Measuring floral resource availability for insect pollinators in temperate grasslands – a review

Running title: Measuring floral resource availability

This is the final, accepted version of the paper published in Ecological Entomology (2016) 41: 231-240. DOI: 10.1111/een.12298

VIKTOR SZIGETI1,2, ÁDÁM KŐRÖSI2, ANDREA HARNOS3, JÁNOS NAGY4 and JÁNOS KIS1

1Institute for Biology, Szent István University, Budapest, Hungary, 2MTA-ELTE-MTM Ecology Research Group, Budapest, Hungary, 3Department of Biomathematics and Informatics, Szent István University, Budapest, Hungary, 4Institute of Botany and Ecophysiology, Szent István University, Gödöllő, Hungary

Correspondence: János Kis, Institute for Biology, Szent István University, Rottenbiller utca 50, H-1077, Budapest, Hungary, Phone: +36 70 380 29 23, E-mail: jkis17@gmail.com

Abstract 1. The relationship between pollinators and flowering plants plays a crucial role in the function of terrestrial ecosystems. Although pollinators use floral nectar and pollen as food resources, no general methodology for floral resource availability estimates exists.

2. We provide a brief review on floral resource sampling methods frequently used in pollination studies. We focus on how representative vegetation samples are both spatially and temporally, and how these are constrained by sampling effort.

3. We selected field studies investigating flowering plant abundance for insect pollinators, in temperate grasslands. We categorised the reviewed studies according to aims, sampling units and count variables used and provide a descriptive summary on methodology.
trade-offs between different aspects of sampling investment.

4. We reviewed 159 pollination studies. We found large methodological differences, and vegetation sampling was presented in many studies insufficiently. Sampling covered a small proportion (median: 0.69%) of the study sites, with long intervals (median: 30 days), and most studies lasted only a few years. The most often used count variables were indirect proxies of floral resources. We found negative relationships in some of the different aspects of sampling, e.g. the proportion of site covered with sampling decreased with increasing site area.

5. By tailoring sampling methods to specific research questions, research effort should be optimally allocated to obtain proper spatio-temporal resolution and data coverage. We suggest guidelines to design sampling, e.g. to increase coverage and frequency. We think that further field work on optimising sampling techniques is mandatory.

Key words: plant-animal interactions, flower, food-resource estimate, nectar resources, insect pollinated plants, vegetation sampling methods

Introduction

The relationship between pollinators and flowering plants plays a crucial role in maintaining most terrestrial ecosystems. Recently, there has been an increasing interest in pollination studies manifested in intensive research on a potential pollination crisis and consequent harvest fall (Potts et al., 2010; but see Ghazoul, 2005), human impacts and the effect of climate change on pollinator communities (Benadi et al., 2014; Petanidou et al., 2014), and understanding pollinator foraging strategies (Goulson, 1999). The number of studies investigating plant-pollinator relationships at the
community level and at the landscape scale is also increasing (Hegland & Totland, 2005; Henry et al., 2012) and understanding entire plant-pollinator networks received special attention (Burkle et al. 2013). Several important and yet not sufficiently understood key problems concerning the conservation of plant-pollinator systems, such as sampling floral resource availability for pollinators, were identified by Dicks et al., (2013).

Pollinators feed on nectar, pollen and oils produced by flowers (Goulson, 1999). Quality, quantity and production rates are highly changing by plant species, time of the day, age of flowers and competitors' consumption (Nicolson et al., 2007). Resources offered to pollinators are advertised via many flower traits, but some flowers may deceive pollinators providing no reward (Goulson, 1999; Nicolson et al., 2007). Pollinator abundance, diversity and resource-visit frequency are influenced by the number of floral resource species, quantity and density of flowers and the amount and quality of food in flowers, being the strongest factors structuring pollinator communities (Potts et al., 2004; Dennis, 2010). In animal-pollinated species, the length of the flowering period, seed production and plant population dynamics depend on pollination (Nicolson et al., 2007). Components falling out from complex plant-pollinator networks, due to local extinction, or temporal mismatches in plant-pollinator phenologies caused by differential effects of global change drivers such as climate change, or habitat loss and degradation (Burkle et al., 2013), might have severe impacts on a given community. To investigate such potential impacts on a network requires reliable sampling methodology. Therefore, estimates of resource availability are essential in order to understand such ecological interactions and to establish restoration management (Dennis, 2010).

Botanists and zoologists study pollinators and flowering plants from different perspectives and use a wide range of methods in pollination research (Goulson, 1999; Bosch et al., 2009). Some pollinator studies investigate flower availability superficially, by using only, for instance, species richness of flowering plants (Kitahara et al., 2008), while some studies even neglect it completely.
and often conclude floral resource availability from indirect proxies such as consumption rates (Bakowski & Boron, 2005), pollen distribution in honey (Aronne et al., 2012), or pollinators’ pollen load (Hinners & Hjelmroos-Koski, 2009). Apparently, no generally used methodology exists to estimate floral resource availability, and many studies neglect standard vegetation sampling protocols (Elzinga et al., 1998; Gibson, 2002). For instance, the suitability of counting flowers or sampling nectar was debated as early as the beginning of the 1980s (Tepedino & Stanton, 1981; Zimmerman & Pleasants, 1982; Tepedino & Stanton, 1982). Recommendations on how to measure floral resource availability for pollinators are still scarce (Zimmerman & Pleasants, 1982; Tepedino & Stanton, 1982; Frankl et al., 2005; Hegland et al., 2010).

We think that three important decisions have to be made before choosing an appropriate method to investigate pollinator food resource sampling. First, one has to choose the focus of the study: whether to investigate a single plant species and all its pollinators (Thompson, 2001), or a single pollinator species and all its flower resources (Rusterholz & Erhardt, 2000), or the entire pollination network (Junker et al., 2013). Second, the spatial and temporal scale of the study has to be adjusted to the often wide array of foraging ranges and life cycles of focal pollinators (Osborne et al., 2008; Dennis, 2010). The spatio-temporal resource distributions are also various including high seasonal and annual variation (Alarcón et al., 2008; Kubo et al., 2008; Dennis, 2010). These imply the necessity of frequent sampling and long-term studies, ranged from the level of individual flowers through patches to biotopes and landscapes (Hatfield & Lebuhn, 2007; Westphal et al., 2008). Third, to define the unit of the count variables (i.e. count units to estimate flower resource amounts available for pollinators) insect perception should be taken into account (Kearns & Inouye, 1993). Plants have rather different body plans and inflorescence structures, and their pollinators are not less various in morphology, timing and foraging range, and these two parts have to match. Flowers therefore, may be perceived very differently by different pollinators, since insects use various cues to navigate at different spatial scales and use a wide range of sensory systems (Dauber et al., 2010;
Count variables can be nectar and pollen amount, counts of single flowers or inflorescences, the number of flowering shoots, or the number of single-species flower patches, and may vary depending on the pollinators investigated.

In the light of these three points and that the suitability of different methods depends on the specific research question, it is clear why generally used sampling methods are not available for investigating so complex systems. In this paper, we aim to review the methodology of estimating food availability for insect pollinators in temperate grasslands. We focus on how representative vegetation samples in pollination studies are both spatially and temporally, and how these are constrained by sampling effort. We also highlight challenges in estimating floral resource availability.

Data and methods

Our aim was to review research papers focusing on the relationships between resource availability for insect pollinators and pollinator abundance, diversity or flower preferences. We searched for papers upon four groups of search terms (i) “bee”, “bee fly”, “bumblebee”, “butterfly”, “hoverfly”, “moth”, “pollinator”, “visitor”, “wasp”; (ii) “diversity”, “foraging”, “feeding”, “network”, “preference”; (iii) “floral”, “flower”, “nectar”, “pollen” and (iv) “availability”, “resources”, and we used “and” operator between groups and “or” operator between keywords within groups. We used the databases ISI Web of Science (www.webofknowledge.com) and Scopus (www.scopus.com), accessed 08 Nov 2015. We selected field studies investigating flowering plant abundance, aimed at insect pollinators only, and carried out in the temperate climate zone. We excluded publications focusing only on a single or very few plant species, or mainly on flowering shrubs and trees, because the latter requires rather different sampling methods (references of the
reviewed studies: Appendix S1).

We categorised the reviewed studies according to (i) aims, (ii) the sampling units and (iii) the count variables used, and (iv) whether estimates on the amount of nectar or pollen were applied. We refer to sampling units as “quadrat” in the broad sense, i.e. quadrat is a more or less equal sided sample area (Gibson, 2002) in all cases when authors used the terms “quadrat”, “square”, “circle” or “plot”. Transects were elongated sampling units. We extracted information on sampling unit shape, as well as length and width of the sampling unit if it was quadrat or transect. Count variables (e.g. the number of flowers or visual floral display) were measured either with (i) rough estimates, such as ranks, and green cover or flower cover estimates, in all cases where flowering shoots, or inflorescences were not accurately counted, hereafter referred to as categorical estimates, or with (ii) direct counts of all shoots or other types of counted units within a sampling unit. Furthermore, we extracted the following numerical data from the articles: number of study sites; site area; number of sampling units per site per sampling event; area of sampling units; length, width and radius of sampling units; sampling interval; length of the study in years and the number of pollinator species (raw data: Appendix S2). We calculated mean values of these variables, if more than one values were given per study. Furthermore, we calculated sampling unit length:width ratio in case of rectangle-shaped sampling units, the total area of sampling per event, and the proportion of the site covered by sampling, if data were available (Appendix S2).

We present descriptive statistics by giving median, minimum and maximum values, and showing boxplots with individual data points. We investigated relationships between the temporal and spatial resolution of the studies to detect potential trade-offs in research investment. We expected trade-offs between the area of study sites and the number of sites; the proportion of the site covered by sampling and the number of sites; the number of sampling units and the area of study sites (we analysed studies using quadrats or transects pooled with all other studies as well as separately); the area and the number of sampling units; the proportion of the site covered by sampling and the area
of study sites, sampling interval and the number of study sites; sampling interval and site area;
sampling interval and the proportion of the site covered by sampling. We provide Kendall's tau
correlation coefficients for rank data and p-values corrected for multiple comparisons with the
method of Benjamini & Hochberg (1995). We also expected that categorical estimates require less
research effort than direct counts, thus using categorical estimates allows sampling a larger total
area than when direct counts are used. We tested this assumption with Mood's median test. We
analysed all data in the R statistical environment (R Core Team, 2015).

\section*{Results}

We found 159 studies published in 1981–2015 with the aims of estimating “pollinator population
size or diversity” in 104 (66.0\%) cases, “flower preferences” in 42 (26.6\%) cases, both in 8 (5.1\%)
and “other” in 4 (2.5\%) studies (raw data: Appendix S2, descriptive statistics: Fig. 1.). One study
(Miller-Struttmann \textit{et al.}, 2015) was based on two different historic datasets using different
methodologies, and we analysed these data as if they were coming from two independent studies.
Authors investigated 1–665 (median: 20) pollinator species, in 1–216 (median: 16, Fig. 1.A.) study
sites, with 8 m2–125 km2 (median: 10 ha, Fig. 1.B.) site area per study. We found rather different
methods in the reviewed studies, i.e. the applied sampling units and count variables varied
considerably. Vegetation sampling procedures, such as the spatial and temporal distribution of the
sampling units in the study sites were not clearly described (note NA-s in Fig. 1.) or the reasons
why a given method had been used remained unexplained in many studies. For example, 57
(35.8\%) studies lacked information on site area and 66 (41.5\%) studies lacked information
necessary to compute the proportion of the study site covered with the sampling units.

Sampling units were quadrats (60.4\%), transects (34.0\%), the monitoring of the whole area
or point intercept technique in a single study. The shapes of the sampling units, we refer to
as quadrats in the broad sense (Gibson, 2002), were squared quadrats (41.7%), rectangles (10.4%)
and circles (10.4%) (Table 1.). Transects were belt transects (rectangular) in most cases (87.0%) and
line transects in a few cases (3.7%), and in the rest of the studies transect type was not specified
(Table 1.). Sampling was carried out using only a few sampling units per site per sampling event
(median: 5, Fig. 1.C.), with 20 m² of median unit area (quadrat: 2 m², transect: 250 m², Fig. 1.D.,
Table 1.). The median cover of the study site area was 0.69% (Fig. 1.E.). Count variables were
flower unit (i.e. visual display) (28.8%), flower (24.4%), flowering shoot (13.5%), flower cover
(12.8%), inflorescences (10.3%), green cover (7.7%), and frequency of flowering shoots (1.9%).
The measures of count variables were categorical estimates in 36.5% and direct counts in 61.6% of
the studies. Nectar or pollen amounts were estimated in 8.8% of the studies with any method,
although nectar amount was the count variable only in a single study (0.64%). Studies were one
(63.9%), two (20.9%), three (8.2%), or four (4.4%) years long, only one lasted five, two lasted six
and yet another nine years. Most sites were sampled with low frequency (median sampling interval:
30 days) during the study period and many of these used calendar time intervals, e.g. weekly,
monthly, or annual sampling (Fig. 1.F.).

We found negative relationships in some of the different aspects of sampling. The area of study
sites was slightly smaller if the number of sites were larger ($\tau = -0.20$, $P = 0.007$, $n = 102$, Fig.
2.A.). The proportion of the area covered by sampling was not related to the number of sites ($\tau =
-0.02$, $P = 0.794$, $n = 93$, Fig. 2.B.). We did not find a relationship between the number of sampling
units and the area of the study site, if we analysed all types of sampling units pooled ($\tau = 0.13$, P
= 0.099, $n = 99$, Fig. 2.D.). Although we did not find a relationship when analysing transects only
($\tau = -0.14$, $P = 0.388$, $n = 27$), we found that the larger was the area of the study site, the more
quadrats were used ($\tau = 0.29$, $P = 0.003$, $n = 60$) when quadrats were analysed separately. With
smaller sampling unit area, the number of units increased ($\tau = -0.47$, $P < 0.001$, $n = 99$, Fig.
2. G.), although the proportion of the whole area covered by sampling significantly decreased with site area ($\tau = -0.45, P < 0.001, n = 93$, Fig. 2.E.). Sampling interval increased with the number of sites ($\tau = 0.32, P < 0.001, n = 148$, Fig. 2.C.), but was neither related to site area ($\tau = 0.06, P = 0.478, n = 95$, Fig. 2.F.) nor to the proportion of the site area covered with sampling units ($\tau = -0.10, P = 0.267, n = 86$, Fig. 2.H.). Researchers using categorical estimates sampled significantly larger total sampling areas during a single sampling event (median = 4500 m2, $n = 49$) than those using direct counts (median = 446 m2, $n = 90$; Mood's median test: $P < 0.001$).

Discussion

We found rather different methods applied to estimate food resource availability for pollinators in the reviewed studies. All variables characterising sampling strategies showed an extreme scatter (Fig. 1.). We found no general methodology, and many studies neglected or did not refer to existing vegetation sampling protocols (Elzinga et al., 1998; Gibson, 2002). Some important details were not described in many cases, and the reasons why the given methods had been used were rarely explained. The lack of detailed description of methodology was also found by Mortelliti et al., (2010) who reviewed studies of habitat quality. They concluded that this lack of information hinders carrying out meta-analyses (Mortelliti et al., 2010). In addition, such practice makes reproducibility impossible. We suggest that the role of size and spatio-temporal heterogeneity of study sites were underestimated in many of the reviewed papers, as in the vast majority of studies in the field of ecology (Mortelliti et al., 2010). Most of the reviewed pollinator studies did not carefully design resource availability sampling relative to the problem's complexity.

Many studies aim to primarily sample important and/or abundant plant and pollinator species (Hegland et al., 2010), although rare species might also play an important role in maintaining...
specialised pollinators (Bosch et al., 2009). We suggest that not only the rare, but even abundant
species can be overlooked if flowers are highly aggregated in space, especially if only a small
proportion of the entire area is thoroughly sampled, e.g. when using quadrats or transects.
Furthermore, various methods may detect different floral species with different probabilities. Based
on the fact that the number of flowering plant species was usually positively correlated with
pollinator species richness (Ebeling et al., 2008), some studies used only species lists, i.e. presence-
absence data, to predict floral resource availability (Kitahara et al., 2008). However, we agree with
Hegland & Boeke (2006) that species lists alone are not appropriate estimates of floral resource
availability: some quantitative estimates such as flower abundance are recommended.
Data on foraging ranges of some pollinators (Osborne et al., 2008; Dennis, 2010) imply that the
design of vegetation sampling was not representative in many of the reviewed studies, e.g. due to
low spatial coverage. Pollinator home range as well as floral species phenology and its
consequences for spatio-temporal variation in resource availability must also be taken into account
to delineate study site and determine sampling methods for resource availability and resource use at
the same scale. For instance, using the same sampling units may help to find the link between
resource availability and resource use (Rusterholz & Erhardt, 2000; Hegland & Totland, 2005).
Natural biotopes in the temperate zone are highly heterogeneous and many flowers are aggregated
(Elzinga et al., 1998; Hatfield & Lebuhn, 2007), and the spatial heterogeneity also influences the
minimum number of sampling units required. If spatial coverage of sampling is low, then many
species will be estimated with large bias (Hegland et al., 2010). Unfortunately, we did not find
recommendations on the proportion of the study site covered to sample floral resources. Compared
to the median 0.69% cover for the reviewed studies, for an accurate estimate in a field study, we
should have covered about 6.3 ± 3.6% [mean ± SD] of a 0.6 ha Central European colline meadow,
estimated by Kupper's and Hafner's method (Kupper & Hafner, 1989, modified by Elzinga et al.,
1998; Szigeti et al., unpublished). Insufficient quadrat cover yields biased data especially on rare
and clumped species. On the one hand, clumped species can be sampled with less bias if quadrat sizes are increased or their shape varied, e.g. from square to elongated rectangle (Elzinga et al., 1998). On the other hand, quadrat size should be maximum 2m × 2m, because small flowers in a larger quadrat can hardly be detected without stepping in (Kearns & Inouye, 1993). Long and narrow sampling units may overcome this problem (Elzinga et al., 1998). We found a large scatter in the shape of sampling units (Table 1.). Although shape may resolve sampling difficulties for aggregated plants generally, we found no arguments on why a specific shape was used, except in those cases when the same transects were used for pollinator and plant sampling. The median 2 m belt width indicates that most researchers follow Kearns & Inouye's (1993) recommendation, although the large range shows that still many authors use belt widths within which detectability might vary severely.

Kearns & Inouye (1993) needed 12 hours for counting the number of flowers in 25 2m × 2m quadrats. The research effort necessary for a thorough quadrat sampling may also depend on the type of the count variables, not only on species richness and biotope heterogeneity. Nevertheless, in homogeneous biotopes such as agricultural plots, even a smaller number of sampling units may be sufficient.

Determining the *count variable*, the unit of resource availability, is also difficult. A count variable should estimate the feeding unit of the pollinator (Kearns & Inouye, 1993) and take into account how pollinators find their food resources (Goulson, 1999; Dauber *et al.*, 2010). Both count variables and feeding units may be specific to both plant and pollinator species and to the aim of the study. The most frequently used count variables were those simple to estimate, such as the number of flowers or flower area, and only a handful of studies investigated resource value (pollen or nectar amount) for different plant species or referred to other studies assessing resource values. We found direct measures of nectar-resource values only in a single study (Potts *et al.*, 2004). Although the ultimate goal to assess resource availability would be to obtain estimates on sugar and amino acid
contents of nectar and pollen (Zimmermann & Pleasants, 1982), considering that food amount
depends on species, site, individual, weather etc. (Tepedino & Stanton, 1982; Nicolson et al., 2007),
such estimates are rarely feasible. For example, collecting nectar in a sufficient amount for
measurements is either complicated and labour-intensive, or hardly feasible at all for many flower
species (Tepedino & Stanton, 1982; Morrant et al., 2009). Hegland & Totland (2005) argued for
using proxies, because the number of flowers and flower size were related to nectar amount in
several studies. This relationship has been demonstrated mostly within species or families (Stanton
& Preston, 1988; Galetto & Bernardello, 2004), albeit very few studies are available for
investigating communities; some found similar relationships (Potts et al., 2004; Torné-Noguera et
al., 2014), while others did not (Wäckers, 2004). In contrast, counting flowers may yield rather
imprecise estimates for food availability (Benadi et al., 2014), although even the flower patch may
be a valid count variable if the project targets the landscape scale (Henry et al., 2012). Pollinators
prefer dense patches to minimise the costs of search (Hegland & Totland, 2005) and may use
patches as sensory cues to find food resources rather than individual flowers or inflorescences
(Goulson, 1999; Dauber et al., 2010). However, traits such as flower size, colour or scent may
directly indicate rewards available for flower visitors in a specific flower (Nicolson et al., 2007) and
visitors may use such cues when selecting flowers within a close distance (Weiss, 1991). Flower
unit (visual display) may be a reasonably good choice, but the definition is not clear in all cases. For
instance, Tepedino & Stanton (1981) counted flowers and inflorescences, depending on floral type
and/or species, but did not define them as flower units. Rotenberry (1990) gave a definition for
floral visual display and considered flowers, heads, or stems as unity, and emphasised that these
were selected to match closely the flower visitor's view. Other authors use similar, albeit slightly
different definitions, and some emphasise that the unit was defined so as pollinators should walk
and not fly when foraging (Woodcock, 2014), rather than by the visual cues perceived from a
distance (Cowgill, 1993; Hegland & Totland 2005). These approaches led to similar categories,
although these categories may be difficult to apply at least for some plant species. Indeed,
definitions are based more on examples than on rigorous descriptions of the categories due to the
extreme variability of floral body plans.

In a few studies, besides using a count variable simple to estimate, e.g. number of shoots, floral
traits such as the number of flowers per stems, flower dimensions or nectar amounts were also
measured for a couple of individuals in several species. Then the measurements of these floral traits
were extrapolated to the entire sample (e.g. Hegland & Totland 2005). This method may yield much
more accurate estimates on food availability than using solely proxies such as flower units.

Plant-pollinator interactions are changing rapidly over the flowering and pollinator flight period
in natural circumstances. Many pollinator studies focused on the temporal distribution of plant-
pollinator interactions such as relationships between flowering phenology and pollinator floral
resource choice (Bagella et al., 2013; Benadi et al., 2014; Petanidou et al., 2014). This requires
investigating temporal changes in species composition and flower density. Median resource
sampling time was 30 days for the reviewed studies. In contrast, rapid changes of flowering were
found over the season (Kubo et al., 2008; Bagella et al., 2013) or even during a day (Nicolson et al.,
2007; Fründ et al., 2011), and these changes were partially due to the interactions between flowers
and their insect visitors (Fründ et al., 2011). Temporal changes should be taken into account when
planning sampling frequency, since pollinators necessarily follow these changes (Goulson, 1999;
Potts et al., 2004; Kubo et al., 2008). Furthermore, time elapsed between sampling events increased
with the number of sites for the reviewed studies, indicating that sampling frequency was
determined by research effort constraints. We argue that this typical trade-off between spatial and
temporal representativeness could be overcome or its limitations could be reduced by combining
different methods with either a high spatial or high temporal resolution. We suggest that recording
presence-absence of flowering species in an entire meadow might detect some species that start
blooming earlier than quadrats or transects, if these latter cover only a small proportion of the entire
study area. In contrast, abundance estimates, e.g. by quadrat sampling, may be more suitable to
estimate the change over time in relative densities across species, due to its higher resolution.
Sixty-four percent of the studies investigated a single year, thus being hardly representative of a
plant community in the long run. Only four studies extended more than four years (Stefanescu,
1997; Alanen et al., 2011; Petanidou et al., 2014; Miller-Struttmann et al., 2015). However, floral
resource compositions vary considerably among years (Alarcón et al., 2008), and we agree with
Westphal et al. (2008) that one-year studies provide only a snapshot of plant-pollinator interactions.
In general, a trade-off emerges between spatio-temporal resolution and coverage of sampling.
For example, although the number of sampling units increased with research area, the coverage of
sampling decreased. Similarly, the effort invested in the temporal resolution of sampling decreased
with the increasing size of the study site, although did not change with sampling unit size.
Furthermore, direct counts involved smaller areas sampled, compared to the simpler categorical
estimates, thus researchers have to decide on either using higher estimate accuracy or better spatial
resolution. In contrast, we did not find relationships in all of the cases where we expected trade-offs
among different aspects of research investment. We propose that many times researchers might
overlook the necessary research investment in all the important aspects of the required sampling
process when planning sampling protocols. Reasonably good estimates need labor-intensive and
expensive methods, but research investment is always limited (Hegland et al., 2010). Nevertheless,
minimum criteria for sampling each component of a study should be defined.

Recommendations

Recommendations on sampling methods to estimate floral resource availability for pollinators
are scarce (Frankl et al., 2005; Hegland et al., 2010), although a wide range of methods is described
in the vegetation literature (Elzinga et al., 1998; Gibson, 2002). Here we provide a few guidelines based upon the reviewed studies, that we think useful for estimating food resource availability for pollinators in temperate grasslands. We recommend that both quantity and quality as well as the spatio-temporal distribution of resources should be monitored when sampling floral resources. The selected sampling methods should be better adapted to the aim of the study, and to the complexity of the study system (spatial heterogeneity, seasonality, number and type of pollinator species etc; Kearns & Inouye, 1993; Hegland et al., 2010). To investigate floral resource abundance, focal pollinators' feeding range in a specific area should be known. Rarity of important floral resources should be taken into account when choosing a sampling method.

Given the research question, one should decide how to allocate finite research effort into the spatio-temporal resolution and the coverage of sampling. In many cases, a high resolution is required in both spatial and temporal terms, or both sampling resolution and coverage must be sufficiently high to answer research questions. Using the same sampling units for pollinators and their food resources may help to find the link between resource availability and consumption. We argue that combining different methods that are appropriate to provide data with either high spatio-temporal resolution or coverage, is a reasonable approach. For instance quadrat or transect sampling could be completed with species lists on entire study sites, thus including information on all potential nectar resources. When quadrat sampling is not feasible or only limited efforts can be allocated to use this method, listing flowering species with a rough categorical abundance estimate, similar to the method used by Goulson & Darvill (2004), may serve as either complementary sampling or just a better option than the lack of abundance data. However, these methods considerably reduce accuracy compared to quadrat sampling. Furthermore, the presence of frequently visited, although rare floral sources may be noticed with the help of pollinator behaviour. However, using feeding rates as an estimate of resource availability is not a viable approach (Bakowski & Boron, 2005; Hinners & Hjelmroos-Koski, 2009; Aronne et al., 2012). Although
Pollinators are certainly much better than scientists in finding floral resources. Resource availability should be estimated independently of the consumers' visit frequency, because of their preferences. Although the ultimate solution to estimate floral resource amounts would be directly measuring nectar and pollen, it is not feasible in many cases. Characterising flowers with such direct measures, and collecting larger samples on flower abundance could be a reasonably good compromise, especially when variability in nectar and pollen amounts is also taken into account. If direct measures on nectar or pollen amounts are not feasible, visual floral units from the pollinators perspective could be the appropriate count variable. We also recommend avoiding estimates based on green cover, since it is a very poor proxy of floral resource abundance for many plant species. In contrast to Hegland et al. (2010), who found that only a few or even a single sampling event a year was sufficient for investigating key species in pollination networks, we recommend using shorter sampling intervals than used in most of the reviewed studies. The optimal sampling interval may vary among studies. We recommend adjusting it to the aims of the study, community structure and climate. We also recommend conducting long-term studies to lower the risk of distortion due to large annual variation in resource composition, abundance and consumption. Remote sensing technologies, such as drones with high optical resolution (Bakó et al., 2014) multi-spectral cameras (Peña-Barragán et al., 2007), may change flower resource sampling in the near future. Several pollinator studies have already used remote sensing to estimate the amount of resource or habitat quality on the landscape scale (Osborne et al., 2008; Henry et al., 2012), or time-lapse photography to investigate flowering dynamics (Crimmins & Crimmins, 2008). However, such technologies have low spatial resolution for floral resource sampling (e.g. are unable to detect cryptic plants). Therefore, we think that traditional sampling methods should be further investigated to find efficient, widely usable methods to provide a sound methodological basis for understanding plant-pollinator interactions. We conclude that thoroughly planned field studies comparing sampling protocols at the community level, including remote sensing, and their appropriateness at different
circumstances are still mandatory.

Contribution of authors

VS, JK, AK and JN designed the project. VS and JK collected data. VS performed and AK, JK, AH advised on data analyses. VS and JK wrote several drafts and all authors revised the final manuscript.

Supporting Information

Appendix S1. References of the reviewed studies.

Appendix S2. Raw data for the reviewed studies.

References

185–209.

plant species richness in and around the Aokigahara primary woodland of Mount Fuji, central Japan. *Biodiversity and Conservation*, **17**, 2713–2734.

Figure legends

Fig. 1. Distributions of the variables characterising sampling methods in the review. Boxplots show medians, lower and upper quartiles, whiskers include the entire range. Grey + symbols are the data points showing the proportion of data on the vertical axes. Horizontal axes are log10 scaled. NA-s are the number of papers lacking data.

Fig. 2. Relationships among different kinds of sampling investment. All axes are log10-scaled. The plus symbol represents a given study, except D) where plus symbols show transect, squares quadrats, the triangle point sampling and circles studies when the entire site was sampled.

Table 1. Shapes and sizes of common sampling units. We used “quadrat” in the broad sense of Gibson (2002), as a more or less equal sided sample unit denoting shapes “quadrat”, “square”, “circle” or “plot”. Transects were elongated sampling units.