The mvp2 mutation affects the generative transition through the modification of transcriptome pattern, salicylic acid and cytokinin metabolism in *Triticum monococcum*

Ákos Boldizsár¹, Radomíra Vanková², Aliz Novák¹,³, Balázs Kalapos¹,³, Zsolt Gulyás¹,³, Magda Pál¹, Kristyna Floková⁴, Tibor Janda¹, Gábor Galiba¹,⁵*, Gábor Kocsy¹,³

¹ Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, 2462, Hungary
² Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic
³ Doctoral School of Molecular and Nanotechnologies, Research Institute of Chemical and Process Engineering, Faculty of Information Technology, University of Pannonia, Veszprém, 8200, Hungary
⁴ Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Faculty of Science, Palacký University, CZ-78371 Olomouc, Czech Republic
⁵ Doctoral School of Animal and Agricultural Environmental Sciences, Department of Meteorology and Water Management Georgikon Faculty, University of Pannonia, Keszthely, 8360, Hungary

*Corresponding author

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ákos Boldizsár</td>
<td>boldizsar.akos@agrar.mta.hu</td>
</tr>
<tr>
<td>Radomíra Vanková</td>
<td>vankova@ueb.cas.cz</td>
</tr>
<tr>
<td>Aliz Novák</td>
<td>novak.aliz@agrar.mta.hu</td>
</tr>
<tr>
<td>Balázs Kalapos</td>
<td>kalapos.balazs@agrar.mta.hu</td>
</tr>
<tr>
<td>Zsolt Gulyás</td>
<td>gulyas.zsolt@agrar.mta.hu</td>
</tr>
<tr>
<td>Magda Pál</td>
<td>pal.magda@agrar.mta.hu</td>
</tr>
<tr>
<td>Kristyna Floková</td>
<td>kristyna.flokova@yahoo.fr</td>
</tr>
<tr>
<td>Gábor Galiba</td>
<td>galiba.gabor@agrar.mta.hu</td>
</tr>
<tr>
<td>Tibor Janda</td>
<td>janda.tibor@agrar.mta.hu</td>
</tr>
<tr>
<td>Gábor Kocsy</td>
<td>kocsy.gabor@agrar.mta.hu</td>
</tr>
</tbody>
</table>
1 Summary

Wild type and mvp2 (maintained vegetative phase) deletion mutant *T. monococcum* plants incapable of flowering were compared in order to determine the effect of the deleted region of chromosome 5A on transcript profile and hormone metabolism. This region contains the vernalization1 (*VRN1*) gene, a major regulator of the vegetative/generative transition. Transcript profiling in the crowns of *T. monococcum* during the transition and the subsequent formation of flower primordia showed that 306 genes were affected by the mutation, 198 by the developmental phase and 14 by the interaction of these parameters. In addition, 546 genes were affected by two or three factors. The genes controlled by the deleted region encode transcription factors, antioxidants and enzymes of hormone, carbohydrate and amino acid metabolism. The observed changes in the expression of the gene encoding phenylalanine ammonia lyase (PAL) indicated the effect of mvp2 mutation on the metabolism of salicylic acid, which was also corroborated by the differences in 2-hydroxycinnamic acid and cinnamic acid contents in both of the leaves and crowns, and in the concentrations of salicylic acid and benzoic acid in crowns during the vegetative/generative transition. The amount and ratio of active cytokinins and their derivatives (ribosides, glucosides and phosphates) were affected by developmental changes as well as by mvp2 mutation, too. The absence of *VRN1* and other neighbouring genes in the mvp2 mutant plants resulted in the modification of the transcriptome, salicylic acid and cytokinin levels, which changes contributed to the continuous maintenance of the vegetative phase.

2 Keywords

cytokinin, mvp2 mutation, *Triticum monococcum*, vegetative/generative transition, vernalization

3 Abbreviations

Genotypes:

Tm wt or wt: *Triticum monococcum* wild type; mvp2: *Triticum monococcum* maintained vegetative phase mutant;

Salicylic acid metabolism:

CA: cinnamate; oHCA: 2-hydroxy-cinnamic acid (*ortho*-hydroxy-cinnamic acid); BA: benzoate; SA: salicylate;

Light conditions:

Ppd: photoperiod response gene; SD: short day; LD: long day;
Development:
VP 20 °C: vegetative phase at 20 °C, single ridge structure of the apices; VP 4 °C: vegetative phase at 4 °C; DR: double ridge, this phenophase shows the vegetative/generative transition during the development; SI: initiation of spike primordia;

Cytokinsins:
CK: cytokinin; tZ: trans-zeatin; DHZ: dihydrozeatin; iP: isopentenyladenine; cZ: cis-zeatin; tZR: trans-zeatin riboside; DHZR: dihydrozeatin riboside; iPR: isopentenyadenosine; cZR: cZ riboside; tZR5’MP: tZR 5’-monophosphate; DHZR5’MP: DHZR 5’-monophosphate; iPR5’MP: iPR 5’-monophosphate; cZR5’MP: cZR 5’-monophosphate; tZ9G: tZ-9-glucoside; DHZ9G: DHZ-9-glucoside; iP9G: iP-9-glucoside; cZ9G: cZ-9-glucoside; tZOG: tZ-O-glucoside; tZROG: tZR-O-glucoside; DHZOG: DHZ-O-glucoside; DHZROG: DHZ-O-glucoside

4 Introduction
The exact flowering time is of key importance for perennial grasses since their reproductive organs are highly sensitive to low temperature. Winter wheat necessitates an exposure to low temperature to fulfil its vernalization requirement and ensure its transition from the vegetative to the reproductive phase. Without cold treatment, winter wheat genotypes are incapable of flowering, while spring genotypes do not have such demands. If the transition to the generative phase occurs too early, even a milder frost may result in great yield loss due to the considerable decrease of freezing tolerance.
Flowering time is controlled by three well characterized gene families (Laurie, 1997). Photoperiod response genes (Ppd) sense day length, and usually, long day (LD) conditions induce their expression. The second gene family contains ‘earliness per se’ factors, which take part in the initiation of floral primordia and in the determination of the numbers of vegetative and generative primordia independently of environmental conditions (Worland, 1996). The third family consists of the vernalization genes VRN1, VRN2 and VRN3, which are inducible by low temperature. Their allelic differences and interactions are important in the timing of the vegetative/generative transition (see for review Distelfeld et al. 2009; Galiba et al. 2009). During vernalization at low temperature, VRN1 is induced, which inhibits the flowering repressor, VRN2. In consequence, the inhibition imposed by VRN2 on VRN3, an activator of flowering, is terminated, and the vegetative/generative transition occurs. The role of VRN1 region in the induction of flowering was demonstrated by using maintained
vegetative phase (mvp2) mutant that never flowers (Shitsukawa et al., 2007b). The effect of mvp2 mutation on transcriptome was investigated after one week cold period when the seedlings were still in the double ridge stage (Diallo et al., 2014). Genes related to transcriptional regulation, sugar metabolism, oxidative and biotic stresses were affected by the mutation. However, no transcriptomic data are available during the formation of spikelet primordia. Detail analysis revealed that besides the VRN1 gene, the AGAMOUS-LIKE GENE 1 [AGLG1; control of fruit development (Yan et al., 2003)], the CYSTEINE PROTEINASE (CYS; degradation of proteins) and PHYTOCHROME-C (PHY-C) genes were also deleted in the mvp2 mutant. The latter gene encodes a photoreceptor that affects also flowering in a light-dependent way (Chen et al., 2014; Distelfeld and Dubcovsky, 2010).

Besides the above mentioned major regulators of vernalization, the expression of a large gene set changes during the induction of this process by low temperature as shown by transcriptome analysis in wheat (Gulick et al., 2005; Majláth et al., 2012; Monroy et al., 2007; Winfield et al., 2009). Comparison of the transcriptome profile in a spring and winter wheat genotype during cold treatment showed different expression of genes encoding among others protein kinases, putative transcription factors and Ca-binding proteins (Gulick et al., 2005). Winfield et al. (2009) monitored the developmental-phase-dependent gene expression changes and identified several MADS-box genes, which may play an important role in the onset of flowering. The investigation of cold-induced transcript profile changes in chromosome 5A substitution lines ensured the possibility of obtaining more information about the control of flowering since the VRN1 gene is localised on this chromosome. The alterations of the transcriptome of plants in vegetative stage have been compared in winter and spring line, and expression of the gene encoding Dem (deficient embryo and meristem) protein affecting the development of apical meristem was proved to be different (Kocsy et al., 2010).

Plant growth regulators, especially gibberellins (Mutasa-Gottgens and Hedden, 2009), play an important role in the control of flowering. The auxins also regulate flowering through the members of the AINTEGUMENTA-LIKE/PLETHORA transcription factor family (Krizek, 2011). The role of methyl jasmonate in this process was recently shown in T. monococcum, where its level was higher, and many jasmonate-responsive genes were affected in non-flowering mvp2 mutant (Diallo et al., 2014). In addition, treatment with this hormone delayed flowering with simultaneous downregulation of VRN1 and VRN3 genes. Moreover, salicylic acid (SA) participates also in the control of flowering time since SA-deficient plants flower later and UV-C stress activates the vegetative/generative transition in Arabidopsis through
this hormone (Martínez et al., 2004). The involvement of cytokinins as a long-distance signal of the floral transition process has also been recently shown (Bernier, 2013). Transient cytokinin maximum was observed at the onset of vegetative-generative transition both in *Brassica napus* (Tarkowská et al., 2012) and *Triticum monococcum* (Vanková et al., 2014). Despite the intensive study of the regulation of flowering processes, the transcriptional and hormonal control during the initial development of flower primordia in wheat plant is still poorly understood. In the present experiments the possible involvement of the *mvp2* mutation-dependent changes of transcriptome profile and the SA and cytokinin metabolism in the control of vegetative/generative transition have been studied.

5 Materials and methods

5.1 Plant material and treatments

Triticum monococcum KU 104-1 strain and its *mvp2* mutant were analysed in this study. The *mvp2* mutant was generated by ion beam radiation and has a large deletion that includes *VRN1* (Shitsukawa et al., 2007b) and the other three genes (Distelfeld and Dubcovsky, 2010). After germination in Petri dishes between wet filter papers (1 d 25 °C, 3 d 5 °C, 2 d 25 °C), seedlings were grown with a photoperiod of 16 h (light cycle started at 2:00 and finished at 18:00), at 260 µmol m⁻² s⁻¹, 20/17 °C and 75/65% RH in a growth chamber (Conviron PGV-15; Controlled Env., Ltd., Winnipeg, Canada). Seedlings were raised in a 2:1:1 (V/V/V) mixture of garden soil, humus and sand in wooden boxes (150 plants in a box). Dimensions of the soil blocks in the boxes were 26 × 38 × 10 cm (length × width × depth), distance between the plants was 2.5 cm. After 3 weeks, temperature was set immediately to continuous 4 °C (day/night), other environmental parameters remained unchanged. Crown and leaf (the second youngest leaves) samples were taken for hormone measurements (in case of cytokinin analysis, only the leaves were examined) and gene expression studies before the cold treatment; after 2 weeks at 4 °C, when the seedlings were still in the vegetative developmental stage; during the vegetative/generative transition (double ridge stage) and after the appearance of the spikelet primordia (spikelet initiation phase). In the last two sampling points samples for microarray analysis were collected separately from the crowns. Although there was no developmental phase change in *mvp2*, the samples from this genotype were collected at the same time as in the wild type and the same nomenclature was used for the indication of the sampling points (Fig. 1). Each sampling was started after a 6-hour illumination and lasted for 60-90 min. The experiments were repeated 3 times. In each experiment, 3 samples consisting of a mixture of the crowns and leaves, respectively, from 9 plants were analysed.
5.2 Selection of the mvp2 mutants by genotyping

Leaf samples (100 mg FW) were collected from the seedlings and disrupted by TissueLyser (Qiagen) (shaking settings: 25 Hz, 90 sec). The total DNA was isolated from crushed material by the Zeno-Gene40 DNA isolation kit (Zenon Bio Ltd.) and eluted in 200 μl of elution buffer in the last step. Genotyping was carried out in two-steps. In the first screening step a 1084 bp long segment of the VRN1 gene was amplified by PCR (Applied Biosystems® GeneAmp® PCR System 9700) according to the manufacturer’s instructions. The reaction mixture contained 2.5 μl 10x Key buffer, 2.5 μl DNA, 0.5-0.5 μl VRN1-specific primers (10 μM, Suppl. table 1), 0.5 μl dNTP mix (2.5 mM), 0.4 μl Red Taq enzyme (Red Taq DNA Polymerase enzyme (VWR)) and 18.1 μl water. The chosen primers amplified the fragment of the VRN1 gene not present in the homozygous mutant. The applied PCR conditions were as follows: 40 cycles of 94 °C for 20 sec, 61 °C for 30 sec, and 72 °C for 80 sec. In case of ambiguous samples, the second screening step was employed. According to Dhillon et al. (2010) a modified method was applied. The following primers were used in 10 μM concentration: 1 μl F18, 0.5 μl R23 and 0.75 μl R22. In this multiplex PCR reaction the wild type Triticum monococcum gives two amplicons (172 and 339 bp) while mvp2 mutant gives only one amplicon. The sequence of the primers is given in the Suppl. table S1.

5.3 Selection of the sampling time according to the morphology of shoot apices

The developmental stage of the shoot apices, isolated from the crowns of the seedlings, was determined under a Zeiss Stemi 2000-C stereomicroscope (Carl Zeiss Mikroskopie, Jena, Germany) according to the scale of Gardner (Gardner et al., 2007) (Fig. 1). Three developmental phases were distinguished according to the wild type: vegetative (VP, single ridge structure, Gardner’s stages 0-1), double ridge (DR, vegetative/generative transition, Gardner’s stage 3) and generative phases (SI, initiation of spike primordia, Gardner’s stages 4-5).

5.4 Determination of hormones

Methanol-soluble free and bound SA and their precursors were measured according to Pál et al. (2005), who modified the method of Meuwly and Métraux (1993). Benzoic acid (BA) and cinnamic acid (CA) were measured by UV spectrophotometry in the range of 230–300 nm (W996 photodiode array detector, Waters, Milford, MA). SA and ortho-hydroxy-cinnamic acid (oHCA) were quantified fluorimetrically (W474 scanning fluorescence detector), with excitation at 317 nm and emission at 436 nm for oHCA, followed by excitation at 305 nm and emission at 407 nm for SA.
Cytokinins were extracted and purified as described earlier (Svačinova et al., 2012), with modifications. Briefly, 1 ml 2×10^8 M concentration of ice cold extraction mixture of methanol/water/formic acid (15/4/1, V/V/V) containing stable-isotope-labelled internal standards of cytokinins (2H$_5$-tZ, 2H$_5$-tZR, 2H$_5$-tZMRP, 2H$_5$-tZ7G, 2H$_5$-tZ9G, 2H$_5$-tZOG, 2H$_5$-tZROG, 2H$_3$-DZ, 2H$_3$-DZR, 2H$_3$-DZRMP, 2H$_3$-DZ9G, 2H$_6$-iP, 2H$_6$-iPR, 2H$_6$-iPRMP, 2H$_6$-iP7G, 2H$_6$-iP9G) was added to homogenized samples and stirred for 30 min/4°C. After centrifugation the supernatants were passed through the Sep-Pak Plus C$_{18}$ cartridge (Waters, Milford, MA, USA) to remove the lipids and pigments. Cytokinins from flow-through fraction were concentrated by mixed mode Oasis MCX reverse phase-cation exchange SPE column (Waters, Milford, MA, USA) and eluted with 0.35 M NH$_4$OH in 60% methanol. Eluates were evaporated to dryness in a Speed-Vac concentrator RC1010 (Jouan, Winchester, UK) and reconstituted by 30 µl of mobile phase prior to UHPLC-MS/MS analysis. An Acquity UPLC® System (Waters, Milford, MA, USA) coupled to a triple quadrupole mass spectrometer Xevo™ TQ MS (Waters MS Technologies, Manchester, UK) with an electrospray interface (ESI) was employed in cytokinin analysis. Compounds were separated on reverse-phase column (Acquity UPLC® BEH C$_{18}$, 1.7 µm, 2.1 × 150 mm, Waters) by 24 min binary gradient consisting of methanol (A) and 15 mM ammonium formate pH 4.0 (B) (Svačinova et al., 2012). The effluent was introduced in the ESI source of the tandem mass spectrometer Xevo TQ MS. Cytokinins were determined and quantified by multiple ion monitoring mode (MRM). MassLynx™ software (version 4.1, Waters, Milford, MA, USA) was used to operate the instrument, acquire and process the MS data.

5.5 Gene expression studies

Total RNA was isolated using Direct-zol™ RNA Miniprep Kit (Zymo Research) as described by the manufacturer. Reverse transcription was carried out with M-MLV reverse transcriptase and Oligo(dT)$_{18}$ primer (Thermo Scientific) according to the method of the supplier. 1500 ng RNA was transcribed into cDNA in 100 µl final volume. From this cDNA solution, 1 or 1.5 µl were utilized for the qRT-PCR analysis. Transcript levels were determined by real-time RT-PCR using a CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad). Most primer sequences were designed by our group while those of VRN1 were found in the literature (Loukoianov et al., 2005), (Suppl. table S1). In case of all primers, the efficiency ranged between 95 and 100%. Relative transcript levels were calculated by $\Delta \Delta C_t$ method using the housekeeping gene similar to phosphogluconate dehydrogenase protein (unigene identifier: Ta30797) for normalization (Paolacci et al., 2009). In all cases the expression levels were compared to the DR phase of *Triticum monococcum* wild type (Tm wt). The Bio-Rad CFX
Manager 3.1 (File version: 3.1.1517.0823) calculated the relative normalized expression. In the charts, the error bars show the standard deviation and the y-axis was scaled in log_2. The outliers were excluded from the analysis in case the standard deviation of C_t value exceeded 0.3 in the replicate group.

5.6 Microarray experiments

For microarray analysis, total RNA was isolated using Qiagen kit (RNeasy Plant Mini Kit). Three parallel samples were isolated from the crowns of Tm wt and mutant plants. 4000 ng total RNA samples were eluted in 40 µl final volume (100 ng/µl). 300 ng were analysed on gel and 200 ng were analysed with Agilent Bioanalyzer Instrument. RNA purity was checked by the absorbance ratios of 260/280 and 260/230 nanometres. Ratio of sample absorbance was 2 or higher. Gel electrophoresis confirmed the intactness of the RNAs. Samples with an RNA integrity number (RIN) above 8.0 were used for further analysis.

Total RNA (200 ng) was labelled and amplified using Low Input Quick Amp Labelling Kit according to the instructions of the manufacturer (Agilent Technologies). Labelled RNA was purified and hybridized to Agilent Wheat genome 4x44K array slides according to the manufacturer’s protocol. After washing, array scanning and feature extraction were performed with default scenario by Agilent DNA Microarray Scanner. Fluorescence intensities of spots were quantified, background subtracted, and dye-normalized by Feature Extraction software, version 9.5 (Agilent Technologies). Data were then imported and analysed using GeneSpring GX program (Agilent Technologies) to generate lists of genes with a minimum 2-fold difference in the expression. Array data are available in ArrayExpress data bank with the ID E-MTAB-3968.

5.7 Statistical analysis

For the statistical analysis one-way ANOVA and Dunett t or Tukey B post hoc tests were used by SPSS 16.0. Normality was tested by Kolmogorov-Smirnov probe, homogeneity of the variances was tested by Levene’s test.

6 Theory

The deletion in mvp2 mutants including the VRNI gene is assumed to control the transcript profile changes during the vegetative/generative transition and initial development of the flower primordia. The alterations in gene expression may affect, among others, the metabolism of SA and cytokinins, i.e. hormones influencing flowering.
7 Results

7.1 Effect of the gene deletion and developmental stage on transcript profile

Based on selection criteria of a minimum 2-fold difference in the expression related to the genotype, developmental stage or their interactions, 1064 were selected from the 43604 genes present on the array (Suppl. Table 2). Comparison of transcript profiles in crowns of wild type and mvp2 mutant plants during the vegetative/generative transition and the formation of spikelet primordia (Fig. 1) indicated that 198 genes were affected by the developmental phase, 306 by the mvp2 mutation and 14 by their interactions (Fig. 2). In addition, 546 genes were affected by two or three factors.

7.2 Validation of microarray results and clustering of the selected genes

Microarray data allowed selecting several cold acclimation- or vegetative/generative transition-related genes that were differentially expressed in the crowns of the two genotypes or during the development. Microarray results were validated by qRT-PCR (Fig. 3). There was a close correlation ($R^2=0.98$) between the microarray and qRT-PCR results (Suppl. Fig. S1). The expression of CBF4, CBF14 and R2R3-MYB genes exhibited a strong induction in wt plants between the DR and SI phases while it was constitutively high in the mvp2 mutant (Figs. 3 A-C). The transcript level of VRN1 decreased after the vegetative/generative transition in wt while it was not detectable in mvp2 because of the deletion on the 5A chromosome (Fig. 3 D). The expression of the genes encoding a Ser-Thr protein kinase (STPK), LG (lipoxigenase), C2H2 Zn-finger and heat shock proteins (HSP17, HSP80, HSP101) and MPBF1 (multiprotein bridging factor 1) decreased in wt after entering the generative phase while it exhibited a continuously low level during both DR and SI phases in the mutant (Fig. 3 E-K). In case of PAL (phenylalanine ammonia-lyase), a lower decrease was observed in the mvp2 plants in SI compared to the DR phase (Fig. 3 L). Changes in the expression of heat shock proteins (HSP80, HSP17 and HSP101) showed similar tendencies. In the wild type, strong decrease was observed after the vegetative/generative transition and in mvp2, low transcript levels occurred at the DR phase which further decreased at SI phase (Fig. 3 H-J).

The pool of 1064 genes (in Fig. 2) was further filtered by ignoring those that were functionally not annotated and whose E-values were smaller than 1e-40. Two hundred genes satisfied these criteria (Suppl. Table 2). Relative expression values of wt SI, mvp2 DR and mvp2 SI normalised to wt DR were compared by hierarchical clustering. This revealed the genotype-dependency of genes related to stress tolerance and showed that genes related to
transcriptional regulation and carbohydrate metabolism were influenced by the developmental phase (Suppl. Fig. S2). After an additional selection, a filtered heat-map was constructed (Fig. 4) in which only those 137 genes were kept that exhibited more than 2-fold differences between the genotypes at DR phase (Fig. 4). Approximately one fourth of these genes showed higher expression in.mvp2 at the DR stage compared to the same developmental phase of wt, which may indicate their repression by one of the deleted genes (VRN1, AGLG1, CYS and PHY-C). Among these genes, several CBF and MADS-box transcription factors can be found. In contrast, many HSPs had greater expression in wt, which indicates their induction by the deleted gene(s).

7.3 Assignment of genotype- and development-responsive genes to biological processes, molecular functions, KEGG pathways and their networks

Different methods were chosen for evaluating the results of the microarray analysis (Suppl. Table 2). First of all, Arabidopsis homologs were selected whose E-value ≤ 1e-40 and whose expression differences between the compared groups (D, G, and common set of D × G) were higher than or equal to 2 (in log₂ value). After that the genes were analysed by BiNGO Cytoscape plug-in software (Maere et al., 2005) to determine over-represented biological processes or molecular function categories. According to the categorization of biological processes, the first five groups containing the highest number of the genes influenced by the genotype are the metabolic process (GO:8152), primary metabolic process (GO:44238), response to stimulus (GO:8152), primary metabolic process (GO:44238), response to stimulus (GO:50896), response to stress (GO:6950) and biosynthetic process (GO:9058), which contain 22, 19, 16, 15 and 12 genes, respectively (Suppl. Fig. 3). Two of these groups [response to stimulus (GO:50896), response to stress (GO:6950)] contain high number of genes influenced by the developmental phase, too. The following groups containing 7 and 6 genes influenced by D are the response to chemical stimulus (GO:42221) and response to abiotic stimulus (GO:9628), respectively. This indicates that, in our experiment, cold treatment was at least as effective on the gene expression changes as mutation. PAL is one of these genes, which prompted us to determine the SA content and investigate the SA biosynthesis in more detail.

Three molecular function GO categories contain most of the genes from the array: namely, catalytic activity (GO: 3824), oxidoreductase activity (GO:16491) and binding (GO:5488). The first category consists of 34 genes influenced by genotype and 18 influenced by developmental phase, while the second one contains 14 and 6 genes, respectively (Suppl. Fig. 4). Among the genes of the GO: 3824 category influenced by the genotype, the following two have the best E-values: glutamine-dependent asparagine synthetase (AAU89392.1) and
spermidine synthase (AHJ14572.1). Both genes are important in stress tolerance. Asparagine synthetase is essential in the synthesis of L-glutamate, the precursor of glutathione and spermidine. Spermidine synthase catalyses formation of spermidine enhancing tolerance against various stresses (Kasukabe et al., 2004). Interestingly, both genes had lower expression level in the mvp2 genotype compared to wild type (Fig. 4 and Suppl. Fig 2). Among the identified oxidoreductase enzymes (GO:16491) ABA 8’-hydroxylase, the key enzyme in the catabolism of the abscisic acid (Krochko et al., 1998), had slightly lower activity (-0.25-fold difference) in the mutant genotype (Suppl. Fig. 2 and 4). According to the KEGG pathway cluster analysis the main pathways containing the majority of genes influenced by genotype are general metabolic and secondary metabolites biosynthesis pathways followed by the steroid biosynthesis (ATH00100), phenylpropanoid biosynthesis (ATH00940) and phenylalanine metabolism (ATH00360) (Suppl. Fig. 5). The occurrence of the phenylalanine metabolism among the overrepresented KEGG pathways confirmed importance of the thorough examination of SA biosynthesis in order to determine the differences between the genotypes. However, the thorough analysis of the other processes (such as steroid biosynthesis and phenylpropanoid biosynthesis) exceeds the scope of this study.

Fig 5. shows the network of proteins encoded by the selected 59 genes (Suppl. Table 2 row C). Additional proteins interconnecting the former ones with proteins encoded by the four deleted genes were included. Protein-protein interactions were identified using the BioGRID (Oughtred et al., 2016) database, and were visualised by Osprey software (Breitkreutz et al., 2003). Gene selection was based on the homology between the Triticum aestivum and Arabidopsis. The deleted genes in mvp2 were very close to each other (Yan et al., 2003). In wt VRN1 and AGL1, genes are next to each other and the other two genes are also localized close to Vrn1 locus. In our map, instead of AGLG, SEP4 and instead of CYS, SAG12 genes are presented because of the better E-values of the annotated sequences. In this network, three of the four deleted genes form a close linkage. From among the closest genes, 6 were present on the array and three of them, AGL14, AGL20 (similar to SOC1) and AGL19, were induced because of the lack of VRN1 (synonym name: AP1), SEP4 and SAG12. SOC1 (suppressor of overexpression of CO1) gene causes delayed flowering, according to the examination of mutant Arabidopsis (Onouchi et al., 2000), and it was determined in wheat that WSOC1 acts upstream of WAP1 (wheat AP1 = VRN1) or regulates the flowering in a different pathway from the WAP1 (Shitsukawa et al., 2007b). In Arabidopsis there are three flowering regulatory pathways (long-day-, vernalization- and autonomous flowering pathways). SOC1 is
connected to the first one, but these pathways are partially redundant. The expression of this
gene is highly induced in the mutants that never flowers (Fig. 5). Our results are in
accordance with the reports of Shitsukawa et al. (2007a, 2007b).

7.4 Effect of mvp2 mutation and developmental stage on SA and cytokinin levels

SA can be synthesized in three different ways; besides SA itself, three of its possible
precursors, cinnamic acid (CA), 2-hydroxy-cinnamic acid (oHCA) and benzoic acid (BA),
were measured in the crowns and leaves of the wt and mutant plants before and after a two-
week treatment at 4 °C, at the DR and SI stages (Fig. 6). The bound forms of all compounds
were present in a much higher concentration than the free forms both in the crowns and
leaves. In mvp2 crowns at the VP at 20 °C, free oHCA, free BA and free SA were not present
in detectable concentrations (Fig. 6 A, G and E). Exposure to low temperature increased the
oHCA levels in the leaves and crowns, BA in the leaves in both genotypes, the levels of SA in
the leaves and CA in the crowns in the mutant plants. At DR phase the bound forms of all
measured compounds in the crowns were present in higher concentrations in the mvp2 mutant
than in wt plants (Fig. 6 A, C, E, G). Similar differences were observed in the leaves for
oHCA and CA (Fig. 6 B and D). The differences between the genotypes were eliminated after
the transition to the generative phase at SI. There were no alterations either in the crowns or in
the leaves except in case of SA and CA in crowns where the amounts of free forms were
greater in the mutant plants (Fig. 6 C and E).

Contents of cytokinin metabolites were compared in wt and mvp2 leaves during the prolonged
cold exposure associated in wt with developmental transition. General response of both
genotypes to low temperature was down-regulation of the levels of precursors of active
cytokinins, i.e. cytokinin phosphates (Suppl. Fig. 7C), which indicated suppression of
cytokinin biosynthesis under non-optimal temperature. Physiologically the most active
cytokinin is trans-zeatin. The biosynthesis of this cytokinin, presented according to the
KEGG database, is shown in Suppl. Fig. 6 where all determined cytokinin metabolites are
highlighted. Its isomer, cis-zeatin, which prevails in some monocots, is less active in the
stimulation of cell division (by more than one order of magnitude), but maintains other CK
functions and seems to be associated with stress responses. Apart of trans-zeatin and cis-
zeatin, active cytokinins include also isopentenyladenine and dihydrozeatin (Suppl. Fig. 7A).
The corresponding ribosides were reported to be predominantly transport forms (Lomin et al.,
2015). Two-week long cold treatment had positive effect on trans-zeatin and its riboside in
wt. In case of the mutant, low temperature resulted in decrease of isopentenyladenine,
dihydrozeatin and cis-zeatin, while trans-zeatin riboside and isopentenyladenosine increased
The maximum of active cytokinins were found at the DR stage, i.e. during vegetative/generative transition. In wt, the predominant cytokinin was trans-zeatin, in mutant, trans-zeatin riboside and isopentenyladenosine prevailed. SI stage was associated with substantial drop of active cytokinins, especially in wt, which undertook successful developmental transition. Mutant preserved higher levels of isopentenyladenosine. The mutant constitutively remaining in vegetative stage exhibited decreased levels of cytokinin deactivation products – cytokinin N- and O-glucosides, especially of trans-zeatin-N9-glucoside, dihydrozeatin-N9-glucoside, cis-zeatin-N9-glucoside, trans-zeatin-O-glucoside, cis-zeatin-O-glucoside (Fig. 7). This may indicate diminished cytokinin biosynthesis or much slower turn-over of active cytokinins. In wt, concentration of cytokinin N- and O-glucosides exhibited a transient increase during DR, and then it decreased (Suppl. Figs. 7 D, E).

Thus, as shown in Suppl. Fig. 7, highly significant changes of cytokinins were observed during the vegetative/generative transition. Developmental phase affected content of trans-zeatin associated with stimulation of cell division. Precise regulation of active cytokinin levels is reflected by elevation of trans-zeatin-riboside, trans-zeatin O-glucoside, trans-zeatin N-glucoside, cis-zeatin O-glucoside.

8 Discussion

8.1 Effect of mvp2 mutation and generative transition on the gene expression

The transcriptome analysis confirmed our hypothesis that mvp2 mutation affects the vegetative/generative transition through the modification of the transcriptome profile since the expression of 306 gene differed in the mutant compared to the wild type plants. Several genes encoding agamous-like (AGL) MADS box transcription factors are possibly under the negative control of the protein encoded by one of the deleted genes as it was shown by their greater expression in the mutant. Based on our network of the proposed protein interactions (Fig. 5), the negative regulator is probably the VRN1 (AP1) protein that connects to several AGL proteins and is a major regulator of flowering. These AGL transcription factors control flowering at several levels including the timing of the generative transition and determination of floral meristem identity (Lee et al., 2000; Winfield et al., 2009; Yu et al., 2002). The freezing tolerance-related CBF genes were also inhibited by the deleted region since their expression was greater in the deletion mutant. This finding corroborates previous observations showing the coordinated control of the generative transition and freezing tolerance (Dhillon et al., 2010; Diallo et al., 2014; Galiba et al., 2009). The proteins encoded by the region deleted in the mvp2 mutant proved to be positive regulators of several transcription factors (WRKY,
C2H2 Zn-finger) and heat shock proteins (HSP17, HSP80, HSP101) as indicated by the low expression of the corresponding genes in the mutants. The observed effect on HSPs gives a further evidence for the coordinated regulation of stress response and flowering. Gene ontology analysis based on biological processes indicated the effect of mvp2 mutation on amino acid metabolism-related genes, while analysis of molecular functions showed the control of oxidoreductases and monooxygenases by the deleted chromosome region. The effect of whole chromosome 5A on amino acid metabolism at transcript and metabolite levels was shown in previous studies (Juhász et al., 2015; Kocsy et al., 2010; Kovács et al., 2011) and the present investigations demonstrated that the region with the VRN1 gene is responsible for this effect. The results also indicate the involvement of redox processes in the control of the vegetative/generative transition (Diallo et al., 2014; Gulyás et al., 2014). A comparison of the genotypes related to the KEGG metabolic pathways indicated the effect of the mutation on flavonoid and steroid biosynthesis. These results are in good agreement with previous ones describing the role of flavonoids in the reproductive processes (Falcone Ferreyra et al., 2012). The various analyses of the transcriptome data also revealed the influence of mvp2 mutation on the genes involved in the SA and cytokinin metabolism that is discussed in the next sections.

A large set of genes (198) was affected by the vegetative/generative transition independently of the mvp2 mutation. These genes are not regulated by those ones located in the deleted region in mvp2 mutant. Among others, the genes encoding a MYB transcription factor, a peroxidase and a protein kinase were upregulated and those encoding an RNA polymerase, a pre mRNA processing factor and an S-like RNase were down-regulated. This observation indicates the induction of regulatory genes and inhibition of the genes involved in the RNA metabolism during the vegetative/generative transition. Based on gene ontology analyses and alignment to KEGG metabolic pathways, the expression of genes related to carbohydrate metabolism, response to heavy metals, transition metal binding and carbon fixation was affected by the vegetative/generative transition. These results show that the energy homeostasis is modified during the generative transition.

8.2 Involvement of SA and cytokinins in the control of generative transition

The differences between wt and mvp2 plants in the amount of SA and its precursors indicate the effect of the VRN1 region on SA metabolism during the vegetative/generative transition in *T. monococcum*. Low temperature treatment induced certain components of SA biosynthetic routes including oHCA, BA and SA in the crowns and/or in the leaves. Earlier findings also showed that low temperature hardening of bread wheat (*T. aestivum*) in the light, but not in
the dark, led to a substantial increase in the bound oHCA level (Janda et al., 2007). Since these compounds may also serve as antioxidant compounds (Foley et al., 1999), their role in the maintaining of the redox balance was assumed. In the present work this increase was significant in both wt and mvp2 plants and was detectable in the bound forms of these components indicating that the levels of free SA and, most probably, of the other related compounds are strictly controlled (Janda et al., 2014). These results indicated that SA significantly affects the initiation of flowering of wheat plants. Substantially lower total oHCA and SA levels were detected in the crowns of non-flowering mvp2 mutant than in the wild-type plants at DR stage. This indicates that although SA is probably necessary for flowering initiation in wheat plants, its later existence is not required anymore. Similar findings were recently published in Arabidopsis plants, where transfer of plants from short- to long-day growth conditions was paralleled with a temporary increase in the SA level at pre-reproductive stages followed by a decline at the reproductive stage (Abreu and Munné-Bosch, 2009). In spite of the finding, that Arabidopsis thaliana plants impaired in SA accumulation or transport mechanisms flowered later than the wild-type (Martínez et al., 2004), which may indicate direct link between SA and floral development; exogenous treatment of NahG Arabidopsis plants with SA was not able to restore the wt flowering time (Martínez et al., 2004). However, it must be also mentioned that exogenous SA may be easily converted to bound form; therefore, the exact level of active SA cannot always be estimated (Szalai et al., 2011). The increase of biomass production during the reproductive stage and the final seed production in NahG transgenic and sid2 mutant Arabidopsis plants (both with impaired SA accumulation capacity) in comparison to wild-type plants (Abreu and Munné-Bosch, 2009) may suggest SA function in cold acclimation and elevation of plant stress tolerance (associated with increased levels of protective compounds), which positively affects further development.

In cereals, the involvement of cytokinins has been studied during cold hardening (Kosová et al., 2012). Both cold tolerance and tillering ability were greatly increased in transgenic turf grass plants overproducing the cytokinin biosynthetic gene for isopentenyl transferase (Hu et al., 2005). However, less is known about their role in the development of generative phase in crops. The developmental changes are usually paralleled with altered hormonal levels. The elevation of cytokinins (and auxins) is associated with stimulation of meristematic activities in plants. Cytokinins control both check-points during cell cycle progression (Schaller et al., 2014). Isopentenyladenine of leaf origin was reported to trigger the floral transition in the shoot apical meristem of Arabidopsis (Bernier, 2013). Increased cytokinin concentration was
detected at the onset of vegetative-generative transition in *Brassica napus* (Tarkowská et al., 2012). Comparison of cytokinin profiles in *T. monococcum* spring line DV92 and winter line G3116 showed that the maximum of active cytokinins occurs at the onset of the early stage of reproductive development (Vanková et al., 2014). Spring line exhibited cytokinin maximum after 21 days, while winter line after 42 days when it fulfilled its vernalization requirement as indicated by the decrease of the frost tolerance and dehydrin levels. These data are in accordance with our results, which showed maximum of active cytokinins in DR stage. In wt, developmental transition was accompanied by subsequent fast down-regulation of cytokinins. During SI stage, when cell elongation and differentiation take place, other hormones, probably auxins and gibberellins, may exhibit their maxima.

Cytokinin elevation was also observed in *mvp2* mutant. Accumulation of predominantly *trans*-zeatin riboside and isopentenyladenosine may indicate tendency to overcome the developmental block in the mutant. Up-regulation of these compounds may indicate cytokinin transport from the roots. It might be also related to the cold acclimation of this genotype. Gradual cytokinin decrease during prolonged cold treatment (final sampling point) might reflect transition from acclimation to maintenance response phase (Larcher, 2003). Similarity of the response of cytokinin phosphates in both genotypes might be given by the prevailing effect of low temperature that negatively affects cytokinin biosynthesis and, as a consequence, plant growth rate.

The concentration of active cytokinins is controlled at transcriptional level by several multigene families including isopentenyl transferases for synthesis, cytokinin oxidases/dehydrogenases for degradation, *trans/cis*-zeatin O-glycosyltransferases for reversible inactivation and beta-glucosidases for reactivation (Song et al., 2012). Among them, a gene encoding zeatin O-glycosyltransferase was affected by the *mvp2* mutation and corresponding differences were found in *cis/trans*-zeatin O-glucoside content between wt and *mvp2* plants. Although we did not find such differences in the expression of other genes related to zeatin metabolism by transcript profiling, a coordinated regulation of these genes was observed during the reproductive development of maize in a previous study. It is possible to assume that differences in cytokinin related transcripts have not been detected in our study due to their relatively fine regulations, their subtle changes being below our threshold limit.

Conclusions

Comparison of wild type and *mvp2* deletion mutant wheat plants showed that the deleted region regulates a whole set of genes affecting freezing tolerance and vegetative/generative
transition. Among these genes also occur those ones that are related to SA and cytokinin metabolism, and may be responsible for the differences in the level of these hormones between the wild type and mutant plants. Thus, the present results indicate the involvement of these plant hormones in the VRN1-dependent control of flowering. Our results also contribute to the better understanding of the link between the stress responses and developmental processes in wheat plants.

10 Acknowledgements

The authors wish to thank Apollónia Horváthné and Mónika E. Fehér for their valuable help in plant cultivation and treatment. In addition, they would like to thank Krisztián Gierczik for his contribution to the real time experiments. This work was supported by the Hungarian Scientific Research Fund [OTKA CNK80781] and by the Ministry of Education, Youth and Sport of the Czech Republic through the National Program for Sustainability [LO1204].
11 References

34
Figure legends

Figure 1.: Morphology of the shoot apices during vegetative/generative transition. The following developmental stages are shown: vegetative phase before the start of cold treatment (growth at 20/17 °C) (VP 20 °C), vegetative phase at 4 °C (VP 4 °C), double ridge stage (DR) and initiation of spike primordia (SI). Only the apices of Triticum monococcum wt showed these phenophase changes. The morphology of mvp2 mutant apices remained very similar during the treatment – aside from a short elongation – because this genotype cannot flower. The four sampling points were chosen according the wt development, but the same nomenclature was used in case of the mutant genotype. The white bars indicate 100 μm.

Figure 2.: Set diagram of the genes which exhibited higher than 2 fold-change of expression in relation to the genotype (G), developmental phase (D) or their interaction (D × G). (According to two way ANOVA.)

Figure 3.: Relative expression of the genes used for the validation of the microarray results. A - CBF4 (C repeat-binding factor4); B - CBF14 (C repeat-binding factor14); C - R2R3-MYB (R2R3-MYB protein); D - VRN1 (vernalization 1); E - C2H2 (C2H2 Zn finger protein); F - STPK (serine-threonine protein kinase); G - LG (lipoxygenase); H - HSP80 (heat shock protein 80 KDa); I - HSP101 (heat shock protein 101 KDa); J - HSP17 (small heat shock protein 17.3 KDa); K - MPBF1 (multiprotein bridging factor 1); L - PAL (phenylalanine ammonia-lyase). All the expression values were compared to those detected in wt at DR phase. ΔΔCt method was used for the data analysis. All y-axes show the relative normalized expression at log2 scale. The error bars show the standard deviation.

Figure 4.: Filtered heat-map of the selected genes differentially expressed in mvp2 and wt plants at the DR phase, which exhibited expression difference higher than 2 or smaller than 0.5.
Figure 5.: Networks of interacting proteins. The main coding genes (*AP1, SEP4, SAG12* and *PHYC*, i.e., the homologs of the genes deleted in the *mvp2* mutant: *VRN1, AGLG1, CYS* and *PHY-C*, respectively) are indicated by deep blue circles. Genes that were not represented in the array experiment are indicated by light blue and smaller circles. All other genes received a special three-parted specification. Left sector represents the relative expression of *mvp2* at DR phase compared to wt at DR. Right sector represents the expression of wt at SI phase compared to wt at DR. The bottom sector represents the expression of *mvp2* at SI phase compared to wt at DR. Direct connections are shown with red lines, while the indirect connections with orange and black lines.

Figure 6.: Salicylic acid biosynthesis and the changes in the crowns and leaves of the examined plants. Accumulation of bound and free 2-hydroxy-cinnamic acid (*oHCA*) in crowns (A) and leaves (B), of bound and free cinnamate (CA) in crowns (C) and leaves (D), of bound and free salicylic acid (SA) in crowns (E) and leaves (F) and of bound and free benzoate (BA) in crowns (G) and leaves (H).

Figure 7.: Comparison of cytokinin content in the leaves of *mvp2* mutant and wt during the vegetative/generative transition at 4 °C. A – cytokinin metabolites down-regulated in *mvp2* mutant; B - cytokinin metabolites up-regulated in *mvp2* mutant.

Supplemental Figure 1: Regression analysis between micro-array and qRT-PCR. Relative fold changes in *mvp2* at DR, *mvp2* at SI, wt at DR and wt at SI. In every case expression values were compared to wt at DR. ‘x’ coordinates show the result in micro-array, ‘y’ coordinates show the results in qRT-PCR.

Supplemental Figure 2: Expression pattern of genes that exhibit more than 2-fold difference (on log₂ scale) in the expression rate of genotypes and/or developmental stages. In the first column, two developmental phases (DR and SI) of wt were compared to each other; in the second and third columns, SI and DR phases of *mvp2* was compared to the DR phase of wt. These 200 genes represent well-annotated, non-redundant wheat proteins with E-value ≤ 1e-40.
Supplemental Figure 3: Result of gene ontology analysis according to biological processes. The diagram shows the number of the genes associated with the specified process. In the right bottom of the figure the set-diagram represents the clusters of pathways in connection with the genotype (G), developmental phase (D) and both (D × G-D-G).

Supplemental Figure 4: Result of gene ontology analysis according to molecular functions. The diagram shows the number of the genes associated with the specified functions. In the right bottom of the figure the set-diagram represents the clusters of pathways in connection with the genotype (G), developmental phase (D) and both (D × G-D-G).

Supplemental Figure 5: Clusterisation of the genes in connection with KEGG pathways. In the right bottom of the figure the set-diagram represents the clusters of pathways.

Supplemental Figure 6: Zeatin biosynthesis according to the KEGG database. All of the measured cytokinins are marked with blue circles.

Supplemental Figure 7: Cytokinin content in the leaves of the examined plants during the vegetative/generative transition at 4 °C. Cytokinin metabolites were grouped according to molecular structure and biological activity. A – cytokinin bases; B – cytokinin ribosides; C – cytokinin monophosphates; D – cytokinin N-glucosides; E – cytokinin O-glucosides.

Supplemental Table 1: Primers sequences.
Supplemental Table 2: Genes selected for the analyses. Row A represents the selected genes whose expression changes were visualized on the heat-maps (Fig. 4 and Supp. Fig. 2). The full heat-map (Supp. Fig. 2) represents 200 genes (A/5). Only those were selected for the reduced map (Fig. 4) that exhibited differences between the genotypes at DR phase smaller than 0.5 or bigger than 2 (A/6). Row B presents the dataset selection for gene ontology analysis. In B/2 cells numbers of those genes are indicated where the changes between the compared groups were higher than or equal to 2 [D: according to development phase (DR and SI); G: according to genotype (mvp2 and wt) and D × G-D-G: according to common set of D, G and D × G] and the p-value ≤ 0.05. *Arabidopsis* homologs were selected based on this dataset if the E-value ≤ 1e-40 (B/3). Only those expression results related to the same genes were kept that exhibited the best E-values (B/4). The selected genes were analysed by BiNGO Cytoscape plugin software to determine over-represented genes connected to biological processes (B/5) and molecular functions (B/6). For the functional annotation of genes, KEGG database was used (B/7). Row C shows the selected dataset of those genes that were visualized in Fig. 5 showing networks of interacting proteins. In the end, 59 genes (*Arabidopsis* homologs) were identified in the BioGrid network.
Figure 1

Click here to download high resolution image
Figure 2
Click here to download high resolution image
Zeatin biosynthesis

DMAPP

isopentenyl-ATP

CYP735A

zeatin riboside triphosphate

DMAPP

cis-prenyl-tRNA

isopentenyl-ADP

CYP735A

zeatin riboside diphosphate

DMAPP

cis-zeatin riboside monophosphate (cZR5'MP)

isopentenyl-AMP (iPMP)

CYP735A

zeatin riboside monophosphate (tZR5'MP)

dihydrozeatin riboside monophosphate (DHZMP)

dihydrozeatin riboside (DHZR)

cis-zeatin riboside (cZR)

dihydrozeatin (DHZ)

cis-zeatin (cZ)

adenine

3-methylbut-2-enal discadene

5'-methylthio-adenosine

S-adenosylmethionine

lupinate

2.5.1.50

acetate

O-acetyl-L-serine

zeatin-O-glucoside (tZOG)

UDP

UDP-D-glucose

zeatin-7-β-D-glucoside (tZ7G)

UDP

UDP-D-glucose

O-β-D-xlyosylzeatin

UDP

UDP-D-xyllose

zeatin-O-glucoside (DHZOG)

UGT73C

Dihydrozeatin-O-glucoside (DHZOG)

UGT73C

cis-zeatin-O-glucoside (cZOG)

CIS ZOG

UDP

UDP-D-glucose
<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
<th>Forward</th>
<th>Reverse</th>
<th>Amplicon length</th>
<th>Reference</th>
<th>GeneID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mvp-CBF4</td>
<td>C repeat-binding factor4</td>
<td>GCCGGGGGAGATCAAGTACAA</td>
<td>GAATCGGCCAAGTTGAGGCAG</td>
<td>222 bp</td>
<td>ABK55379.1</td>
<td></td>
</tr>
<tr>
<td>mvp-CBF14</td>
<td>C repeat-binding factor14</td>
<td>AAGGAGATCAAGGACGCCGTC</td>
<td>CCGAGTGAAGCGATCCCGCAT</td>
<td>208 bp</td>
<td>AAT76662.1</td>
<td></td>
</tr>
<tr>
<td>mvp-TP</td>
<td>serine-threonine protein kinase</td>
<td>CTCCGTTCCGTCCGTAATCT</td>
<td>GCCCGAGCCCTATGCTCCTTGAT</td>
<td>157 bp</td>
<td>AIK01699.1</td>
<td></td>
</tr>
<tr>
<td>mvp-R2R3MYB</td>
<td>R2R3-MYB protein</td>
<td>TTGGTCGTCACTCCCAACAG</td>
<td>GAGGAGAAGAGGCAGAGTG</td>
<td>210 bp</td>
<td>A6V91144.1</td>
<td></td>
</tr>
<tr>
<td>mvp-LG</td>
<td>lipoxygenase</td>
<td>TGGGCAAGCAAAAATCCCTA</td>
<td>GCCACTCATGAAACGTGCAC</td>
<td>195 bp</td>
<td>AAC49285.1</td>
<td></td>
</tr>
<tr>
<td>mvp-C2H2</td>
<td>C2H2 Zn finger protein</td>
<td>TCGATGCAGATCCACCAGAG</td>
<td>TACCCGTCCTCTCTGAGGCT</td>
<td>164 bp</td>
<td>ABU95041.1</td>
<td></td>
</tr>
<tr>
<td>mvp-HSP17</td>
<td>heat shock protein 17.3 KDa</td>
<td>CATCAAGGTCAGGTTGAGGA</td>
<td>CCTGGAATGGTTCTGGGCTTCT</td>
<td>242 bp</td>
<td>X58279.1</td>
<td></td>
</tr>
<tr>
<td>mvp-MPBF1</td>
<td>multiprotein bridging factor 1</td>
<td>GACGAAACAGAATGCCTCCGC</td>
<td>CTCTGATCTCTGCAACCACC</td>
<td>201 bp</td>
<td>GQ370008.1</td>
<td></td>
</tr>
<tr>
<td>mvp-HSP80</td>
<td>heat shock protein 80 KDa</td>
<td>TTCCAGGCCAGATCAACAG</td>
<td>GTGTGTTGCTGGCTTGCAG</td>
<td>202 bp</td>
<td>A6Y83982.1</td>
<td></td>
</tr>
<tr>
<td>mvp-HSP101</td>
<td>heat shock protein 101 KDa</td>
<td>GTGACGCAGCTGTCCAGAGAT</td>
<td>AGGATGTCGGACCTCTGCC</td>
<td>153 bp</td>
<td>AAD22629.1</td>
<td></td>
</tr>
<tr>
<td>VRN-1</td>
<td>MADS-box transcription factor</td>
<td>ACAAGAAAAAACACTTGCAAGATAGTCG</td>
<td>CATGTTAATTACTGCTAGCCATCTAGC</td>
<td>1084 bp</td>
<td>(Juhász et al. 2015)</td>
<td>AY747599.1</td>
</tr>
<tr>
<td>mvp F18 and mvp R22</td>
<td>MADS-box transcription factor</td>
<td>ACGCCAAAGAACCCTCCTCAG</td>
<td>CATGTTAATTACTGCTAGCCATCTAGC</td>
<td>1084 bp</td>
<td>(Juhász et al. 2015)</td>
<td>AY747599.1</td>
</tr>
<tr>
<td>mvp F18 and mvp R23</td>
<td>MADS-box transcription factor</td>
<td>AGCCTCAGACCCCTCCTCAG</td>
<td>CATGTTAATTACTGCTAGCCATCTAGC</td>
<td>1084 bp</td>
<td>(Juhász et al. 2015)</td>
<td>AY747599.1</td>
</tr>
<tr>
<td>Ex4-5 and Ex8_ABD</td>
<td>MADS-box transcription factor</td>
<td>TCAGATCCAGGAAGAACCA</td>
<td>TTGATGTCGCTTACCATCCA</td>
<td>313 bp</td>
<td>(Loukoianov et al. 2005)</td>
<td>AY747599.1</td>
</tr>
<tr>
<td>Ta30797</td>
<td>phenylalanine ammonia-lyase</td>
<td>GCCGTGTCCATGCGAG</td>
<td>TTAGCTGAACCACCTGTCG</td>
<td>126 bp</td>
<td>(Paolacci et al. 2009)</td>
<td>TC279294</td>
</tr>
<tr>
<td>TaPAL</td>
<td>phenylalanine ammonia-lyase</td>
<td>GCCGTCTCTGCGAGGAGG</td>
<td>GCACACTACTCTCTACTCTGATCG</td>
<td>173 bp</td>
<td>(Paolacci et al. 2009)</td>
<td>HX081317</td>
</tr>
</tbody>
</table>
Supplemental Table 2

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Σ</td>
<td>WHEAT or</td>
<td>WHEAT or</td>
<td>Full</td>
<td>Filtered</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ARATH 1e-40</td>
<td>ARATH 1e-40</td>
<td>HEATMAP</td>
<td>HEATMAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full datasets</td>
<td>1064</td>
<td>319/1064</td>
<td>200/1064</td>
<td>200/1064</td>
<td>137/1064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Σ</td>
<td>Arabidopsis</td>
<td>Arabidopsis</td>
<td>Gene</td>
<td>Gene</td>
<td>Genes in</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1e-40</td>
<td>1e-40</td>
<td>Ontology</td>
<td>Ontology</td>
<td>KEGG</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>198</td>
<td>45</td>
<td>29</td>
<td>20</td>
<td>26</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>306</td>
<td>56</td>
<td>49</td>
<td>40</td>
<td>48</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>D×G-D-G</td>
<td>237</td>
<td>46</td>
<td>29</td>
<td>25</td>
<td>26</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Σ</td>
<td>Arabidopsis</td>
<td>Arabidopsis</td>
<td>TAIR ID in</td>
<td>TAIR ID in</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>annotation</td>
<td>annotation</td>
<td>Network</td>
<td>Network</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>+ TAIR ID</td>
<td></td>
<td>1e-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full datasets</td>
<td>1064</td>
<td>796/1064</td>
<td>790/1064</td>
<td>59/9264</td>
<td>16/9264</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>