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Abstract—Understanding topical units is important for im-
proved human-computer interaction (HCI) as well as for a better
understanding of human-human interaction. Here, we take the
first steps towards topical unit recognition by creating a topical
unit classifier based on the HuComTech multimodal database.
We create this classifier by means of Deep Rectifier Neural
Nets (DRN) and the Unweighted Average Recall (UAR) metric,
applying the technique of probabilistic sampling. We demonstrate
in several experiments that our proposed method attains a
convincingly better performance than that using a support vector
machine or a deep neural net by itself. We also experiment
with the number of topical unit labels, and examine whether
distinguishing between different types of topic changes based on
the level of motivatedness is feasible in this framework.

I. INTRODUCTION

To facilitate HCI, the computer should know when the
human interlocutor is contributing to the topic at hand, and
when he is veering away from it (opening a completely
new topic or slightly altering the course of the conversation).
The computer should also know when the interlocutor is not
engaging in the conversation in a meaningful way. For these
reasons, our goal here is to classify segments of conversation
into different categories (which could also be viewed as a
CogInfoCom problem [1], [2]). The categories are as follows:

• Topic initiation: the interlocutor is changing the topic. Here
the change is motivated by the previous conversation, the
new topic fitting into what has been discussed.

• Topic change: the interlocutor is changing the topic. In
this category the change is less motivated by the previous
conversation, and what has been said does not fit into it. It
usually occurs in the imperative, or as a question.

• Topic elaboration: the interlocutor is elaborating on the
ongoing topic that had been discussed.

• No contribution: segments that cannot be classified into
either of the categories above. We should note that this is
more an absence of other labels than a label in its own right.

Earlier studies in topic structure discovery (topic segmentation
and topic change detection) mostly concentrated on lexical
information (either by using transcripts [3], or by working with
text-based corpora [4], [5]), prosody [6], [7] or a combination
of the two [8], [9]. Here, however, we attempt to use many
sources of information beyond lexical and prosodic cues,
including expressed attitudes, facial expressions, hand gestures
and head movements.

II. EXPERIMENTAL DATA

A. HuComTech Corpus

The data for this study comes from 111 speakers of the Hu-
ComTech multimodal corpus [10]. With each of these speakers
2 interviews (a formal and informal one) were recorded and
annotated. The annotation of these interviews was based on
one or two modalities (audio/video/both), and was carried out
in 39 tiers. While some of these tiers describe the actions of the
interviewer, and some describe the actions of both participants,
most focus on the interviewee (speaker). Although later in
this section we will briefly describe most of these tiers, for
a more detailed description of the database we refer the reader
to previous publications [10]–[12]. One aspect of the database,
however, should be discussed in more detail: the imbalance in
the distribution of topical unit labels. This imbalance poses
a problem for machine learning algorithms and it will be
addressed in Section III.

B. Data preparation

An important, and technically challenging part of our task
was to transform the data to a format suitable for use in
our machine learning algorithms. This was partly achieved
by trimming each conversation to fit the shortest labeled tier
(to avoid the problem of missing labels). We also trimmed
conversations based on the tier that marked the beginning and
end of conversations (leaving us with approximately 47 hours
of data). Other steps in data preparation included partitioning
the full set into train, development and test sets, as well as
extracting features suitable for machine learning. This included
adjusting label borders in different tiers to the borders in the
tier containing our target labels (topical units), and dividing
each tier into uniform time slices (these frames cover 0.32
seconds) corresponding to the target tier.

C. Train/Development/Test Partitioning

To train the models, tune parameters, and also to evaluate
our models, we need three separate sets, namely a train,
a development, and a test set. We decided to create this
partitioning with a 75/10/15 ratio. To ensure that both the
individual sets would be representative of the database, we
separated them from the whole set in such a way that the
distribution of topical unit labels matches that of the whole
set. We also wanted to keep the two interviews from the same
speaker in the same set.



TABLE I: Ratio of topical unit labels in the different partitions

Label information Train Dev. Test Full Set

Ratio of label numbers against
all labels in the same set

Topic change 7.21% 7.37% 7.23% 7.23%
Topic initiation 32.62% 32.90% 32.65% 32.65%

Topic elaboration 60.17% 59.73% 60.13% 60.12%

Ratio of label lengths against
all labels in the same set

Topic change 3.90% 3.85% 3.85% 3.89%
Topic initiation 18.59% 18.79% 18.60% 18.61%

Topic elaboration 77.51% 77.35% 77.55% 77.50%

Ratio of label numbers against
the same labels in the Full set

Topic change 74.74% 10.21% 15.05% 100.00%
Topic initiation 74.86% 10.09% 15.05% 100.00%

Topic elaboration 75.00% 9.95% 15.05% 100.00%

Ratio of label lengths against
the same labels in the Full set

Topic change 75.06% 9.77% 15.17% 100.00%
Topic initiation 74.76% 9.95% 15.29% 100.00%

Topic elaboration 74.86% 9.83% 15.31% 100.00%

Table I shows the distribution of the topical unit labels
corresponding to the meaningful contributions (topic change,
topic initiation, topic elaboration) in the different sets. In order
for the individual sets to represent the full set well, our goal
was that the ratio of individual labels against all the labels
should be similar in the individual set to the ratios in the
full set. E.g. if the ratio of topic change labels was close to
seven percent in the full set, this ratio should also be close to
seven percent in the train, development, and test sets as well.
Furthermore, we wanted the proportion of these labels in the
individual sets (both in length and quantity) to be as close as
possible to the proportions of the individual sets (75%, 10%,
and 15% for the train, development, and test sets respectively).
In Table I we see that both the ratio of label numbers and label
lengths against all labels in each set differ by at most 0.4%
from the ratio in the full set. We also see that the ratio of each
label in the different sets (both in terms of values and length)
differs by at most 0.3% from the sets’ target ratio against the
full set.

D. Feature extraction

A more interesting problem than creating frames and
partitioning the database was transforming the textual labels
into features suitable for our machine learning algorithms
(and assigning them to the appropriate frames). Although this
was carried out slightly differently for each adapted tier, in
most cases it meant creating binary features to contain the
information represented by the labels. In the remaining part
here, we will briefly describe the feature extraction methods
we used to obtain our 221 dimensional feature vector.

1) Audio annotation: Labels here were annotated at the
phrase level (meaning that if a phenomenon appeared in a
phrase, the label corresponding to it was as long as the phrase
itself). For instance, if somewhere in a phrase there was a
silence longer than 25ms, the SL label was marked on the
whole phrase. This would have made binding events to frames
difficult, and for this reason we only used the emotion tier
(based on the assumption that the emotional label would
not typically change over a phrase), describing the emotional
content that dominated the phrase according to the annotators.
We created 9 binary features to encode this information (cor-
responding to the different labels, namely silence, overlapping
speech, happy, neutral, surprised, recalling, sad, tense, other
emotion)

2) Syntactic annotation: The level of syntactic annotation
had one tier with a label containing 7 fields that were coded
as 20 features:

• Clause ID: The place of the current clause in the sentence.
This information was represented as 1 integer value.
• Subordinating: The ID of clauses subordinating the current

one. Information from this field was represented as 1 integer
(the number of clauses listed).
• Coordination: The ID of clauses in coordination with the

current clause. Information from this field was represented
as 1 integer (the number of clauses listed).
• Subordinated: The ID of clauses to which the current

clause was subordinated to. Information from this field was
represented as 1 integer value (the number of clauses listed).
• Embedding: The ID of clauses embedded in this one. Coded

as 1 binary feature.
• Embedded: The ID of clauses embedding this one. Coded

as 1 binary feature.
• Missing categories: The categories missing from the clause.

Coded as 14 binary features. 13 features were based on the
13 possible missing categories [12], and an additional binary
feature represented whether a grammatical relationship was
inherently unmarked.

3) Prosodic annotation: Prosodic annotation was carried
out using the ProsoTool algorithm [13]. Information from this
level was coded as 37 features.

• F0 movement: The smoothed F0-movement in the current
section. Coded as 5 binary features, corresponding to the
5 categories of F0-movement (fall, descending, stagnant,
upward, rise)
• F0 level: The level of F0 at the beginning and end of

the current section. Coded as 10 binary features (5 for
the beginning and 5 for the end), corresponding to the 5
categories of F0 level (L2, L1,M,H1, H2 where L2 < T1 <
L1 < T2 < M < T3 < H1 < T4 < H2, and where Ti
values are thresholds) at the beginning and at the end.
• F0 value: The value of F0 at the beginning and at the end

of the current section. Coded as 2 real-valued features.
• Average of raw F0 values: to each frame we assigned the

average of F0 values got from the interval of the frame.
Coded as 1 real-valued feature.
• Voiced and Unvoiced intervals: ProsoTool also detects and

stores the boundaries of voiced and unvoiced intervals.
Coded as 2 binary features.



• I movement: Intensity movement in the given section. Fea-
ture extraction works like that on the tier of F0 movements.

• I level: The level of Intensity at the beginning and at the
end of the given section. Feature extraction works like that
on the tier of F0 levels.

• I value: The value of Intensity at the beginning and end of
the given section. Feature extraction works like that on the
tier of F0 values.

4) Video annotation: In this category annotation is per-
formed on two levels: a functional and a physical level. When
working on the tiers of the functional level (the emotions
and emblems tiers), annotators also used the audio signal.
Information from this level was coded as 111 features.

• Facial expression: The mood the speaker’s facial expression
reflects. Coded as 7 binary features, corresponding to 7
emotional categories (Happy, Natural, Recall, Sad, Surprise,
Tense, Other).

• Gaze: The direction of the speaker’s gaze. Coded as 6 binary
features, corresponding to the 6 labels (Blink, Left, Right,
Up, Down, Forwards).

• Eyebrows: Movement of the speaker’s eyebrows. Coded as 4
binary features. The first two denoting whether annotation
refers to the left or right eyebrow, the last two denoting
whether the speaker is scowling his eyebrow or raising it.

• Headshift: The movement of the speaker’s head. Coded as
8 binary features. The first 4 tells us whether the speaker
is shaking his head, raising it, lowering it, or is nodding.
The following 2 shows whether the speaker is turning or
tilting his head, and the last 2 features tell us whether this
movement is to the left or to the right.

• Handshape: Shape of the speaker’s hand. Coded as 15
binary features. The first 3 are reserved for handshapes that
require both hands (broke, crossing fingers or other), the
following 6 features are reserved for shapes the left hand
forms (fist, half-open-flat, index-out, open-flat, open-spread,
thumb-out), while the last 6 features are reserved for the
same shapes of the right hand.

• Touchmotion: Description of the speaker touching or
scratching himself. Describes which of his hands the speaker
moved (left/right), to which of his body parts (arm, bust,
chin, ear, eye, face, forehead, mouth, neck, nose, leg, hair,
glasses), and what action was carried out there (tap/scratch).
Coded as 30 binary features. The first 15 denotes movements
of the left hand: 2 coding the action, and 13 coding the body
part. The second 15 features do the same for the right hand.

• Posture: Posture of the speaker. Coded as 10 binary features,
corresponding to the 10 annotated postures (crossing-arm,
holding-head, lean-back, lean-forward, lean-left, lean-right,
rotate-left, rotate-right, shoulder-up, upright).

• Deictic: Labels here describe deixis. Coded as 10 binary
features. The first 5 denotes the left hand’s state (pointing
at the addressee, pointing at the self, pointing at an object,
showing a sign of measurement or creating a shape), and
the second 5 features do the same for the right hand.

• Emotion: The perceived emotional state of the speaker.
Coded as 7 binary features, corresponding to the seven
emotional states annotated (Happy, Natural, Recall, Sad,
Surprise, Tense, Other).

• Emblem: Emblems corresponding to the speaker. Coded as
14 binary features (agree, attention, block, disagree, doubt,

doubt-shrug, finger-ring, hands-up, more-or-less, number,
one-hand-other-hand, other, refusal, surprise-hands).

5) Unimodal annotation: In this category the annotation
was performed based on the video data, using the Qannot soft-
ware developed within the HuComTech project. Information
from this level was coded as 15 features.

• Turn management: Conversational turns initiated by the
speaker. Coded as 5 binary features. The first 4 correspond-
ing to the labels used (start speaking successfully, break in,
intend to start speaking, end speaking), while the last one is
the one between each start speaking and end speaking pairs,
and zero otherwise.
• Attention: Describes whether the speaker is paying attention,

calling for it, or neither. Coded as 2 binary features.
• Agreement: The level of agreement of the speaker. Coded as

7 binary features, corresponding to the 7 rates of agreement
or disagreement (default case of agreement, full agreement,
partial agreement, uncertainty, default case of disagreement,
blocking, uninterested).
• Received novelty: Describes whether the speaker received

new information or not. Coded as 1 binary feature.

6) Multimodal annotation: The annotation in this category
is based on both video and audio data, using the Qannot pro-
gram. Here the tiers are doubled, one containing information
annotated for the speaker and its pair containing information
annotated for the interviewer. Information from this level was
described in 29 features.

• Communicative act: The communicative acts of the
speaker/interviewer. Coded as 7 binary features, correspond-
ing to the 7 possible communicative act labels (none, other,
acknowledging, commissive, constative, directive, indirect).
• Supporting act: Supporting acts of the speaker/interviewer in

the conversation. Coded as 4 binary features, corresponding
to the 4 most prevalent labels in the tier (other, backchannel,
politeness marker, repair).
• Topical units: The topical units in the speaker’s/interviewer’s

speech. Information from the interviewer’s tier is coded as
3 binary features, corresponding to the labels topic change,
topic initiation and topic elaboration. While the speaker’s
tier provides the 4 target labels needed for our machine
learning algorithms.
• Information: Describes whether the speaker/interviewer re-

ceived information that is new, information that they already
posessed or they received no information. Coded as 2 binary
features.

III. METHODS

A. Probabilistic sampling

Highly imbalanced class distribution in the train set could
cause a bias towards the more common classes, leading to a
worse classification performance of the rarer classes [14]. This
may manifest itself in such extreme cases where some classes
are simply ignored. One possible solution to the problem is
to manipulate the number of samples presented to the learner.
Omitting training examples might do the trick, but that would
mean losing important data. There is another solution however:
increasing the number of examples used from the rarer classes.
Although we cannot easily generate more samples from a class,



we can simulate this by inputting the same sample n times. It
can be done in the probabilistic sampling method in two steps.
First, we select a class at random, and then randomly choose
a training sample from that class [15]. Selecting a class can be
viewed as sampling from a multinomial distribution, assuming
each class has a P (ci) probability [16]:

P (ci) = λ(1/N) + (1− λ)Prior(ci), (1)

where N is the number of classes, Prior(ci) is the prior
probability of c class, and λ ∈ [0, 1] is a parameter that controls
the uniformity of the distribution. If λ = 0, we get the original
distribution, while if λ = 1, we have a uniform distribution
(this case is also known as ”uniform class sampling” [15]).

B. Unweighted Average Recall

Highly imbalanced class distribution not only affects train-
ing, but evaluation as well. For example, in our test set almost
82% of the frames belong to either the no contribution or
the topic elaboration category. Thus a classifier marking all
meaningful contributions to the conversation as elaboration,
and all other frames as no contribution, it could achieve an
accuracy of around 82%. This would seem to be a reasonably
high accuracy score, but we could not call the performance of
the classifier adequate for this task, as the two rarer classes
would never be recognized. This tells us that for classification
problems where the class distribution is imbalanced, accuracy
is not necessarily a very reliable measure of performance. A
measure that is more popular (partly due to its usage at Inter-
speech challenges) for evaluating models on such problems is
the Unweighted Average Recall (UAR) [17].

UAR is the unweighted average recall of the classes. It
can be computed from confusion matrix A, where Aij is the
number of instances from class j that are classified as instances
of class i. Then UAR can be computed as:

UAR =
1

N

N∑
j=1

Ajj∑N
i=1Aij

, (2)

where N is the number of classes. As we will see later, this
metric may also be useful during the training phase of machine
learning algorithms.

C. Neural Net Classifier

In our experiments we applied deep rectifier neural nets
(DRN). These are neural nets with more than one hidden
layer, in which neurons use the rectifier activation function
(rectifier(x) = max(0, x)) instead of the standard sigmoid
activation. In recent years, this architecture has gained growing
popularity in for example the field of speech technology [18].
One advantage of it is that the activation function does not
saturate, hence the problem of vanishing gradients can be
reduced or even avoided, even with multiple layers. Another
advantage is that owing to the activation function the neural net
is usually more sparse, which has computational advantages.
Our neural nets had three hidden layers, each with a thousand
neurons, while the output layer used softmax nonlinearity, and
consisted of four neurons. The training of the neural nets was
performed using the train set, and the development set was
used as a stopping criterion. In most cases the neural net
was trained using probabilistic sampling, and in all but one
instances the learn rate scheduler used UAR for validation.

D. Support Vector Machine

To provide a comparison with neural nets, another ma-
chine learning algorithm was used: Support Vector Machines
(SVMs). In classification tasks SVMs use hyperplanes to
separate classes. Their most natural application is in 2-class
problems, but the algorithm can be applied to multi-class prob-
lems as well, using the 1-against-all or 1-against-1 method. In
this study we used the LibSVM implementation [19] of this
algorithm, which applies the latter, training a Support Vector
for each class-pair. In order to find the proper SVM parameters,
we also performed a grid search with 110 different settings,
using the UAR values got on the development set as a selection
criterion.

IV. RESULTS AND DISCUSSION

A. Experiments using no context

First we examine the case where the algorithm has to
classify each frame without using its context. Table II shows
the UAR scores obtained using a Support Vector Machine
(SVM), a Deep Rectifier Neural Net (DRN), a similar net using
UAR during training (DRN+UAR), and neural nets that also
apply probabilistic sampling in training (DRN+UAR+PS). We
can see that the use of UAR during neural net training leads
to better UAR scores on both the development and the test set.
This was expected, as in the latter case the learn rate scheduler
used UAR for validation, which was the objective function in
evaluation, while the former was trained using the accuracy. In
addition, the SVM performed better than one of the neural nets,
while slightly falling behind against the DRN+UAR setting
(due to the relatively poor performance of the SVM and the
high running time – more than 400 hours – of the grid search,
in later experiments we did not use SVMs). We can also
see in Table II that the neural net using the probabilistic
sampling method outperforms the baseline methods on the test
set even with the smallest λ parameter, and also that the proper
adjustment of the λ parameter on the development set can
further improve the performance of the probabilistic samplic
method. Comparing the results obtained using the parameter
settings that provided the best UAR scores on the development
set (λ = 1) to our better performing baseline set (DRN+UAR)
we notice that there is a relative improvement of 10.8%.

TABLE II: UAR scores of topical unit classification (the best
results are shown in bold)

Method Development set Test set
SVM 51.4% 50.3%
DRN 48.1% 48.0%

DRN+UAR 51.3% 50.8%
λ = 0.1 51.0% 51.2%
λ = 0.2 50.9% 51.6%
λ = 0.3 52.6% 51.5%
λ = 0.4 53.0% 53.5%

DRN+UAR+PS λ = 0.5 53.7% 54.1%
λ = 0.6 54.4% 54.7%
λ = 0.7 55.4% 54.7%
λ = 0.8 55.8% 56.7%
λ = 0.9 56.8% 56.9%
λ = 1.0 57.1% 56.1%



Fig. 1: Frame level UAR scores got on the development set as
a function of neighbouring frames used

To better understand these results, let us look at the confu-
sion matrices in Table III created based on the test set, using
the actual classes, and classification output of DRN+UAR and
DRN+UAR+PS. A confusion matrix is constructed in such a
way that the i-th row contains the number of instances placed
by our algorithm into the i-th class, while the j-th column
contains the number of instances that are truly in the j-th class.
For example the value 947 in the fourth row and first column in
confusion matrix on the left hand side of Table III suggests that
there are 947 instances that were classified by the DRN+UAR
and placed into the elaboration category, when in reality they
should have been placed into the no contribution category.
We can see from this table that topic change was basically
ignored by the classifier. The relatively poor performance of
the DRN+UAR neural net can be understood if we consider
that the recall for that class was exactly zero. We can see the
opposite in the confusion matrix on the right hand side of
the same table: more instances are classified as either topic
change or topic initiation. However, this comes at a price of
an increase in misclassified topic elaboration instances.

B. Experiments using neighbouring frames

In our preliminary experiments we did not allow the
neural net to use a longer context to classify the different
instances. It could be argued, however, that in the classification
of these short segments it may also be beneficial to know
what happened in the immediate environment of the segment.

TABLE III: Confusion matrix created using the Test set, got
from the results of DRN+UAR (left hand side), and the results
of the DRN+UAR+PS (right hand side)

Pr
ed

ic
te

d
cl

as
s

Actual class
DRN+UAR DRN+UAR+PS

no change init. elab. no change init. elab.

no 37126 66 722 1495 36531 19 291 770

ch
an

ge

0 0 0 1 373 666 1925 8089

in
it. 347 168 1433 2376 1049 297 2639 4990

el
ab

.

947 1393 5736 29160 467 645 3036 19183

TABLE IV: UAR scores of topical unit classification got using
8-8 neighbouring frames in the input for the neural net

Method Development set Test set
DRN 52.0% 50.9%

DRN+UAR 54.7% 54.0%
λ = 0.7 58.3% 57.5%

DRN+UAR+PS λ = 0.8 59.3% 60.0%
λ = 0.9 59.3% 58.9%
λ = 1.0 59.0% 59.3%

To examine this point, we gradually expanded the context
available for the neural net from 1 frame to 21 frames. The
results on the development set (see Fig. 1) indicate that on
the curve showing the performance of the DRN classifier,
there was a peak at 8 neighbours. The curve describing the
performance of the DRN+UAR classifier however slightly
improved with the inclusion of more neighbouring frames. But
for the sake of comparability, we decided that later experiments
with this setting would also use 8-8 neighbouring frames on
both sides.

The results of these experiments can be seen in Table IV.
Here we can see that using a longer context leads to an
improvement in the UAR scores both on the development
and the test set. This seems to support our opinion about the
importance of the context in classifying the topical units. The
relative improvement between the two set of results was at
least 5% in each case, this improvement being the best in the
case of the probabilistic sampling method. This brought about
an improvement of 11.5% relative to the baseline score.

Looking at the new confusion matrices in Table V we can
see that while the recall of topic initiation class has markedly
improved, very few instances of topic change were correctly
identified by the DRN+UAR classifier. As for the topic change
class, the results got with probabilistic sampling are not much
better either. In both this and the previous case, less than 10%
of the instances classified as topic change were in fact in
the topic change class. This raises the question of whether it
would be helpful to examine the case where we do not make
a distinction between the two types of topic changes (i.e. if
we merge the topic change and topic initiation categories into
one category).

TABLE V: Confusion matrix created using the Test set, got
from the results of DRN+UAR (left hand side), and the results
of the DRN+UAR+PS settings (right hand side), using 8-8
neighbouring frames in the input for the neural net

Pr
ed

ic
te

d
cl

as
s

Actual class
DRN+UAR DRN+UAR+PS

no change init. elab. no change init. elab.

no 36939 48 501 1324 36590 42 305 1039

ch
an

ge

3 24 43 221 222 432 771 3959

in
it. 387 233 2739 3845 831 333 3846 5064

el
ab

.

1091 1322 4608 27642 777 820 2969 22970



TABLE VI: UAR scores with 3 classes, using 8-8 neighbouring
frames in the input of the neural net

Method Development set Test set
DRN 63.1% 62.8%

DRN+UAR 72.0% 70.6%

DRN+UAR+PS

λ = 0.7 75.0% 73,1%
λ = 0.8 75.8% 74.1%
λ = 0.9 75.8% 74.8%
λ = 1.0 76.0% 74.0%

C. Classification with three labels

As a last step in this study, we repeated our previous
experiments with the difference being that we only used three
labels (no contribution, topic change and topic elaboration),
relabeling all instances of topic initiation as topic change. The
results of these experiments are listed in Table VI. We can
see that the relative improvement of the probabilistic sampling
method compared to the better performing baseline remains
approximately the same, but the UAR scores are now much
better for all setups. Although some of this improvement might
be due to the UAR metric itself, the extent of the improvement
suggests that the 3-class problem might be a more reasonable
approach to the classification and recognition of topical units.

Looking at the new confusion matrices may further rein-
force this notion. As can be see in Table VII, for the case of
probabilistic sampling, the recall of the no contribution class is
more or less the same, while the recall of the elaboration class
improved notably. More importantly the score attained for the
combined class is decidedly higher here than the combined
score of the two separate classes in the previous case.

TABLE VII: Confusion matrix created using the Test set, got
from the results of DRN+UAR (left hand side), and the results
of the DRN+UAR+PS (right hand side) with 3 classes

Pr
ed

ic
te

d
cl

as
s

Actual class
DRN+UAR DRN+UAR+PS

no change elab. no change elab.

no 36920 591 1429 36521 297 807

ch
an

ge

447 3269 4707 939 4866 7160

el
ab

.

1053 5658 26896 960 4355 25065

V. CONCLUSIONS

In this study we made the first steps towards topical unit
recognition by creating a feature set from the HuComTech
database and partitioning it for train, development, and test
sets. Although optimal points on the development set did not
coincide with the optimal points on the test set, the change of
scores on the former seemingly predicted a change of scores on
the latter reasonably well. This might suggest that we created
a serviceable partitioning. Furthermore, we showed that our
suggested methods for the task improved our results in each
case. Although the UAR scores were far from optimal in the
4-class scenario, merging two classes brought a convincing
improvement. This could offer a new direction in our research
on topical unit recognition.

VI. FUTURE WORK

Here, we utilized all annotation tiers we could make use
of, regardless of their contribution to the task. In the future
we would also like to examine how important different tiers
are, and choose the subset of tiers most useful for the task.
We would also like to move from topical unit classification
to topical unit recognition, by integrating the neural net into
a hybrid HMM/ANN system, where based on the probability
values provided by the neural net for each frame, the HMM
would decode the conversation as a sequence of topical units.
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