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Abstract. The paper is aimed at a methodological development in biological pest control. The 10 
considered one pest two-agent system is modelled as a verticum-type system. Originally, linear 11 
verticum-type systems were introduced by one of the authors for modelling certain industrial 12 
systems. These systems are hierarchically composed of linear subsystems such that a part of the 13 
state variables of each subsystem affect the dynamics of the next subsystem. Recently, 14 
verticum-type system models have been applied to population ecology as well, which required 15 
the extension of the concept a verticum-type system to the nonlinear case.  16 

In the present paper the general concepts and technics of nonlinear verticum-type control 17 
systems are used to obtain biological control strategies in a two-agent system. For the 18 
illustration of this verticum-type control, these tools of mathematical systems theory are applied 19 
to a dynamic model of interactions between the egg and larvae populations of the sugarcane 20 
borer (Diatraea saccharalis) and its parasitoids: the egg parasitoid Trichogramma galloi and the 21 
larvae parasitoid Cotesia flavipes.  22 

 In this application a key role is played by the concept of controllability, which means that it is 23 
possible to steer the system to an equilibrium in given time. In addition to a usual linearization, 24 
the basic idea is a decomposition of the control of the whole system into the control of the 25 
subsystems, making use of the verticum structure of the population system. The main aim of 26 
this study is to show several advantages of the verticum (or decomposition) approach over the 27 
classical control theoretical model (without decomposition). For example, in the case of 28 
verticum control the pest larval density decreases below the critical threshold value much 29 
quicker than without decomposition. Furthermore, it is also shown that the verticum approach 30 
may be better even in terms of cost effectiveness. The presented optimal control methodology 31 
also turned out to be an efficient tool for the “in silico” analysis of the cost-effectiveness of 32 
different biocontrol strategies, e.g. by answering the question how far it is cost-effective to 33 
speed up the reduction of the pest larvae density, or along which trajectory this reduction should 34 
be carried out.  35 

 36 
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 38 

INTRODUCTION 39 

Apart from the cultivation of sugar cane for traditional uses, over the last decades, its 40 
application as renewable energy source in ethanol production increased the interest in its 41 
production in tropical and subtropical areas. As pointed out by Rafikov and Silveira (2014), 42 
large-scale, monocultural farming and long crop duration offer certain pests good conditions to 43 
establish. In particular, sugarcane borer Diatraea sacharalis excavating galleries inside the 44 
sugarcane plants, is the most important pest  in South-East Brazil damaging sugarcane crops. 45 
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For the detailed description of the damage see e.g. Macedo and Botelho (1988) and Parra et al. 1 
(2002). Nowadays, based on environmental considerations, biological pest control (shortly 2 
biocontrol) in most cases is preferable to the chemical one. In biocontrol the density of the pest 3 
species is reduced by the release of natural enemies (mostly predators or parasitoids) as control 4 
agents. Once we have a dynamic model for the description of the interaction between pest and 5 
agent(s), Control Theory, or more generally, Mathematical Systems Theory (MST) offer 6 
adequate tools for the analysis of and design of biocontrol activity.  7 

Optimal control methodology have been used e.g. for the malaria vector control by the release 8 
of transgenic mosquitoes in Rafikov et al. (2009). Basic concepts of MST such as controllability 9 
(i.e. steering a system to an equilibrium) and observability (monitoring the whole system by 10 
observing only some components of it) have been first applied to frequency-dependent 11 
population genetic  systems by Varga (1989, 1992), followed by evolutionary models of Scarelli 12 
and Varga (2002) and López et al. (2004). MST methodology has been also applied to density-13 
dependent population systems in Varga et al. (2002, 2003), Shamandy (2005), Varga (2008a), 14 
López et al. (2007a, b), Gámez et al. (2009), and to spatially structured population models in 15 
Gámez et al. (2011, 2012). For reviews on the topic we refer the reader to Varga (2008b), 16 
Gámez (2011) and Varga et al. (2013).   17 

In the pest control methodology developed in the present paper, the particular verticum-type 18 

structure of the dynamical control model plays a key role. Linear verticum-type systems were 19 

introduced by Molnár (1989) for modelling certain industrial systems. Such systems are 20 

hierarchically composed of subsystems such that a part of the state variables of each subsystem 21 

affect the dynamics of the next subsystem. Systems-theoretical properties of such systems were 22 

studied in Molnár (1993), Molnár and Szigeti (1994), Gámez et al. (2010), and for the 23 

monitoring problem of nonlinear verticum-type population systems see Molnár et al. (2012).  24 

The main aim of the present is to show several advantages of the verticum (or decomposition) 25 
approach (method a)) over the classical control theoretical model (without decomposition, 26 
method b)). First, In case a) pest larval density decreases below the threshold value much 27 
quicker than in case b), saving in this way the major part of the crop.  For example, in the case 28 
a) the pest larval density decreases below the critical threshold value much quicker than in case 29 
b). Furthermore, it is also shown that the approach a) may be better even in terms of cost 30 
effectiveness. The presented optimal control methodology also turned out to be an efficient tool 31 
for the “in silico” analysis of the cost-effectiveness of different biocontrol strategies, e.g. by 32 
answering the question how far it is cost-effective to speed up the reduction of the pest larvae 33 
density, or along which trajectory this reduction should be carried out. 34 

The paper is organized as follows. In the Material and Methods Section, some basics of 35 
classical systems theory are shortly summarized, and the concept of a nonlinear verticum-type 36 
system and a sufficient condition for local controllability to equilibrium are recalled. The 37 
Results Section is dedicated to the application of these mathematical tools to a two-agent 38 
biocontrol model describing interactions between the egg and larvae populations of the 39 
sugarcane borer (Diatraea saccharalis) and its parasitoids: the egg parasitoid Trichogramma 40 
galloi and the larvae parasitoid Cotesia flavipes, based on the model of Rafikov and Silveira 41 
(2013). We find a biological control strategy to steer the population to a new desired 42 
equilibrium, where the pest larval density is below the economic damage level. Furthermore, we 43 
also show how to control the system to the given equilibrium, along a given trajectory for the 44 
pest larval density, and the costs of different control strategies are also analyzed in a numerical 45 
illustration. Finally, a Discussion Section closes the paper.  46 

 47 

MATERIAL AND METHODS  48 
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 1 

Mathematical tools: concept of controllability  2 

Given ,, Nrn  let nrnF RRR :  be a continuously differentiable function. For a 3 

reference control value ru R , let  nx R  be such that  0),(  uxF . Let us fix a time 4 

interval ],0[ T , and for each 0 , consider the set ],0[ TU of  -small controls on ],0[ T . 5 

(For the technical details see Lee and Markus, 1971). From the latter reference we recall the 6 
following statement on the existence and uniqueness of a solution for small controls:  7 

There exists R0  such that for all ],0[
0

TUu   and nx R0  with 0
0  xx  the initial 8 

value problem 9 

]),0[())(,)(()( TttuutxFtx                  (1.1) 10 

0)0( xx         (1.2) 11 

has a unique solution. We notice that x  is an equilibrium state for the zero-control system. 12 

Control system (1.1)-(1.2) is said to be locally controllable to x  on ],0[ T , if there exists 13 

00    such that for all 0x  from the   -neighbourhood of x , there is a control 14 

],0[ TUu   that controls the initial state 0x  to equilibrium x , i.e. for the solution x  of the 15 

initial value problem (1.1)–(1.2), equality x(T)= x  holds. 16 

Let us linearize system (1.1)-(1.2) around ),(  ux , introducing the corresponding Jacobians 17 

),(: 
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 uxF
x
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 uxF
u

B . 18 

From Lee and Markus (1971) we recall the following sufficient condition for local 19 
controllability:  20 

If  21 
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 22 

then system (1.1)-(1.2) is locally controllable to x  on ],0[ T . 23 

 24 

Verticum-structured model 25 

In this section we introduce some notations and, from Molnár et al. (2013), we recall the 26 
definition of a nonlinear verticum-type control system and some results to be applied in the 27 
present paper. 28 

Given ),,...,0( ,, kiNrnk ii  



k

i
i

k

i
i rrnn

00

:,: ; let nrnF RRR :  be a 29 

continuously differentiable function. 30 
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For a constant reference control r
kuuuu R ),,,(: **

1
*
0

*   with ),,...,0(* kiu ir
i R  let 1 

n
kxxxx R ),,,(: **

1
*
0

*   with ),...,0(* kix in
i R  such that .0),( ** uxF  2 

Let us fix a time interval ],,0[ T  and for each 0 , let  ],0[ TU  be  the class of  -small 3 

controls on ],0[ T .  4 

Consider the nonlinear control system 5 

                 000:;),( 00
*
0000

nrnFuuxFx RRR  ,                             )( 0V   6 

and for all  ,,...,1 ki   7 

               iiii nrnn
iiiiiii FuuxxFx RRRR  


1:;),,( *

1 ,               )( iV  8 

and define  9 

)),,(,),,,(),,((:),( *
11

*
10110

*
000

*
kkkkk uuxxFuuxxFuuxFuuxF    10 

Definition  11 

                 ),( * uuxFx                                                          )(V   12 

is said to be a (nonlinear) verticum-type control system with subsystems )( iV  ( ki ,...,0 ). 13 

We note that *x   fixed above, is an equilibrium of the zero-dynamics of (V), i.e., for u=0 we 14 

have  .0),( ** uxF  15 

Remark 1. Equations )( iV  do not define a standard control system in this setting, because of 16 

the presence of the “exogenous” variable 1ix  connecting it to equation )( 1iV ),...,1( ki  . 17 

Nevertheless, )( iV  are also called subsystems of system  (V). 18 

Remark 2. From the existence and uniqueness of the solution of (1.1)-(1.2), we obtain that 19 

there exists 00   such that for all ],0[
0

TUu   and nx R0  with 0
0  xx  the initial 20 

value problem 21 

]),0[..())(,)(()( TteafortuutxFtx    22 

                          0)0( xx   23 

has a unique solution. In what follows 0T  will be fixed and concerning controllability, the 24 

reference to interval ],0[ T  will be often suppressed.  25 

To study controllability of system )(V , let us linearize system )( 0V , at equilibrium ),( *
0

*
0 ux , 26 

obtaining the linearized systems 27 

                 000000 uBxAx  ,                                                )( 0LV   28 
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and for all  ),...,1( ki  , substituting 1ix  in )( iV  with its equilibrium value *
1ix , we similarly 1 

linearize )( iV  with respect to variables ),( ii ux , at the corresponding equilibrium ),( **
ii ux , 2 

obtaining the linearized systems 3 

                                                iiiiii uBxAx  ,                                            )( iLV  4 
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Then from Molnár et al. (2013) we have the following sufficient condition for local 6 
controllability of nonlinear verticum-type systems: 7 

Theorem 1. (Molnár et al., 2013). If 8 
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 9 

then control system )(V  is locally controllable to equilibrium *x . Local controllability means 10 

that from nearby states the system can be controlled to *x  using small controls. Intuitively, the 11 
above theorem says that the problem of controllability of the whole system can be decomposed 12 
into controllability problems concerning the subsystems.  13 

In what follows the above result will be applied to the analysis of a control system modeling 14 
pest control.   15 

 16 

Two-agent biological control model 17 

For the mathematical model we will use to describe the interactions between the sugarcane 18 
borer (Diatraea saccharalis) and its egg parasitoid (Trichogramma galloi) and larvae parasitoid 19 
(Cotesia flavipes), the following parameters are needed:  20 

r  is the intrinsic oviposition rate of female sugarcane borer;  21 
K  is the potential maximum of oviposition rate of female sugarcane borer;  22 

321 ,, mmm  and 4m  are the mortality rates of the egg, egg parasitoid, larvae and larvae 23 

parasitoid populations, respectively;  24 

1n  is the fraction of the sugarcane borer larvae population which emerges from the eggs in unit 25 

time;  26 

3n  is the fraction of the un-parasitized sugarcane borer larvae from which pupae emerge in unit 27 

time;  28 
  and   are the intrinsic parasitism rate of the egg and larvae parasitoids, respectively;  29 

1  and 2  are the survival rates of parasitized eggs and larvae to adult age, respectively 30 

 31 

In Molnar et al. (2013) a model for the integrated pest control of sugarcane borer was 32 
considered, where the release of a single agent was combined with the application of a pesticide. 33 
Now we consider the case of a purely biological control with two agents, based on the 34 
mathematical model of interactions between the sugarcane borer and its egg and larvae 35 
parasitoids studied by Rafikov and Silveira (2013): 36 
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where 1x   is the un-parazitized egg population density of the sugarcane borer, 2x  the density of 2 

the adult egg parasitoid Trichogramma galloi, 3x  the  un-parazitized larvae density of the 3 

sugarcane borer, 4x  the density of the adult larvae parasitoid Cotesia flavipes, and the 4 

interpretation of the model parameters (coefficients) was given at the beginning of this section 5 
.  6 
In our study we will apply the following parameter set, resulting from field experiments (see 7 
Parra et al., 2002), also applied for modelling in Rafikov and Silveira (2013):   8 

.40;29.2;0000083.0;0000075.0;02439.0

;1.0;1;00256.0;03566.0;03566.0;25000;19.0

213

14321
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

n

nmmmmKr
 9 

The units of all parameters are defined from the requirement that each term on the right-hand 10 
sides of the equations (3.1) must have dimension density/unit time.  11 
 12 
Remark 3.  Our model (3.1a)-(3.1.d) is not a compartment type model, and is not intended to 13 
include all development stages of all involved species, it can rather be considered as two "host-14 
parasitoid" models linked together through transformations of pest eggs into egg parasitoid 15 
adults (pest larvae into larvae parasitoid adults). Our aim was to build up a minimal model, 16 
sufficient for the optimization of the biological control of the sugar cane borer. We emphasize 17 
that for our purpose it is enough to take account of the parasitized eggs (and parasitized larvae) 18 
in the last negative term of equation (3.1a) (and 3.1c)).  19 
 20 
There may be different ways to simplify the modelling of the mechanism of parazitation. The 21 
model of Rafikov and Limeira (2012) consideres that the adult egg-parasitoids only infect eggs 22 
at the beginning of the adult's life. Our model instead, allows all the adult parasitoids to infect 23 
eggs, not just the adults as they emerge, which is experimentally supported, see e.g. Cabello and 24 
Vargas (1988) and Nogueira and Parra (1994), although it is also true that, Trichogramma 25 
females have higher fecundity in the the first couple of days of their adult stage.  In any case, 26 
our hypothesis, as a possible modelling approximation (by constant average infection rates   27 

and  ) is also justified. 28 

  29 

We also note that 33xn  is the part of un-parasitized pest larvae that leave the larval stage by 30 

development, and it does not enter in any other equation of our model.  31 
 32 
In Rafikov and Silveira (2013) five equilibrium points of model (3.1) were obtained and also the 33 
corresponding stability analysis was carried out. We are interested in the only strictly positive 34 

equilibrium point ),,,( *
4

*
3

*
2

*
1

* xxxxx  , where 35 
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                                              (3.2) 1 

From now on, for model (3.1) in the subsequent sections we will consider this equilibrium 2 

denoted by *x . In Rafikov and Silveira (2013), using linearization, it was obtained that 3 

conditions 4 

212

4331

111

2
11

)(
and

)(
,

mn

mnm

nmrK

rm
nmr





 




                  (3.3) 5 

imply not only strict positivity of  *x , but also its asymptotic stability. In biological terms, the 6 

latter means stable coexistence of the population system. 7 

 8 

RESULTS 9 

Controlling to a desired equilibrium  10 

In case of a strong pest invasion, it may happen that the sugarcane borer larval density tends to a 11 
too high equilibrium value that causes a serious damage in the crop. Then, it is appropriate to 12 
apply natural enemies in order to control the system to a new equilibrium state where pest larval 13 
density is below the economically determined threshold, in a given time T .  14 

In our control model, we shall consider  -small controls introduced in the previous section. For 15 
system (3.1), we set up a general optimal control problem with control dynamics 16 
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,            (3.4) 17 

where functions 2U  and 4U  describe the time-dependent rate of release of egg and larvae 18 

parasitoids, respectively, realizing the biological control of the pest.  19 

Our purpose is to control system (3.1) into a required new equilibrium state, applying biological 20 
control. In Rafikov et al. (2008), an optimal control technique was developed where a feedback 21 
asymptotically controls the system into a desired equilibrium, see also Rafikov and Limeira, 22 
(2012). We point out that in our optimal control models our aim will be to determine a 23 

corresponding pest control strategy that steers the system to *
dx  in a given time T . 24 
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Let *
3dx  be the target density of pest larvae fixed below the critical threshold value, to avoid 1 

serious economic damages. Following the steps of Rafikov and Silveira (2013), we can obtain 2 

the corresponding value of the desired positive equilibrium state ),,,( *
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In this system, in addition to the pest larval density, *
3

*
3 dxx  , we can also fix a desired pest 6 

eggs density *
1

*
1 dxx  , and then solve  system (3.5) for the remaining four unknowns to obtain   7 
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and for the control variables ),( *
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The positivity of  these *
4

*
2   , uu   indicates if the desired equilibrium can be maintained by 12 

constant agent releases. Hence the desired equilibrium is 13 
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This equilibrium will be positive, if the following conditions hold: 15 
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The positivity of *
4

*
2   , uu  in (3.6) indicates if the desired equilibrium can be maintained by 17 

constant agent releases. Moreover, from Rafikov and Silveira (2013) we know that the above 18 
positive equilibrium is asymptotically stable, therefore, the populations coexist in a common 19 
environment. 20 

Control system (3.4) takes the form 21 

))( ,( tuuxFx   ,                                        (3.9) 22 

 23 
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Here, for )(tU  of (3.4) we have )()( tuutU    where ))(),(()( 42 tututu   with 1 
*
22 )( utu   and *

44 )( utu    ]),0[( Tt . Obviously )(tu  can be negative but )(tuu   2 

remains non negative. 3 

Given a desired equilibrium *
dx  obtained from (3.7), to constant controls u  defined in (3.6) 4 

and with 0:)( tu   ]),0[( Tt , there corresponds this equilibrium *
dx . 5 

From now on, for model (3.9) we shall use u  as it is defined in (3.6) and )(tuu    is 6 

interpreted as the total release of parasitoids at time t. 7 

Below we show that system (3.9) is locally controllable to *
dx  on ],0[ T .   8 

We note that from Remark 2  and from the continuous dependence of the solution on the 9 
control, it follows that for controls small enough, the solutions of system (3.9) remain in the 10 
positive orthant.  11 

Our main objective is a qualitative and quantitative analysis of control system (3.9), applying 12 
the theoretical results of the previous section, concerning nonlinear verticum-type control 13 
systems. In the present subsection, Theorem 1 will be applied to show that our population 14 
system can be controlled into equilibrium.   15 

We start with the analysis of the first subsystem 16 

)10.3(.

)10.3(1

2
*
222211

2

211111
1

1
1

buuxmxx
dt

dx

axxxnxm
K

x
rx

dt

dx









 




 17 

With function 23
0 : RR F  18 

























 



2
*
222211

211111
1

1
2

*
2210

1
:),,(

uuxmxx

xxxnxm
K

x
rx

uuxxF




, 19 

control system (3.10a) and (3.10b) takes the form 20 

))( ,( 2
*
2

1
0

1 tuuxFx  , 21 

where ),( 21
1 xxx   and *

22 )( utu  .  The latter is a requirement in order to )(2
*
2 tuu   22 

represents only “introduction” of egg parasitoid. 23 

Obviously, to *
2u  defined in (3.6) and 0:)(2 tu   ]),0[( Tt , there corresponds the desired 24 

positive equilibrium ),(: *
2

*
1

*1
ddd xxx  .  25 

Now we show that control system (3.10) is locally controllable to *1
dx  on ],0[ T . For the 26 

application of sufficient condition (1.3), let us calculate the linearization  27 













 




0

),(:
*

21

*
1

*
1*

2
*1

1
0

00

d

dd
d

x

xx
K

r
ux

x

F
A




, 














1

0
),(: *

2
*1

2

0
0 ux

u

F
B d . 28 

Since  29 
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0]|det[ *
10000  dxBAB   1 

we get 2]|[ 0000 BABrank , and applying sufficient condition (1.3) we obtain local 2 

controllability of system (3.10) into *1
dx  on interval ],0[ T .  3 

Analogously, let us consider the second subsystem 4 

)11.3(.

)11.3(

4
*
444432

4

43333311
3

buuxmxx
dt

dx

axxxnxmxn
dt

dx








 5 

With notation 24
1 : RRF   6 














4
*
444432

43333311
4

*
44311 :),,,(

uuxmxx

xxxnxmxn
uuxxxF




, 7 

for control system (3.11a) and (3.11b) we get 8 

))( ,,( 4
*
4

2
11

2 tuuxxFx  , 9 

where ),( 43
2 xxx   and *

44 )( utu  . The latter is again a requirement in order to )(4
*
4 tuu   10 

represents only “introduction” of larvae parasitoids. 11 

Now, to *
4u  defined in (3.6) and 0:)(4 tu   ]),0[( Tt , there corresponds the desired positive 12 

equilibrium   *
4

*
3

*2*
1 ,:, dddd xxxx   . 13 

For local controllability of control system (3.11) to ),( *2*
1 dd xx , on ],0[ T , we calculate 14 

the linearization  15 








 






0

),,(:
*

42

*
3

*
433*

4
*2*

12
1

11

d

dd
dd

x

xxnm
uxx

x

F
A




,  16 















0

),,(: 1*
4

*2*
1

1

1
10

n
uxx

x

F
A dd ; 














1

0
),,(: *

4
*2*

1
4

1
1 uxx

u

F
B dd . 17 

From 18 

0]|det[ *
31111  dxBAB  , 19 

again we get 2]|[ 1111 BABrank , and applying sufficient condition (1.3), we obtain the local 20 

controllability of system (3.11) into *2
dx , on interval ],0[ T . Hence, by the analogous rank 21 

conditions for )( iLV  recalled in subsection “Verticum-structured model”, applying Theorem 1 22 

we easily obtain the following results: 23 

Theorem 2 24 

A) Under conditions (3.8), control system (3.9) is locally controllable into its equilibrium 25 
*
dx . 26 

B) If 0:u , and the parameters of system (3.1) satisfy conditions (3.3), then system (3.4) 27 

is locally controllable to the original equilibrium x , on interval ],0[ T . 28 
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 1 

Optimal control problem 2 

The problem is to control system (3.9) from state 0)0( xx   to the new desired equilibrium *
dx  3 

in ],0[ T . Controllability obtained in part A) of Theorem 2, in principle guarantees the existence 4 

of such control. We can concretely calculate such control by solving following optimal control 5 
problem: 6 

min,)(:)(
2*  dxTxu  7 

],0[ TUu  ,                                                         (3.12) 8 

),,,,(' *
4321 uuxxxxFx  , 9 

0)0( xx  ,  *)( dxTx  . 10 

For the solution, the toolbox developed for MatLab in Banga et al. (2005) and Hirmajer et al. 11 
(2009) is applied. In the numerical approximation, piece-wise constant functions (step 12 
functions) are used as controls.  13 

We note that in the biocontrol practice agent releases usually occur in pulses,  but a constant rate 14 
release can be well approximated with an appropriate technique. (See Driesche and Bellows, 15 
(2001) for parasitoid agents, or Vila and Cabello, (2014) for predator agents, and Shi et al., 16 
(1988); Knutson, (1998) for parasitoid species of the Trichogramma genus.) The technique in 17 
question consists in placing dispensers in the field (say once a week), containing agents of 18 
different development stages that develop to adult age (and leave the dispenser) gradually, 19 
which results in a release very close to a constant daily release.  20 

Example. For our model calculations we adapt the same parameters of Rafikov and 21 

Silveira (2013) originally obtained from field experiments (see Parra et al. (2002), and 22 

for the methodology of the necessary trials we refer to Ambrosano et al., (1996)):  23 

.40;29.2;0000083.0;0000075.0;02439.0

;1.0;1;00256.0;03566.0;03566.0;25000;19.0

213

14321




n

nmmmmKr
 24 

Then conditions (3.3) are fulfilled, implying a stable coexistence of the population. For these 25 
parameters, we have the following positive equilibrium of model (3.1): 26 

27.2076*
1 x ; 38.5141*

2 x ; 05.3012*
3 x ; 11.5058*

4 x . 27 

For system (3.1), with initial condition 2000)2500,00,7000,10(:0 x , the corresponding 28 

solution x , tending to equilibrium ),,,( *
4

*
3

*
2

*
1

* xxxxx  , can be seen in Figure 1.  29 

 30 
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 1 

Figure 1. Solution of system (3.1), with initial value 2000)2500,00,7000,10(:0 x  2 

Advantages of the verticum approach 3 

We want to steer the state of the pest larvae population to a new desired equilibrium value, 4 
lower than the previous one (higher than 3000). Let us suppose that the crop suffers important 5 
damages if exposed to pest larvae levels higher than 2100 during a long period of time. Lower 6 
pest levels does not injure the crop. Therefore, our aim will be to reduce the pest larvae 7 

equilibrium to a value lower than the critical value 2100, say 2000*
3 dx . Then we fixed the 8 

desired value of the pest eggs density, for instance, at 800*
1 dx , obtaining the desired new 9 

equilibrium state from (3.7): 10 

1572.29)2000,6434.67,,800(),,,( *
4

*
3

*
2

*
1

*  ddddd xxxxx ,                 (3.13) 11 

and the constant control from (3.6): 12 

528.289)141.048,(),( *
4

*
2

*  uuu .                                        (3.14) 13 

For these parameters, condition (3.8) is satisfied, thus *
dx   is a positive asymptotically stable 14 

equilibrium of system (3.10)-(3.11). 15 

Applying the previous results, our objective is to determine a control of system (3.10)-(3.11), 16 
that steers the state into this new equilibrium.  17 

As an illustrative value for the length of the total growing period, let us fix time duration T:=200 18 

(days) and take initial condition 2000)2500,00,7000,10(:0 x . For the calculation of the 19 

corresponding solution of the optimal control problem (3.12) we apply the toolbox developed 20 
for MatLab in Banga et al. (2005) and Hirmajer et al. (2009).  21 

We will see that, a) if we solve (3.10)-(3.11) by subsystems (in other words by verticum 22 
approach), that is, by solving the optimal control problem first for subsystem (3.10) and then 23 

for subsystem (3.11) with *
11 : dxx   calculated for the previous subsystem (see Figure 2.a)), in 24 

several aspects we obtain better result than b) solving the optimal control problem without 25 
decomposition (see Figure 2.b)). 26 

Indeed, in Figure 2, observe that in case a) pest larval density decreases below the threshold 27 

value much quicker (in time 1T ) than in case b) (in time 2T ). During time 12 TT    the pest 28 
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larvae may cause a serious damage. If this damage is fatal, the only option is the verticum 1 
approach a).  So the time of crossing the critical level is good indicator of which method is 2 
better. Below we shall also see that the verticum approach may be better even in terms of cost 3 
effectiveness.  4 

  

  a)                                                                      b) 5 

Figure 2. a) Solution of control system (3.10)-(3.11) by subsystems (with 8001 x  in the second one) for T=200 6 

with initial values )7000,1000(:01 x  and )2000,2500(:02 x . b) Solution of control system (3.10)-(3.11) 7 

without decomposition  for T=200, with initial value 2000)2500,00,7000,10(:0 x . 8 

Let 1p  and  2p  be weights expressing the proportions of the costs of production and release of 9 

both agents. Then the total cost corresponding to control functions   2u  and 4u is  10 

dttuuptuupuuC
T

))]([)]([(:),(
0

4
*
422

*
2142   .                        (3.15) 11 

For an illustration, set 87.0,13.0 21  pp  (T. Cabello, 2014, Com. Pers.). Then, if we solve 12 

the optimal control problem (3.12) for control system (3.10)-(3.11), for T=200, without 13 

decomposition, with initial value 2000)2500,00,7000,10(:0 x , then the total cost 14 

expressed in (3.15) is 410558.9  . If we solve the same optimal control problem for control 15 
system (3.10)-(3.11) with the verticum approach (i.e. by subsystems), with initial values 16 

)7000,1000(:01 x  and  )2000,2500(:02 x , the total cost is 410561.9   which is only 17 

0.03%  more than in the case of optimization without decomposition. However, as we have seen 18 
before, the verticum type optimal control performs much better in controlling the pest larval 19 
density below the critical threshold in half the time. In this sense the verticum approach turns 20 
out to be more cost effective. Therefore, in what follows we will solve the considered optimal 21 
control problems applying the verticum approach.  22 

Remark 4. The particular weighting of the costs of parasitoid control (with p1=0.13) comes from 23 
the biocontrol practice. Now, for an outlook, we also make simulations with different 24 

proportions 21 : pp , letting 1p  run from 0.2 to 0.8.  As we see from Table 1, the additional cost 25 

of the verticum approach remains below 1 %, which also suggests that the verticum approach 26 
may also be useful in the context of other two-agent biocontrol plans.  27 
In any case, if the biocontrol system is of verticum type, it is worth it to make simulations with 28 
both methods (verticum and non-verticum approach) to see which one performs better. 29 
 30 
 31 
 32 
 33 
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 1 
 2 
 3 

1p   2p   Total Cost (without 
decomposition) 

Total Cost (by 
verticum structure) 

difference (%) 

0.2  0.8  410015.9    41002.9    0.05% 

0.4  0.6  410421.7    410475.7    0.7% 

0.6  0.4  410917.5    410924.5    0.1% 

0.8  0.2  410352.4    410377.4    0.05% 

 4 

Table 1. Cost-effectiveness of the verticum approach for different proprtions between the agent costs 5 

difference(%) = 100
ion)decomposit(without Cost  Total

ion)decomposit(without Cost  Total-structure) um(by verticCost  Total
  6 

 7 

In Figure 3a) we can see a comparison between the pest larval density in the uncontrolled 8 
system (3.1) and in the equilibrium controlled system (3.10)-(3.11), calculated by subsystems. It 9 
is easy to judge the effect of an appropriate biological control: without applying any control, the 10 
pest larval density is all the time above the harmful level and displays many abrupt fluctuations, 11 
while applying the equilibrium control, the larvae trajectory is much more soft and appropriate, 12 
and remains below the critical level.  13 

Figure 3b) shows all coordinates of the solution of the control system (3.10)-(3.11) by 14 

subsystems (with 8001 x  in the second one) with initial values )7000,1000(:01 x  and 15 

)2000,2500(:02 x , ending up at desired equilibrium 1572.29)2000,6434.67,,800(* dx . 16 

Moreover, as we can observe, the solution of the control system arrives at the desired 17 
equilibrium way before the solution of the uncontrolled system reaches its own equilibrium. The 18 

obtained optimal control ),( 42 uuu  can be seen in Figure 3c). 19 

 20 

 21 

   a) 22 
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     b)                                                                     c) 1 

Figure 3. a) Comparison of the third coordinate (the pest larval density) of the solution of the uncontrolled system 2 

(3.1) with initial value 2000)2500,00,7000,10(:0 x  and the third coordinate of the solution of the optimal control 3 

problem for control system (3.10)-(3.11) by subsystems (with 8001 x  in the second one) for T:=200, with initial 4 

values )7000,1000(:01 x  and )2000,2500(:02 x , b) Solution of the optimal control problem for control system 5 

(3.10)-(3.11) by subsystems for T:=200, with initial values )7000,1000(:01 x  and )2000,2500(:02 x ,  6 

c) Optimal control function for system (3.10)-(3.11) solved by subsystems for T:=200. 7 

 8 

Controlling to a new equilibrium along a given trajectory 9 

Until now our aim has been to drive the pest larval density to a new, more appropriate 10 
equilibrium in a given time T . At this point we add a further requirement of steering the pest 11 

larval density 3x  to this equilibrium along a given curve )(t , with  )0()0( 3x  12 

 *
3)( dxT  . We may require e.g. that a) at a lower cost, we start with a softer decrease of 13 

3x , continuing with a stronger decrease (concave parabola); b) the rate of decrease of 3x  is 14 

uniform (following a straight line); c) we start with a stronger decrease, continuing with a softer 15 

decrease of 3x (convex parabola): For ],0[ Tt  let 16 

a) ,:)( 2 caxt  with 
2

3
*

3 )0(
:

T

xx
a d 
  and )0(: 3xc                                         (3.16) 17 

b) ,:)( baxt  with 
T

xx
a d )0(

: 3
*

3   and )0(: 3xb                                            (3.17) 18 

c) ,:)( 2 cbxaxt  with aTb
T

xx
a d 2:,

)0(
:

2

*
33 


  and )0(: 3xc           (3.18) 19 

Optimal control problem 20 

The problem is to control system (3.10)-(3.11) by subsystems from state 0)0( xx   to the new 21 

desired equilibrium *
dx  in ],0[ T , moving 3x (t) along the given curve )(t . Then we have to 22 

solve the following optimal control problem: 23 

With some ,1,0, 2121  qqqq  24 
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min,)()()(:)(
0

2

32

2*
1  

T

d dtttxqxTxqu    1 

],0[ TUu  ,                                                         (3.19) 2 

),,,,(' *
4321 uuxxxxFx  , 3 

0)0( xx  ,  *)( dxTx  . 4 

For the solution, again the toolbox developed for MatLab in Banga et al. (2005) and Hirmajer et 5 
al. (2009) is applied. For the following numerical examples we shall use illustrative values 6 

4.0  ,6.0 21  qq . 7 

A comparison between the pest larval density and the three prescribed trajectories is shown in 8 
Figure 4. We can say that the approximation to the given functions is quite acceptable. Although 9 
the rest of the coordinates are not shown, they also arrive at the corresponding equilibrium 10 
values. 11 

 12 

        13 

       a)                                                                     b) 14 

 15 

    c) 16 

Figure 4. a) Function   given in (3.16) and pest larval density approximating it, resulting from the optimal control 17 
problem (3.19) with dynamics (3.10)-(3.11), solved by subsystems for T=200, with initial values 18 

)7000,1000(:01 x  and )2000,2500(:02 x .  In b) and c) similar  approximations are shown for functions  , 19 
given in (3.17) and (3.18), respectively.   20 
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The corresponding total costs of controlling the population to the new equilibrium along these 1 
three trajectories are: in case a) 4.678·104, in case b) 5.799·104, in case c) 7.172·104.  2 

As we can see, when we steer the pest larval density along a concave curve, the cost is less than 3 
in the other two cases. It is intuitively clear that, the larger the area under the curve is, the 4 
greater is the damage caused by the larvae. Therefore, the presented methodology is an efficient 5 
tool for the “in silico” analysis of the cost-effectiveness of different biocontrol strategies.   6 

 7 

Controlling to the new equilibrium in less time 8 

Besides driving the population system into a new desired equilibrium, it could be also 9 
convenient to arrive at this state in less time. Under the condition that the crop duration is longer 10 
than T=200 days, in the previous subsection we have shown how to control the system to the 11 
new equilibrium in this time. Now we are going to see that it is also possible to reach this 12 
equilibrium in only 20 days. The question is if it is economically worthwhile. Let us check it. 13 
Firstly, in Figure 5a) we can see that at time T=20 the population ends up in the new 14 

equilibrium, Figure 5b) shows the optimal control ),( 42 uuu   realizing this.  15 

      16 

        a)                                                                   b) 17 

Figure 5. a) Solution of system (3.10)-(3.11) the controlled by subsystems for T=20, with initial values 18 

)7000,1000(:01 x  and )2000,2500(:02 x . b) Control function of system (3.10)-(3.11) obtained by subsystems 19 
for T=20. 20 

Secondly, if the crop season is, say, 200 days, in order to keep this equilibrium state of the 21 
population system for the remaining 180 days, it is necessary to maintain the constant control 22 

),( *
4

*
2

* uuu   during the last 180 days. Now we calculate the costs of both options: 23 

Total cost of controlling to the equilibrium in T= 200 days is 410561.9    (calculated in Section 24 
3.1).  25 

Total cost of controlling to the equilibrium by T= 20 and maintaining the system in this state 26 
until T=200: 27 

586.97910   

)]0[87.0]0[13.0())]([87.0)]([13.0(
200

20

*
4

*
2

20

0

4
*
42

*
2



  dtuudttuutuu
 28 

The difference between both costs is around 2.35%. Thus, at a barely higher cost, the system 29 
can be controlled quickly to the desired equilibrium and then kept there, such that the crop is 30 
exposed to a harmful pest larvae level less time than with the long term equilibrium control.  31 
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This example illustrates that our modelling approach and simulation analysis can contribute to 1 
the improvement of the cost effectiveness of the applied biocontrol strategy. 2 

 3 

CONCLUSIONS 4 

The ecological basis of biological pest control is the interaction between a pest population and 5 
its natural enemies (predators or parasitoids). Based on appropriate population dynamics 6 
models, for the determination of an appropriate control strategy, optimal control theory (or more 7 
generally, mathematical systems theory) turned out to be an adequate tool.  8 

In Rafikov et al. (2008), optimal control already was applied to biocontrol of sugar cane borer 9 
in (Diatraea saccharalis) by its egg parasitoid Trichogramma galloi, but our present study uses 10 
the two- agent model of Rafikov and Silveira (2013). While in the latter optimal asymptotic 11 
feedback control is obtained, our results concern the control of the population into a desired 12 
equilibrium in given time. In an earlier paper (Molnár et al., 2013) the foundations of nonlinear 13 
verticum type control systems were laid down, and applied to integrated pest control of the 14 
sugar cane borer, based on the  single-agent biocontrol model of Rafikov et al. (2008).   15 

In the present work instead, in the context of a four-dimensional, stage-structured two-agent 16 
biocontrol model, we gave an insight into the advantages of the application of a verticum (or 17 
decomposition) approach to biological control, analyzing the effectiveness of this control 18 
methodology.  19 

For each subsystem of the verticum-type population system, we have obtained the 20 
corresponding control function to steer the state population of each subsystem to its 21 
corresponding new desired equilibrium in a given time, providing an equilibrium for the whole 22 
system, where the pest larval density is below a critical threshold. Our model also makes it 23 
possible to calculate the cost of such biocontrol strategy, providing in this way an efficient pest 24 
management approach to avoid serious economic damages in terms of crop quality and/or 25 
quantity.    26 

With our model we can also analyze the effect of steering the population system to the new 27 
desired equilibrium along a partially prescribed trajectory according to the convenience of the 28 
situation. We note that this is different from the classical trajectory tracking problem of systems 29 
theory, since here we prescribe only one coordinate (pest larval density) of the time-dependent 30 
state vector). For different partially prescribed trajectories we have compared the total cost of 31 
the corresponding control strategies in our illustrative example.   32 

This decomposition type control methodology is also promising in the equilibrium control of 33 
large ecosystems. In fact, its methodological advantage may be that the analytical study of 34 
controllability is technically simpler with the decomposition approach, and hence the biological 35 
interpretation of the sufficient condition for controllability may be substantially easier.  36 

Analogously to the technique used in this paper, we could have obtained the corresponding 37 
controls to steer the population to the equilibrium state not only applying different types of 38 
biological control (involving e.g. autochthonous predators), but also using integrated pest 39 
control, combining the initial short-term effect of a chemical control with the softer effect of 40 
biological control, allowing sufficient time for both the biological agent to establish and the 41 
pesticide to decompose before the harvest. 42 
 43 
Finally, for biocontrol technicians we shortly summarize the motivation and applicability of the 44 
optimal control methodology in biological pest control practice, where the applied control 45 
function is always a release of two possible agents: egg and larvae parasitoids. A general 46 
objective is to control and keep the pest larvae density below an “economic threshold”. The 47 
latter concept was first introduced for chemical pest control (see e.g. Dent, 2000), and means the 48 
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insect's population level at which the value of the crop destroyed exceeds the cost of controlling 1 
the pest, which was easily adapted to the case of two-agent biological control, too.  2 
The development of our optimal control model for the two-agent case is justified by the fact that 3 
none of the considered parasitoids alone can control the considered pest (see e.g. Driesche et al., 4 
2008). 5 
 6 
We suggested four possible field applications:  7 

a) Controlling the three species population system in given time into a required 8 
equilibrium, where the target density of the pest larvae is below a given critical 9 
threshold value. (Actually, the control is realized by minimizing the distance from the 10 
prescribed equilibrium.) 11 

b) Comparing the costs of the above equilibrium control with and without the 12 
decomposition method (controlling the host-egg parasitoid system and host-larvae 13 
parasitoid systems separately, or together), in order to see which one performs better 14 
and at what cost. 15 

c)  The time of reaching the required equilibrium (where density of the pest larvae is low 16 
enough) can be shortened, and its additional cost can be also calculated for a reasonable 17 
decision.  18 

d) The decrease of the pest larvae density can be achieved along different trajectories, at 19 
different costs. The presented optimal control method can also provide the control 20 
strategy that realizes a given trajectory, also indicating the corresponding costs, 21 
supporting the biocontrol technician in finding cost-effective agent release strategies.   22 
 23 
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