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Abstract:  10 

Despite the abundance of cognitive enhancer mechanisms identified in basic research, drugs 11 

approved for cognitive disorders are scarce and of limited efficacy. Although the so-called 12 

“gold standard” animal assays are well suited to study fundamental learning processes, they 13 

fail to predict clinical efficacy against complex and robust cognitive defects. Preclinical 14 

validation of potential drug targets requires new approaches with higher translational value. 15 

Here I propose a rodent cognitive test system that encompasses several learning paradigms, 16 

each modelling a certain human cognitive domain. Cognitive deficits are brought about by 17 

several impairing methods and a particular mechanism of action is tested on each defective 18 

cognitive function. The outcome is a cognitive efficacy pattern which should then be matched 19 

to the cognitive deficit patterns of the clinical disorders. The best fit will highlight the clinical 20 

indication with the greatest chance for success. 21 
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The “translational gap” 1 

When a molecular entity is shown to be involved in a given cognitive function, a quasi-2 

obligatory conclusion at the end of the paper is highlighting its potential in the therapy of one 3 

or the other cognitive disorder. It is a recognized attempt by the authors to connect their work 4 

to obvious social benefits and thereby emphasize and enhance the importance of the study. 5 

Regretfully, these prophetic statements cannot be taken on face value as “playing a role” in a 6 

certain cognitive process may well not mean being a “hot spot” of intervention in defective 7 

cognitive functions. These “promising” targets need further validation in order to become 8 

suitable subjects of feasible industrial drug development projects.  9 

As an example, take two “gold-standard” animal learning assays: scopolamine-induced 10 

amnesia in the passive avoidance paradigm and delay-induced forgetting in the novel object 11 

recognition task. A PubMed search run for these two methods up to 2015 resulted in 678 hits 12 

for the former and 246 hits for the latter. The abstracts were scanned one by one for effective 13 

procognitive mechanisms of action identified in the assays. Solely in these two methods 103 14 

different modes of action were detected (Table 1). If one takes into consideration other 15 

versions of these two paradigms and other popular cognitive assays (e.g. Morris water-maze, 16 

social recognition/discrimination or fear conditioning) a realistic estimation for the number of 17 

potential cognitive enhancer mechanisms already identified in animal tests totals in the 18 

hundreds. 19 

The large number of potential targets confronts the stark fact that only two types of drugs are 20 

in clinical application for dementia and memory impairment: the acetyl-choline-esterase 21 

(AchE) inhibitors [1] and an NMDA antagonist, memantine [2]. In some European countries a 22 

third class, the so called racetams (piracetam, aniracetam, etc.) with unknown mechanism of 23 

action are also in use for mild memory impairments. Unfortunately, the efficacy of currently 24 

available medications is, at best, moderate [3,4]; the racetams are even not approved in many 25 

countries due to lack of clinical evidence. Furthermore, even the ”youngest” drug, memantine 26 

was launched more than a decade ago (in 2003),and  the AchE inhibitors already came to 27 

market in the nineties, while the appearance of racetams dates back to the 1970s [5]. 28 

The increasingly tense unmet need has driven enormous R&D activity in the field, and yet, 29 

the clinical development of new drugs has faced a 100% attrition rate (see Glossary) in the 30 

past decade. Detailed statistics are published by Ref. [6] for the period 2002-2012 showing a 31 

high, 92% attrition rate already in Phase 2 clinical trials, i.e. in the proof-of-concept studies. 32 
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The overall success rate among AD drug-candidates – owing to the launch of memantine – 1 

was, however, slightly different from zero (0.4%) in this period.  2 

This long standing failure has slowly but surely led to a general devaluation of animal models 3 

[7,8] and forced many pharma companies to withdraw from preclinical research and 4 

development in CNS disorders [9]. 5 

The disappointment has not been confined to the industrial R&D. The European flagship 6 

research and innovation program, Horizon 2020 consistently avoids funding of animal 7 

research in its health domain (the ban is sometimes explicit); while molecular, IT and clinical 8 

methodology are most welcome 9 

(http://ec.europa.eu/research/participants/data/ref/h2020/wp/2016_2017/main/h2020-wp1617-health_en.pdf/). 10 

A 11 

The aim of this article is to propose a preclinical approach, as a possible way out from the 12 

current situation, by which the clinical success rate could be increased. First, factors 13 

underlying the translational gap will be briefly analysed together with discussing the attempts 14 

made so far to remediate the problem. Then a proposal will be put forward for a rodent 15 

cognitive test battery with increased predictive power for the clinical efficacy of putative 16 

cognitive enhancers. Finally, some related drug development issues will be discussed and 17 

emerging feasibility questions will be raised.  18 

Causes of ’target-indication mismatch’ 19 

Animal models thus detected a large number of false positive compounds which later failed in 20 

the clinic. Ineffectiveness due to insufficient ADME properties (e.g. poor absorption, 21 

metabolic vulnerability, low brain penetration, etc.) has gradually faded away as an attrition-22 

factor in the last 20 years [10] as the pharma industry successfully invested a lot of effort into 23 

proprerly designing the physico-chemical parameters critical in shaping the ADME character 24 

of the candidate molecules [11] and applying biomarker studies checking the presence/action 25 

of the compound on the target. For example, PET studies demonstrated that histamine H3 26 

receptor antagonists and serotonin 5-HT6 receptor antagonists occupied their respective 27 

receptors to a high degree in humans [12,13] at doses where they produced mild or no effect 28 

on cognitive performance in patients [14,15].  29 

Thus, the major factor responsible for the missing efficacy must have been the 30 

inappropriate/invalid modes of action of the compounds. This invalidity is the direct result of 31 

insufficient and inappropriate target validation work, both in human and in animal studies, 32 

https://ec.europa.eu/programmes/horizon2020/
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preceding the clinical trials. The former would be even more important than the latter, but it is 1 

not the subject of this paper. 2 

Concerning preclinical validation, ample literature deals with the possible causes of the 3 

missing predictive power of animal studies. One part of the critiques relates to the external 4 

validity of the assays, i.e. what type of animal paradigms are used; the other part relates to 5 

their internal validity, i.e. how these tests are carried out [16,17,18,19,20,21, 72]. Regarding 6 

the latter, several shortcomings in methodology corrupting the reliability, reproducibility and 7 

robustness of the results have been identified, such as statistically underpowered study design, 8 

lack of randomization and blinding, inappropriate (use of) statistics, publication bias, just to 9 

name a few. For remediation of the defects in internal validity several guidelines and 10 

recommendations have been set forth [17,19,22,23,24].  11 

The thoroughly analysed internal validity defects, however, do not account for the whole 12 

extent of the translational gap. In cognitive enhancer research there are several modes of 13 

actions, e.g. muscarinic M1 agonists, histamine H3 antagonists, serotonin 5-HT6 antagonists 14 

and nicotinic α7 agonists which have been shown to exert cognitive improving effects on 15 

many types of impaired cognitive functions, in several different learning paradigms and with 16 

more than a dozen compounds of each type [25,26,27,28]. While a part of the animal studies 17 

may be put aside because of methodological deficiencies, the recurrent replication of some 18 

findings in certain assays with different compounds, in different labs and with different 19 

methodical variants did, indeed, lend the image of reproducibility and validity to the results. 20 

This widespread procognitive activity raised non groundless expectations about their clinical 21 

potential and all the four underwent extensive clinical investigations [29,30,31,32]. Yet, none 22 

of them has managed so far to show up a successful Phase III trial on cognitive symptoms.  23 

Clearly, there should also be problems with the external validity of the models used. Various 24 

fashionable cognitive assays have emerged in the literature, like the passive avoidance test in 25 

the nineties, or the novel object recognition test in the first decade of this millennium (Figure 26 

S1). These assays gain popularity because they are simple, rapid, and involve elementary 27 

cognitive functions well suited for studying fundamental learning and memory processes. By 28 

producing lots of valuable data on cognition itself, these assays then became a kind of “gold 29 

standard” in the field. Indeed, when considering the massive preclinical evidence for the 30 

procognitive efficacy of the above mentioned targets, the reproduced findings are in large part 31 

coming from these types of assays [26,27,28,33]. 32 
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In industrial R&D, a consequence has been the acceptance of the – otherwise erroneous – 1 

concept that checking the efficacy of potential novel cognitive enhancer drugs in the actual 2 

gold standard assay is necessary and at the same time sufficient to provide predictions for 3 

clinical effectiveness. Experience shows, however, what is a good model for basic research 4 

may not be a good one for target validation [73,74]. First, the elementary cognitive functions 5 

which are investigated in these assays do not model the complex cognitive domains affected 6 

by the human disease [34,72,75]. Second, learning performance of the animals is usually 7 

impaired by relatively mild interventions e.g. a single scopolamine dose or long delay, which 8 

cannot, again, model the robust and multiple cognitive deficits characterising a clinical 9 

syndrome [73,75]. 10 

This dichotomy between assays of basic research on one hand and disease models required for 11 

target validation on the other [73,74], is nicely exemplified by the fact that even the 12 

terminology was, for a long time, substantially different in animal versus clinical cognitive 13 

research. While animal terminology largely classified cognitive functions by the type of the 14 

learning task (operant vs pavlovian or aversive vs appetitive conditioning, spatial or non-15 

spatial learning, cue- or context-induced response, etc.), human terminology mainly used 16 

words describing the memory-type under study (declarative vs procedural or semantic vs 17 

episodic memory, dysexecutive syndrome, theory of mind, etc.). This literal translational 18 

problem (which clearly reflects fundamentally different approaches), also contributed to the 19 

discrepant outcomes in animal learning paradigms and in clinical cognitive trials. 20 

Fortunately, in the past decade there has been a clear move on behalf of animal researchers 21 

toward approaching the human terminology and classification. The well-known initiatives like 22 

MATRICS [35] and CNTRICS [36] attempted to map and match the clinical symptoms to 23 

animal paradigms. Further on, detailed analyses were carried out to select the most 24 

appropriate animal models of several human cognitive domains, e.g. social cognition [37], 25 

working memory [38]; executive control [39], attention [40]. The primary criteria for model 26 

selection were cognitive and neurobiological construct validity; the former  referring to the 27 

ability of the paradigm to specifically measure the targeted cognitive process; the latter 28 

meaning the involvement of homologous neural circuits in human subjects and animals [36].  29 

However, potential cognitive enhancer molecules should not simply be tested in models of 30 

human cognitive functions, but, instead, in models of defective human cognitive functions. 31 

Therefore, validity of any animal model essentially and critically depends on the construct of 32 

cognitive deficiency. In other words: on how impaired performance is brought about. 33 
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Single dose pharmacological treatment or increased task difficulty may well be criticized in 1 

this respect. Notwithstanding that acute scopolamine can powerfully disrupt cognitive 2 

performance in many learning tasks (see the review of Ref. [41]), its effect is often not 3 

cognition-specific [75] and can be abolished by a single type of pharmacological action, e.g. 4 

by increasing the endogenous acetylcholine level. Acetylcholine-esterase inhibitors, which 5 

directly produce this effect, show modest potency in early AD [3], but not in other disorders. 6 

If the assumptions hold true that both histamine H3 and serotonin 5-HT6 antagonists act, at 7 

least in part, via indirectly increasing acetylcholine release as a final common pathway 8 

[76,77], then not much better efficacy can be expected from these types of compounds than 9 

that shown by the AChE inhibitors; neither in terms of magnitude nor of cognitive domains or 10 

patient subgroups. Furthermore, if the broad procognitive activity of the compounds typically 11 

manifest against scopolamine-induced impairments, then their effects may result from a 12 

simple pharmacological interaction that is independent from the cognitive function being 13 

studied. It is unlikely that a single mechanism would equally improve diverse cognitive 14 

deficits. Assays relying on increased task difficulty, such as the natural forgetting paradigm in 15 

the novel object or social recognition tasks, suffer from the discrepancy that increasing the 16 

normal learning/memory performance in healthy animals presumes some mobilizable 17 

cognitive reserve, which may not be available in an ill, thereby functionally corrupted brain. 18 

 19 

Proposal for a rodent cognitive test battery for target validation 20 

If an animal model is intended to be predictive for the human situation, then it should model 21 

as closely as possible the human cognitive task and should conform to the human 22 

terminology. Therefore, instead of memory tests whose highest values are simplicity and easy 23 

measurability (like passive avoidance or novel object recognition), assays with higher 24 

therapeutic relevance are needed. These are usually more complex and often time consuming 25 

paradigms. The proposed test battery includes animal assays intended to model the human 26 

cognitive domains (Table 2). These domains are selected from the 12 domains specified in the 27 

review of Ref. [34] to characterize the cognitive deficit patterns of nine psychiatric disorders 28 

(schizophrenia, depression, bipolar disorder, autistic spectrum disorders, attentional deficit-29 

hyperactivity disorder, obsessive-compulsive disorder, panic disorder, posttraumatic stress 30 

disorder, generalized anxiety disorder) and two neurodegenerative diseases (Parkinson’s 31 

disease and Alzheimer’s disease). The list can be considered fairly comprehensive and 32 

covering the full spectrum of cognitive symptoms; and as such, appropriate and sufficient for 33 
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target validation. Verbal memory and language use are obviously dropped out from the list, 1 

but the other functions can be studied in animals, too. The animal assays suggested for 2 

modelling the human functions (Table 2) were chosen partly on the basis of MATRICS and 3 

CNTRICS recommendations (working memory, social cognition, executive function, 4 

attention), partly by our own judgement. The test list is primarily of illustrative nature; it 5 

should by no means be considered exclusive or complete. Many of its items can be replaced 6 

by equivalent alternatives, and some of the domains can be further broken down to 7 

subcomponents or more specific assays may be constructed for one or the other domain. For 8 

example, for modelling semantic and episodic memory, two different maze-learning 9 

paradigms are suggested in Table 2, based on the theory that these cognitive capabilities 10 

evolutionary evolved from allocentric and egocentric navigation, respectively [42]. 11 

However, for episodic memory, there exist several well elaborated and more specific animal 12 

assays in the literature [43,44,45,46], which could also be used here. Another example for 13 

tailoring the list to the needs (and conviction) of the user: if someone wants to go beyond 14 

simple social recognition in the social cognition domain and try to approximate the ‘theory of 15 

mind’ function, a social cooperation paradigm could be included. 16 

However, switching to animal models better mimicking the human cognitive domains is just 17 

the first step toward a predictive model-system. Modelling cognitive deficits (i.e. deteriorating 18 

cognitive functions) is the main challenge. The cognitive deficiency construct to be 19 

established depends on whether we want disease modifying or symptomatic treatment (see 20 

Box 1), as the two impose different requirements on the model [73]. The former approach 21 

requires disease models, which – in the ideal case – produce all or most of the cognitive 22 

symptoms of the disorder by reproducing the pathological process. The latter approach works 23 

with symptom models, which are unrelated to the disease process (e.g. do not require 24 

neurodegeneration in the background) and constructed to produce defects in distinct cognitive 25 

symptoms. The current proposal focuses on the symptomatic approach but can accommodate 26 

the disease modifying one, too. 27 

Defective cognitive performance can be brought about by several means: pharmacological 28 

agents, cerebral lesions/activations (implying optogenetic/chemogenetic methods as well), 29 

stressors, modulation of gene expression, old age, increasing task difficulty or selecting low 30 

performers of the population – all may yield low cognitive outcome amenable for 31 

improvement. Nevertheless, in lack of exact knowledge on or deliberately being unrelated to 32 

the pathomechanism of the given disease (as in case of symptomatic treatment) no distinct 33 
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impairing intervention can be considered as the most “appropriate” or “predictive” (see again 1 

the failure of the scopolamine-induced amnesia models in predicting clinical efficacy or the 2 

critique on the PCP impairment in Box 1). On the other hand, each type of impaired cognitive 3 

state holds utilizable information content thus bears a certain extent of relevance to the human 4 

cognitive deficit. Therefore, to get a better prediction on the expected human efficacy of a 5 

putative enhancer mechanism it should be tested against several impairing methods. By doing 6 

so, one can make a virtue of necessity and set up a practically applicable “rule of thumb”: the 7 

more types of impairing methods against which the studied mechanism is effective the higher 8 

the chance it will be effective against the cognitive defects – of otherwise unknown or 9 

uncertain origin – in the target disease. 10 

Consequently, multiple types of cognitive impairment is suggested in case of each cognitive 11 

function, and a ’cognitive domains x impairing methods’ matrix of models as test battery is 12 

proposed to be used for clinical prediction (Figure 1, Key Figure).  13 

Although in principle each model could be operated as a separate experiment, – i.e. each 14 

testing of a compound could be done in a new cohort of naive animals freshly taught for the 15 

task and then impaired in performance, – it is not recommended to follow for several reasons. 16 

Comprehensive validation of a target in this way would require an unnecessary large number 17 

of animals, take unreasonably long time and bring about adversely high variability in the 18 

results. In addition, such testing procedure would have low clinical relevance, too. 19 

To establish a more coherent methodical environment, be suited for the 3R pricinples, and 20 

also for mimicking the human clinical circumstances, several cognitive tasks representing 21 

different cognitive domains should be taught to the same set of animals, thereby creating a 22 

population with “widespread knowledge”. This process may take several weeks. These 23 

animals are then transformed to a “patient” population by exposing them to a certain 24 

impairment method. To increase the human relevance of the induced cognitive deficits, long 25 

term interventions should be applied whenever possible, e.g. subchronic pharmacological 26 

treatments, stress exposure or lesion/activation. Aging can be considered as a natural way of 27 

impairment. Note, that with some impairing methods like constitutive genetic modifications 28 

or perinatal treatments the patient population is created “in advance” of teaching and 29 

performing the cognitive tasks. Many specific disease models fit into this category. The 30 

“patient” population then can subsequently be subjected to one or more improving 31 

interventions. Here also, long term treatment is desirable to model the clinical situation. If the 32 

applied impairment is reversible, i.e. the memory/learning defects resolve after cessation of 33 
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the impairing intervention, further impairment can be sequentially performed in the same 1 

cohort of animals for initiating another “drug trial”. This is the case, for example, with 2 

increasing task difficulty, certain stressors or pharmacological treatments. The outcome of 3 

such testing allows not only to judge the efficacy of a certain mechanism of action but the 4 

cognitive enhancer pattern may help in selecting the proper target patient population in the 5 

clinic (see below). 6 

 7 

Patient population selection process 8 

Neurological and psychiatric disorders show diverse patterns of defective cognitive 9 

functioning [34], and this pattern-specificity may require compounds with different mode of 10 

actions. The traditional way of finding “the right molecule for the right indication” is the one 11 

where the target disease is fixed and the appropriate drug is searched for (“marketing-based 12 

selection”). Adapting this approach to target validation in the above system would mean that 13 

the potential targets are tested in a simplified system containing only those learning/memory 14 

paradigms which are relevant for the chosen disease. The smaller set of assays enables higher 15 

testing turnover and lower running costs. However, targets potentially effective in other 16 

indications may be missed by this approach. Further, and most importantly, finding the valid 17 

target, i.e. one which satisfactorily fits the desired activity pattern may take quite a long time.  18 

By contrast, the above described pattern-based validation offers an alternative way of 19 

achieving “the right molecule for the right indication” fit. With this approach, the target 20 

disease is not fixed in advance, but is rather determined at the end of the validation process. 21 

The potential targets are tested in the full system until a mechanism with appealing efficacy 22 

and activity pattern is found. Then the disease whose cognitive deficit pattern best matches 23 

the cognitive activity pattern of the selected mechanism should be chosen as the target clinical 24 

indication (“science-based selection”). Giving a simplistic example: if a certain mechanism of 25 

action shows outstanding efficacy in assays measuring attention then it should be tried in 26 

ADHD, whereas if it is more active in social cognition paradigms, then autism could be the 27 

preferred choice. In this mechanism-based search for indications no promising target is lost 28 

and validating a target for an indication may happen within a shorter time. For example, even 29 

partial pattern matchings can be utilized if the aim is to relieve certain cognitive symptoms 30 

regardless of the disease background. However, establishment of a larger set of models is 31 

required which incurs higher running costs and lower testing turnover. 32 
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In both cases, a critical methodological factor is how the goodness of pattern-matching is 1 

determined/calculated (see Outstanding Questions). Obviously, the better the fit the higher the 2 

chance for clinical efficacy, but the exact criteria may be tailored to the needs and 3 

expectations of the actual user. 4 

The suggested pattern-based validation has analogous logic to that of the “omics” approaches, 5 

therefore it may be termed “cognomics” (cognitive omics). According to the author’s 6 

conviction, it will increase the probability of clinical success compared to the predictive 7 

power of the so far applied approach which may be best described as “prove efficacy in the 8 

gold standard model then run clinical trials in several disorders”. However, adopting the 9 

cognomics approach will necessitate the changing of the drug discovery paradigm (see Box 10 

2). 11 

 12 

Concluding Remarks 13 

Despite their seemingly weak predictive power, animal models can still be utilized in 14 

preclinical drug discovery provided they meet external as well as internal validity criteria. The 15 

target validating methodology should substantially change by approximating clinical studies 16 

regarding patient population, treatment length and outcome measures. For the purpose of 17 

predicting clinical efficacy, learning performance of animals should be examined in 18 

paradigms really modelling the human cognitive functions. The validity of induced cognitive 19 

deficits is a critical point either in the disease modifying or the symptomatic treatment 20 

approach. A pattern-based validation is suggested to enhance the chance for clinical success. 21 

It is worth considering that the clinical target population would be selected on the basis of the 22 

merits of the validated targets and not on the basis of a priori marketing needs (see 23 

Outstanding Questions). Finally, it is essential that the no man’s land between basic research 24 

and industrial drug discovery be populated by target validating projects (the precompetitive 25 

area). The Horizon 2020 bias should be corrected [54], and this type of research should be 26 

actively supported in the future. 27 
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Table 1. Mechanisms of action found effective in two animal assays: scopolamine-induced amnesia in 1 
the passive avoidance paradigm and delay-induced („natural”) forgetting in the novel object 2 
recognition test. Findings are from a PubMed search, the terms were „passive avoidance AND 3 
scopolamine AND [rats OR mice]” and „novel object recognition AND [delay OR retention] AND [rats 4 

OR mice]”. Bolded are the mechanisms in clinical use. The table shows some peculiarities, such 5 

as: i) antagonists as well as agonists of the 5-HT1A, GABA-A, GABA-B, NMDA, opioid 6 
receptors were found to be effective; ii) almost all types of selective phosphodiesterase 7 
inhibitors showed activity; iii) nearly each serotonin receptor subtype emerged as 8 

procognitive target; iv) the enormously high number of herbal cognitive enhancers – a rich 9 
source for designing new multitarget drugs. 10 

78.  11 

Targets effective in passive avoidance 
– scopolamine assay 

 Targets effective in novel object recognition 
– natural forgetting assay 

„-racetams” 1. „-racetams” 
5-HT1A agonist 2.  
5-HT1A antagonist 3. 5-HT1A antagonist 
5-HT1B antagonist 4.  
 5. 5-HT2A agonist 
5HT2C antagonist  6. 5-HT2C inverse agonist/antagonist 
5-HT3 antagonist 7. 5-HT3 antagonist 
5-HT4 agonist 8. 5-HT4 agonist 
5-HT6 antagonist 9. 5-HT6 antagonist 
 10. 5-HT7 agonist 
A1 (adenosine receptor) antagonist 11.  
 12. A2 (adenosine receptor) antagonist (caffeine)  
A3 (adenosine receptor) agonist 13.  
ACE (angiotensin converting enzyme) inhibitor 14.  
ACh (acetylcholine) releaser 15.  
AChE (acetylcholine-esterase) inhibitor 16. AChE (acetylcholine-esterase) inhibitor 
adrenerg  α2 antagonist  17. adrenerg  α2 antagonist  
 18. adrenerg  β agonist  
agmatine 19.  
AMPA receptor positive modulators  20. AMPA receptor positive modulators  
antioxidants 21.  
 22. APPS (secreted amyloid precursor protein) 
AT1 (angiotensin receptor) antagonist 23.  
AT2 (angiotensin receptor) agonist 24.  
AT4 (angiotensin receptor) agonist 25.  
AVP (arginine vasopressin) 26.  
BDNF signalling activation 27.  
BZD (benzodiazepine) inverse agonist/antagonist 28.  
Ca2+-channel  inhibitor 29.  
 30. CB1 (cannabinoid receptor) antagonism 
CCK (cholecystokinin) agonist 31.  
complement C3a agonist 32.  
COMT (catechol-O-methyltransferase) inhibitor 33.  
cyclooxygenase inhibitor 34.  
D1 dopamine agonist 35. D1 dopamine agonist 
D2 dopamine agonist  36. D2 dopamine agonist  
D3 dopamine antagonist  37. D3 dopamine antagonist  
DARI (dopamine reuptake inhibitor) 38.  
DHEA(S) (dihydroepiandrosteron-sulphate) 39.  
ergot alkaloids 40.  
 41. erythropoiesis 
estrogen 42. estrogen 
GABA uptake inhibitor 43.  
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GABA-A agonist / positive modulators 44.  
GABA-A antagonist 45. GABA-A antagonist 
GABA-B agonist 46.  
GABA-B antagonist 47.  
GABAα5 inverse agonist 48. GABAα5 inverse agonist 
gastrin releasing peptide 49.  
 50. glutamate carboxypeptidase II inhibitor 
glutamate derivatives 51.  
GM1 ganglioside 52.  
 53. GnRH (gonadotropin releasing hormone) 

activation  H1 (histamine receptor) agonist 54.  
H3 (histamine receptor) antagonist 55. H3 (histamine receptor) antagonist 
H4 (histamine receptor) agonist 56.  
 57. histone deacetylation in the BLA 
HDAC (histone deacetylase) inhibitor 58.  
HMG-CoA inhibitor (atorvastatin) 59.  
IL-1α (interleukin)  60.  
IL-6 (interleukin) 61.  
insulin 62.  
K+-channel inhibitor 63. K+-channel inhibitor 
M1 (muscarinic receptor) agonist 64.  
M2 (muscarinic receptor) antagonist 65.  
MAO (monoamine-oxidase) inhibitor 66.  
melatonin receptor agonist 67.  
 68. mGluR2/mGluR3 antagonist  
NAA (N-acetyl-aspartate) 69.  
NGF (nerve growth factor) 70.  
 71. nicotinic α4β2 agonist 
nicotinic α7 agonist 72. nicotinic α7 agonist 
NMDA antagonist 73. NMDA antagonist 
NMDA glycine site agonist 74. NMDA glycine site agonist 
NMDA polyamine site agonist 75.  
 76. NO (nitric oxide) donor 
 77. NOS (nitric oxide synthase) inhibitor 
 78. neurokinin 3 agonist  
NPY (neuropeptide Y) agonist 79.  
 80. neuropeptide S 
 81. neuropeptide Trefoil factor 3 
opioid receptor agonist (morphine) 82.  
opioid receptor antagonist (naloxone) 83.  
opioid κ receptor agonist 84.  
ORL-1 (orphanine receptor) agonist (low dose) 85.  
ORL-1 (orphanine receptor) antagonist 86.  
 87. PDE-1 (phosphodiesterase) inhibitor 
 88. PDE-2 (phosphodiesterase) inhibitor 
 89. PDE-3 (phosphodiesterase) inhibitor 
PDE-4 (phosphodiesterase) inhibitor 90. PDE-4 (phosphodiesterase) inhibitor 
 91. PDE-5 (phosphodiesterase) inhibitor 
PDE-9 (phosphodiesterase) inhibitor 92. PDE-9 (phosphodiesterase) inhibitor 
 93. PDE-10 (phosphodiesterase) inhibitor 
PEP (prolyl-endopeptidase) inhibitor 94.  
PPARγ agonist  95.  
pregnenolon sulphate 96.  
retinoid Am80 (RAR/RXR agonist) 97.  
sigma-1 agonist 98.  
somatostatin 99.  
SRI (serotonin reuptake inhibitor) 100. SRI (serotonin reuptake inhibitor) 
steroid sulphatase inhibitor 101.  
TRH (thyrotropin releasing hormone) agonist 102.  
 103. vasopressin 1b antagonist 
+ ca. 100 types of herbal extracts or derivatives    
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79.  1 

80.  2 

81.  3 

82.  4 
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Table 2. Human cognitive domains and their suggested animal models  1 

cognitive domain animal assay referencea 

working memory delayed non-matching to sample [38] 

semantic memory Morris water-maze (allocentric navigation) [47] 

episodic memory multiple T-maze (egocentric navigation) [47] 

visual memory touchscreen paired associates learning  [48] 

attention & information 
processing 

5-choice serial reaction time task 

prepulse inhibition 

[40] 

[49] 

fear extinction fear conditioning [50] 

social cognition social recognition / preference [37] 

executive function 

rule learning 

decision making 

response inhibition 

 

attentional set shifting 

probabilistic reward learning 

delayed reinforcement of low rate 

 

[39] 

[51] 

[52] 

procedural memory rotarod learning [53] 

a: the reference papers not only describe the particular assay but also discuss its theoretical background 2 
  3 
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Box 1 1 

Disease modifying vs symptomatic treatment for cognitive disorders 2 

Disease modifying treatment, which would be the ideal case, relies on our knowledge on the 3 

pathomechanism of the disease. The Achilles-heel of any disease modifying approach is the 4 

soundness and validity of the underlying hypothesis on the pathomechanism, which can 5 

ultimately be checked only in the target patient population. 6 

In Alzheimer disease, such a strong theory has been the amyloid cascade hypothesis [54,56]. 7 

Accordingly, transgenic mouse models based on the familial form of the disease and 8 

characterized by massive human β-amyloid overproduction formed the key assays in drug 9 

testing. However, these animals were much more a model of amyloid intoxication than a 10 

model of the disease itself: they lacked tau pathology and the cognitive deficits were 11 

discrepant and uncorrelated to the histological changes [57,58,59,60]. The serial failures of 12 

the subsequent clinical trials severely punished the overlooking of these caveats of the animal 13 

model [61,62] and raised serious doubts about the validity/soundness of the amyloid theory 14 

[63,64,65]. 15 

In psychiatric disorders the etiological theories are even weaker than in AD as very little is 16 

known on the underlying mechanisms of defective cognitive functions. For example, 17 

according to the glutamatergic hypothesis of schizophrenia, cortical NMDA glutamate 18 

receptor hypofunction plays a central role in the pathomechanism [66]. In harmony with this, 19 

subchronic phencyclidine (PCP) treatment induced alterations are widely accepted as a model 20 

of glutamatergic dysfunction in schizophrenia [67]. However, a recent review demonstrated 21 

that this model is far from being able to recapitulate all the relevant cognitive deficits of the 22 

disease [68] pointing out some shortcomings of the theory and/or the model. Even more 23 

problematically, subchronic PCP-induced learning/memory impairments were reported to be 24 

restored by several atypical antipsychotics [69,70]. These findings are in sharp contrast to the 25 

clinical experience where these drugs are not particularly reputed for their memory improving 26 

properties. The model thus lacks specificity and may detect false positive compounds. 27 

Symptomatic treatment offers a lower risk – lower benefit alternative. It is based on activating 28 

more or less non damaged compensatory cognitive enhancer mechanisms and may feasibly be 29 

developed without exact knowledge on the etiology of the disease. The distinct cognitive 30 

symptoms (domains) can be modelled and examined separately. On the other hand, a single 31 

cognitive enhancer mechanism, be it so potent, cannot compensate for all the complex deficits 32 
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of the disorder generated by malfunctions in multiple pathways in the central nervous system. 1 

Therefore, the therapeutic effect achievable via the symptomatic approach is predictably less 2 

robust as demonstrated e.g. by the acetylcholinesterase inhbitors [3]. However, augmenting 3 

the points of symptomatic interventions by combining 2-3 validated targets either via 4 

combination therapy or multitarget directed ligands may result in activity on more symptoms 5 

and/or higher effect size. 6 

 7 

Box 2 8 

Changing the drug discovery paradigm 9 

As the pattern-matching approach implies elevated requirements for a certain mechanism or 10 

compound for being deemed “efficacious”, the number of real hits will foreseeably be 11 

reduced. It may be considered good news on one hand, as the basic translational problem was 12 

the high number of false positive hits in the animal literature. On the other hand, because of 13 

the scarcity of compounds capable to enter clinical trials and the longer preclinical 14 

investigation periods it is also foreseeable that industrial investors and top management may 15 

easily become disappointed and decide to refrain from CNS drug development – as it already 16 

happened in the near past. Experience shows that the described target validating 17 

experimentation does not fit the industrial R&D timeframe and scenery. Therefore, it should 18 

be done in the precompetitive area and outside of the conventional industrial settings. Once 19 

the target is (deemed to be) valid, drug discovery screening may return to its traditional way, 20 

back to the companies’ R&D labs, and can be carried out in simple(r) assays with sufficient 21 

robustness and capacity. Before entering into developmental phase with the optimized 22 

molecule, the selected clinical candidate could be checked again in the target validating 23 

paradigms. The study could be considered as a kind of early proof of concept trial and would 24 

conform to the ’fail fast’ (and cheap…) developmental strategy [71]. 25 

However, carrying out all the assays of Table 1 requires a large amount of effort and time and 26 

collaboration among labs (see Outstanding Questions). A complete target validation may well 27 

be realized within a couple of years. Not a short period, but a) it’s still much less than the time 28 

lost in late clinical phases because of the recurrent trial failures and b) it’s an investment with 29 

high return: a recent analysis [71] pointed out that Phase 2 and 3 success probabilities are the 30 

two most important determinants of overall R&D efficiency, and decreasing the 31 

corresponding attrition rates by ¼ and 1/3, respectively, may lead to a 1/3 decrease in the 32 
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average capitalized cost of a launch. With regard to the high societal needs for novel cognitive 1 

therapies, the long history of unsuccessful attempts and the collaborative nature of the job, 2 

this kind of target validation activity should obviously be supported by dedicated research 3 

funding.  4 

 5 

 6 

Glossary 7 

allocentric navigation “is characterized by the ability to navigate using distal cues, i.e., cues 8 

located outside and at some distance from the organism (e.g., landmarks).” (cited from [47]) 9 

attrition rate in clinical development: the ratio between the number of compounds failed in 10 

the clinical trials and the number of all tested compounds. Attrition rate can also be calculated 11 

for clinical trials instead of compounds in a similar way. While the former demonstrates the 12 

net success rate of clinical development, the latter, which results in higher figures, rather 13 

reflects the efforts and costs of the development. 14 

CNTRICS initiative: Cognitive Neuroscience Treatment Research to Improve Cognition in 15 

Schizophrenia. “… focused on … the identification of cognitive ‘constructs’ – definable 16 

cognitive processes that can be measured at the behavioral level and for which there exist 17 

clearly hypothesized and measureable neural-circuit mechanisms. … yielding a scheme of 18 

cognitive domains, and within each domain specific constructs considered to be most relevant 19 

to the cognitive impairments of schizophrenia. … to develop cognitive neuroscience 20 

paradigms for use in humans that could selectively and parametrically measure these 21 

constructs at the behavioral level … In a second phase … to further develop homologous 22 

assays of the key cognitive constructs within biomarker studies and animal model systems.” 23 

(cited from [36]) 24 

declarative memory: explicit, conscious memory on facts, events and concepts. It can be 25 

divided to semantic and episodic memory (see below)  26 

disease modifying treatment: treatment which results in change in the course of the disease 27 

process: slowing down, halting or even reversing it. It assumes the pathomechanism of the 28 

disease is known to the degree that enables us to directly intervene in the pathological events. 29 

egocentric navigation “is characterized by the ability to find one's way using internal and/or 30 

near (proximal) cues. Internal cues include proprioceptive feedback from limb/joint receptors 31 
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and stretch receptors in muscles and tendons that provide a sense of speed of motion that, 1 

when combined with heading or directional information and signposts about which way to 2 

turn, produce a pathway or route to and from different locations.” (cited from [47]) 3 

episodic memory refers to the memory of our experiences and events happened with us in the 4 

past and also to the ability to position ourselves in time and space; e.g. when and where my 5 

first date was 6 

executive function: “A purposeful, goal-directed operation such as planning, decision 7 

making, problem solving, reasoning, concept formation, self-monitoring or cognitive 8 

flexibility (adaptive alternation between different strategies, responses and behaviours).” 9 

(cited from [34]) 10 

external validity: with regard to animal models of human diseases external validity refers to 11 

the “goodness”, reliability, precision of inferences which can be drawn from the model onto 12 

to the disease. It is usually decomposed to predictive (specificity and sensitivity), face and 13 

construct validity (fidelity of the model). 14 

fear extinction: pairing non-aversive contextual or discrete cues (conditioned stimulus) to a 15 

fear-provoking aversive (unconditioned) stimulus results in long-lasting fear responses to the 16 

formerly neutral stimulus, termed conditioned fear. The acquired fear responses can undergo 17 

extinction when the subject recognizes the fear-provoking stimulus is no more coupled to the 18 

conditioned stimulus. Fear extinction is an active learning process which is damaged in post-19 

traumatic stress disorder.  20 

internal validity: it reflects those features of a model which enable us to draw solid 21 

conclusions on the causal relationships between phenomena studied in the model. Such 22 

features are e.g. reliability, reproducibility, robustness, stability, accuracy. 23 

MATRICS initiative: Measurement of Treatment Effects on Cognition in Schizophrenia, 24 

initiative of the NIMH with the goal to identify the core cognitive deficits of schizophrenia 25 

and to develop a standardized test battery for their measurement (MATRICS Consensus 26 

Cognitive Battery). The work continued in the CNTRICS initiative. 27 

procedural memory: implicit, unconscious memory of motor skills, e.g. how to ride a bike  28 

proof of concept trial: a clinical investigation aiming at proving/confirming the scientific 29 

hypothesis set on the relationship between drug effect on a given target and disease outcome. 30 

Phase 2 trials where the efficacy of a drug is first tested on a smaller number of patients 31 
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traditionally belong to this category. Recently, certain biomarker studies carried out on non-1 

patient subjects may also be considered as proof of concept trials. 2 

response inhibition: the ability of the subject to withhold a formerly reinforced or otherwise 3 

advantageous “prepotent” response in order to achieve a more favourable goal. Impaired 4 

response inhibition is a key component of impulsivity. 5 

semantic memory refers to the memory of facts, objects, ideas; our lexical knowledge; e.g. 6 

how big an apple can be. 7 

social cognition “refers to processes used to monitor and interpret social signals from others, 8 

to decipher their state of mind, emotional status and intentions, and select appropriate social 9 

behaviour.” (cited from [37]) 10 

symptomatic treatment: treatment which only modifies the symptoms of a disease 11 

(diminishing or abolishing them) without affecting the pathological sequel. Symptomatic 12 

treatment is usually based on activating non damaged compensatory cognitive enhancer 13 

mechanisms. 14 

theory of mind refers to the ability to make inferences on someone else’s mental state 15 

(thoughts, emotions or intentions) and prediction of his/her future behaviour based on social 16 

signals and the context of the situation.  17 

working memory: in animals, the term refers to short-term storage of information which can 18 

subsequently be transferred to long-term memory stores or dropped (forgotten) if it is no more 19 

needed. In humans the term covers a more complex process, including also certain computing 20 

activities (“working”) with the stored items. 21 

  22 



 

27 

Figure legends 1 

Figure 1. A rodent test battery for characterizing potential cognitive enhancer 2 

compounds.  3 

The leftmost column lists assays modelling certain cognitive functions (see Table 1). Other 4 

columns represents various impairment methods, thus each cell in the table corresponds to a 5 

particular cognitive deficit model. Shading and symbols in the table illustrate hypothetical 6 

activity patterns as follows: unshaded and shaded cells indicate impaired and unimpaired 7 

cognitive performance, respectively, obtained after applying a concrete type of the impairing 8 

method in the column header. Each column has a particular impairment pattern representing a 9 

certain “disease state”. Symbols show the cognitive improving effects of two compounds, 10 

Compound Red and Compound Pink, with distinct mechanisms of action; the latter tested in 11 

only two “disease states”. 0: no effect, x or +: mild effect; xx or ++: moderate effect; xxx or 12 

+++: strong effect. The “results” demonstrate that 1. a compound may have different actions 13 

on the different cognitive defects (symptoms) in a given “disease state”; 2. it may have 14 

different activity profile in different “disease states”; 3. a particular “disease state” (e.g. old 15 

age or stress-induced) may be differently affected by different types of compounds; 4. the 16 

resulting outcome of testing a particular cognitive enhancer mechanism is a cognitive 17 

enhancer pattern  18 

Abbreviations:  PAL: paired associates learning; 5-CSRTT: 5-choice serial reaction time task; 19 

PPI: prepulse inhibition; DRL: delayed reinforcement of low rate. For further information on 20 

the assays see the references of Table 1. 21 

 22 



Outstanding questions: 

 

 What degree of pattern similarity would suffice for a go decision?  

 How manyand how large positive effects can be considered sufficient? 

 Which has more bearing: effects on many cognitive domains or against many 

impairments? 

 Can weaker efficacy be compensated by a more widespread activity profile and vice 

versa? 

 What if the results with different “probes” of the same mechanism (e.g. two different 

compounds with similar mode of action) do not converge?  

 What if the results in different models of the same cogntive domain (e.g. two different 

episodic memory models) do not converge? 

 Where is the optimal place of target validation activity in the drug 

discovery/development process?  

 What is the time frame of validating a single molecular target?  

 How many labs should be involved in a target validating collaboration?  

 How should methodical coherence be assured among the collaborating labs? 

 Who should fund the work?  

 

Outstanding Questions



Figure 1. A rodent test battery for characterizing potential cognitive enhancer compounds.  

The leftmost column lists assays modelling certain cognitive functions (see Table 1). Other columns 

represents various impairment methods, thus each cell in the table corresponds to a particular 

cognitive deficit model. Shading and symbols in the table illustrate hypothetical activity patterns as 

follows: unshaded and shaded cells indicate impaired and unimpaired cognitive performance, 

respectively, obtained after applying a concrete type of the impairing method in the column header. 

Each column has a particular impairment pattern representing a certain „disease state”. Symbols 

show the cognitive improving effects of two compounds, Compound Red and Compound Pink, with 

distinct mechanisms of action; the latter tested in only two „disease states”. 0: no effect, x or +: mild 

effect; xx or ++: moderate effect; xxx or +++: strong effect. The „results” demonstrate that 1. a 

compound may have different actions on the different cognitive defects (symptoms) in a given 

„disease state”; 2. it may have different activity profile in different „disease states”; 3. a particular 

„disease state” (e.g. old age or stress-induced) may be differently affected by different types of 

compounds; 4. the resulting outcome of testing a particular cognitive enhancer mechanism is a 

cognitive enhancer pattern.  

Abbreviations:  PAL: paired associates learning; 5-CSRTT: 5-choice serial reaction time task; PPI: 

prepulse inhibition; DRL: delayed reinforcement of low rate. For further information on the assays 

see the references of Table 1. 
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