct of A on the set {0, a, b}. Denote this
algebra by C. While C does not generate a congruence-permutable variety,
one can show that Var(C) fails to have FDSC, via a proof similar to but
easier than the one we gave for A. We can also prove that Var(C) = ISP(C),
via a proof very different from that which we gave for Var(B). The equations
(a)–(c) given for A along with the extra law xx ≈ 0 (and other standard
multiplicative properties for 0) form an equational basis for Var(C).

Most of the interest in the example C is superseded by Theorem 4.6 above;
however we observe that every two-element algebra has FDSC: cofinitely
many of these are covered by Theorem 3.3 above, while the remaining are
easy exercises. (A graduate student of the first and second authors, Claire
Edwards, has verified this and used it to prove that all two-element algebras
are standard in the sense of [7]).

We also observe that there are finite algebras that generate congruence
meet-semidistributive varieties without FDSC [6, Example 7.7]. So the con-
gruence distributivity condition in Theorem 3.3 cannot be replaced by con-
gruence meet semi-distributivity. On the other hand, the examples given
in [6] generate varieties that are not residually very finite, and there are
no known examples of congruence meet semi-distributive varieties without
FDSC that are finitely generated and contain only finitely many subdirectly
irreducibles. As observed in [6] (after Problem 9.3), if no such example ex-
ists, then the problem of deciding if FDSC holds for a finitely generated
variety is undecidable.
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