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Dear Sir, 

 

There has been significant interest on the effects of UV-light excitation on the structure 

and function of proteins and peptides.
[1]

 UV-light excitation has diverse and emerging roles in 

biological, medical and industrial processes. Photo-induced damage of proteins occurs via 

endogenous chromophores, such as tryptophan, tyrosine, phenylalanine, histidine, cysteine 

and/or cystine.
[2]

 Data derived from investigation of various proteins (e.g. goat α-

lactalbumin,
[3]

 immunglobulins,
[4]

 cutinase
[5]

 and bovine growth hormone
[6]

) show that 

tryptophan residues may be the primary motifs in the initiation of protein photodegradation. 

Free cysteine thiyl radicals (CysS•) can be formed as a result of disulfide photolysis due to 

photoionization of the Trp residues of the polypeptide chain. However, photolytic split of 

disulfide bonds could strongly depend on the microenviroment of both moieties. Trp-

mediated photolysis may occur at appropriate distance from the disulfide bridge. Several 

photolysis experiments were carried out using lower (λ=253.7 nm) and/or higher (λ=280-300 

nm) wavelengths to provide evidence for disproportionation mechanism of disulfide 

photolysis.
[7]

 Due to the reactivity of free thiyl radicals and of sulfhydryl groups, instant and 

sensitive detection of disulfide splitting is still a challenge. 

Various methods and reagents have been reported in the literature for revealing free 

sulfhydryl moiety. Depending on the required detection limit, various thiol-reactive probes 

have been used for detection of sulfhydryl species, such as Ellman’s reagent,
[8]

 

iodoacetamide- and maleimide-derivatives.
[9]

 Among these probes, several fluorogenic agents 

are available for derivatization followed by detection. Fluorescent probes provide sensitive 

methodology for indirect detection of free sulfhydryl groups; however, these reagents are 

generally not suitable for the localization of cysteine residues in the polypeptide sequence. 7-

diethylamino-3-(4’-maleimidophenyl)-4-methylcoumarin (CPM)
[10]

 could be considered as a 

fast and very sensitive fluorogenic reagent for capturing free sulfhydryl groups. The CPM-

peptide/protein derivative formed in the addition reaction has a measurable, strong 

fluorescence, while the CPM reagent does not show any fluorescence in this wavelength 
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region (ex=384 nmem=475 nm). Thus, the increased fluorescence intensity can be utilized 

for quantitative determination of thiols.  

The aim of our work was to investigate the effect of CPM tagging on peptide MS/MS 

fragmentation behaviour, because a combination of fluorescent labelling and peptide 

sequencing with tandem mass spectrometry could be an excellent tool for a sensitive 

sulfhydryl detection as well as localization of the free Cys sulfhydryl group. Therefore, in this 

study, a set of Cys containing model oligopeptides and their fluorescent derivatives with CPM 

tags were synthesized and analysed by tandem mass spectrometry (Figure 1). 

Fmoc-Cys(Trt)-COOH was obtained from Reanal (Budapest, Hungary), all other amino 

acid derivatives and Fmoc-Rink-Amid MBHA resin were from Iris Biotech GmbH 

(Marktredwitz, Germany). 7-diethylamino-3-(4’-maleimidylphenyl)-4-ethylcoumarin (CPM) 

was purchased from Sigma-Aldrich (Saint Louis, USA). Acetonitrile (ACN) and acetic acid 

were analytical grade and were purchased from Molar Chemicals (Budapest, Hungary). Water 

was purified and deionized using Milli-Q system from Millipore (Billerica, MA, USA).  

Synthetic linear pentapeptide derivatives, Ac-CXAKC-NH2, Ac-CXAKC(Acm)-NH2 

and Ac-C(Acm)XAKC-NH2 (where X: Trp or Phe; Acm: acetamidomethyl) were prepared on 

solid phase using Fmoc / 
t
Bu chemistry.

[11]
 After cleavage from the resin with trifluoroacetic 

acid in the presence of scavengers (triisopropylsilane, H2O, phenol, 1,2-ethanedithiol) the 

crude products were lyophilized and peptides were purified by RP-HPLC on a C18-silica 

preparative column (5 m, 150 mm x 21.2 mm, 110 Å, Gemini-NX, Phenomenex).  

Linear (Ac-CWAKC-NH2, and Ac-CFAKC-NH2) peptides were oxidized without 

further purification under mild alkaline conditions (0.1-0.5 mg/mL, pH 7.8-8.0 where the pH 

was adjusted by NH4HCO3). The cyclization reaction was monitored by analytical RP-HPLC 

(5 m, 150 mm x 4.6 mm, 110 Å, Gemini-NX, Phenomenex). After lyophilisation, the crude 

cyclic peptides were purified by preparative RP-HPLC. All purified peptides were shown 

>95% homogeneity by analytical RP-HPLC and ESI-MS. Characteristics of the synthesized 

peptides are summarized in Supplementary Table 1. 

CPM-labelled peptides were synthesized by Michael-addition. Linear peptide 

derivatives were incubated at 37°C for maximum 24 hrs with 2 mol equivalent of CPM 

reagent in dimethyl sulfoxide. Completion of reactions was monitored by analytical RP-

HPLC (3.5 m, 100 mm x 3.0 mm, Zorbax SB-C18). The CPM-peptide conjugates were 
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finally purified by semi-preparative RP-HPLC (5 m, 250 mm x 10.0 mm, Alltima C18) and 

characterized by analytical RP-HPLC and ESI-MS. The characteristics of the CPM-peptide 

derivatives are summarized in Supplementary Table 2. 

Mass spectrometric experiments were performed on a Bruker Esquire 3000+ ion trap 

mass spectrometer (Bruker, Bremen, Germany) equipped with electrospray ionisation (ESI) 

source. Samples were dissolved in a mixture of ACN/water = 1/1 (V/V), containing 0.1% 

acetic acid and introduced into the ESI source by a syringe pump with a flow rate of 10 

l/min. 

In summary, for this study, a series of linear peptides and their CPM-labelled analogues, 

as well as the cyclic peptides bearing disulfide bridges were synthesized based on the model 

sequence: Ac-CXAKC-NH2, where X stands for tryptophan or phenylalanine (Supplementary 

Tables 1. and 2.). These two aromatic residues could play a crucial role in the UV-light 

induced split of the disulfide bridge. To study the role of tryptophan (or other aromatic amino 

acids) in the photolysis of proteins, cyclic peptides are useful models. The CPM adducts of 

the evolved sulfhydryl groups upon illumination of model cyclic peptides can be detected for 

example with fluorescence or HPLC. Model peptides chosen in this work contain a single Trp 

(or Phe) residue in the sequences nearby aliphatic amino acid residues. A series of linear 

peptides (precursors of cyclic models) and their CPM-labelled analogues were synthesized, as 

well as the cyclic analogues. To avoid recombination and also side reactions related to the 

sulfhydryl group, in these experiments, one of the cysteine side-chains was protected by 

acetamidomethyl (Acm) group (Figure 1.; Supplementary Tables 1 and 2). These peptides 

were subjected to collision-induced dissociation in an ion trap mass spectrometer.  

Sequence fragmentation of cyclic peptides is regulated by the presence of the disulfide 

bridge: the results reported here show that internal fragments and disulfide-linked fragments 

can be detected in the MS/MS spectra, together with intensive b2, b3, b4 fragment ions and 

neutral losses (Supplementary Figure 1). MS/MS spectra of the corresponding linear Ac-

CXAKC-NH2 peptides are simpler, b2, b3, b4 fragment ions and neutral losses are observed 

(Supplementary Figure 1). Linear peptides bearing Acm protecting group (Ac-

C(Acm)XAKC-NH2 and Ac-CXAKC(Acm)-NH2) show analogous spectra compared to the 

unprotected linear compounds; the cleavage of the Acm group from the cysteine side chain is 

detected even at low collision energy, however this phenomenon does not affect the 
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fragmentation of the peptides in general (Supplementary Figure 2). The loss of the Acm group 

is detected as a 71 mass difference.  

Peptides bearing CPM tags and Acm protecting groups (Ac-C(Acm)XAKC(CPM)-NH2 

and Ac-C(CPM)XAKC(Acm)-NH2) exhibit a highly different fragmentation pattern (Figure 

2.; Supplementary Figure 3.). Interestingly, the fragmentation in this case is driven by the 

presence/absence of the CPM group: fragment ions bearing the CPM moiety are the most 

prominent in the MS/MS spectra. In the case of 
1
Cys labelling, a and b ion series can be 

detected (Figure 2B). In the case of 
5
Cys labelling, y ion series is dominant in the MS/MS 

spectrum (Figure 2A). Cleavage of the CPM group is also observed with characteristic marker 

ion at m/z 435, corresponding to the CPM unit bearing the sulfur atom of the cysteine side 

chain. Linear pentapeptides in which both cysteine residues are modified with CPM tags (Ac-

C(CPM)XAKC(CPM)-NH2) show a characteristic combination of sequence fragments in the 

MS/MS spectrum of the singly protonated peptides: CPM-tagged a, b and y ion series are 

detected with high intensity, and the cleaved CPM marker ion could be observed as well 

(Figure 2C). Due to its positive effect on peptide fragmentation, fluorogenic tagging with 7-

diethylamino-3-(4’-maleimidophenyl)-4-methylcoumarin combined with tandem mass 

spectrometry could be considered as a promising choice to catch free sulfhydryl groups in 

oligopeptides and perhaps in proteins. Characteristic profile of the MS/MS fragments in 

combination with the detection of the cleaved CPM marker ions could allow an optimal 

methodology for sulfhydryl tracking with high sensitivity both in singly or double labelled 

peptides.   

Taken together, localization of cysteine residues bearing free sulfhydryl groups with 

high sensitivity is a challenging task due to the spontaneous recombination of disulfide 

bridges in peptides and in proteins. In this study, we demonstrated that CPM tagging 

combined with tandem mass spectrometry could have multiple advantages to monitor and 

identify sulfhydryl groups in peptides. A unique reporter ion (m/z 435) containing CPM 

moiety, as well as characteristic sequence ions bearing the CPM tag are generated by CID 

during MS analysis, offering an excellent tool for a sensitive localization of sulfhydryl groups. 

It is perhaps important to note, that the application of CPM reagent in proteomic studies might 

have some limitations as well, due to the large size of the coumarin ring and possible steric 

restrictions in the case of hidden functional groups.  
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TABLES AND FIGURES LEGENDS: 

 

Figure 1. Scheme of the model peptides, where X stands for tryptophan or phenylalanine. A.) 

unlabelled peptides, B.) CPM labelled peptides. Please note that cyclopeptides are referred to 

Ac-c(CXAKC)-NH2 throughout the text. 

Figure 2. MS/MS spectrum of the singly protonated, CPM-labeled peptides: a.) Ac-

C(Acm)WAKC(CPM)-NH2, b.) Ac-C(CPM)WAKC(Acm)-NH2, c.) Ac-

C(CPM)WAKC(CPM)-NH2. -Acm is used for the loss of the acetamidomethyl group (71 

mass difference), 
o
 label is used for 18 (H2O) loss. 

 

Supplementary material: 

 

Supplementary table 1. Analytical characteristics of unlabelled peptides. 

Supplementary table 2. Analytical characteristics of CPM-labelled peptides. 

Supplementary figure 1. MS/MS spectrum of the singly protonated a.) Ac-c(CWAKC)-NH2 

cyclopeptide, b.) the linear Ac-CWAKC-NH2 peptide, c.) Ac-c(CFAKC)-NH2 cyclopeptide 

and d.) the linear Ac-CFAKC-NH2 peptide. Internal fragments are labelled with the 

corresponding 1 letter amino acid codes. * label is used for 17 (NH3) loss, 
o
 label is used for 

18 (H2O) loss. ( ) brackets are used for indication of disulfide-linked fragment ions. 

Supplementary figure 2. MS/MS spectrum of the singly protonated peptides: a.) Ac-

C(Acm)WAKC-NH2 b.) Ac-CWAKC(Acm)-NH2. c.) Ac-C(Acm)FAKC-NH2 d.) Ac-

CFAKC(Acm)-NH2.-Acm is used for the loss of the acetamidomethyl group (71 mass 

difference), * label is used for 17 (NH3) loss, 
o
 label is used for 18 (H2O) loss. 

Supplementary figure 3. MS/MS spectrum of the singly protonated, CPM-labeled peptides: 

a.) Ac-C(Acm)FAKC(CPM)-NH2, b.) Ac-C(CPM)FAKC(Acm)-NH2, c.) Ac-

C(CPM)FAKC(CPM)-NH2. -Acm is used for the loss of the acetamidomethyl group (71 mass 

difference), * label is used for 17 (NH3) loss. 
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FIGURES: 

 

Figure 1. 
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Figure 2. 

A.) 

 

B.) 

 

C.) 
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Supplementary table 1.: 

Compounds HPLC retention time (min)
 a)

 Molecular mass, theoretical
  b)

 

Ac-CWAKC-NH2 (1) 21.5 650.3 

Ac-C(Acm)WAKC-NH2 (2) 16.4 721.3 

Ac-CWAKC(Acm)-NH2 (3) 16.4 721.3 

Ac-c(CWAKC)-NH2 (4) 18.0 648.2 

Ac-CFAKC-NH2 (5) 18.2 611.3 

Ac-C(Acm)FAKC-NH2 (6) 17.1 682.3 

Ac-CFAKC(Acm)-NH2 (7) 17.1 682.3 

Ac-c(CFAKC)-NH2 (8) 16.1 609.2 

 

a) Column type: 5 m, 150 mm x 4.6 mm, Gemini NX 

b) Monoisotopic molecular mass; measured masses were within 0.3 Da of the theoretical ones. 

 

Supplementary table 2.: 

CPM-labelled compounds HPLC retention time (min) Molecular mass, theoretical
 c)

 

Ac-C(CPM)WAKC(CPM)-NH2 (1A) 16.0
 b)

 1454.6 

Ac-C(Acm)WAKC(CPM)-NH2 (2A) 26.6
 b)

 1123.5 

Ac-C(CPM)WAKC(Acm)-NH2 (3A) 26.6
 b)

 1123.5 

Ac-C(CPM)FAKC(CPM)-NH2 (5A) 34.1
 a)

 1415.6 

Ac-C(Acm)FAKC(CPM)-NH2 (6A) 26.1
 a)

 1084.4 

Ac-C(CPM)FAKC(Acm)-NH2 (7A) 26.1
 a)

 1084.4 

 

a) Column type: 5 m, 150 mm x 4.6 mm, Gemini NX 

b) Column type: 3.5 m, 100 mm x 3.0 mm, Zorbax SB-C18 

c) Monoisotopic molecular mass; measured masses were within 0.3 Da of the theoretical ones. 
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Supplementary figure 1. 
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Supplementary figure 2. 
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C.) 
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Supplementary figure 3. 

A.) 

 

B.) 

 

C.) 
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