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Turbulence modeling using fractional
derivatives

Béla J. Szekeres

Abstract We propose a new turbulence model in this work. The main idea of
the model is that the shear stresses are considered to be random variables and
we assume that their differences with respect to time are Lévy-type distribu-
tions. This is a generalization of the classical Newton’s law of viscosity. We
tested the model on the classical backward facing step benchmark problem.
The simulation results are in a good accordance with real measurements.

1.1 Introduction

Turbulence is a velocity fluctuation of the mean flow in fluid dynamics. For
this phenomenon there is no any exact definition, we can hardly quantify it
and its numerical simulation is also challenging. Its study has a long history,
it is enough to refer to the famous wish of Albert Einstein: “After I die, I
hope God will explain turbulence to me.”
Our study is based on the Navier–Stokes equations as a widely accepted
model for fluid dynamics. Starting from this point there are many variant
ways to modeling this phenomenon, for example the direct numerical simu-
lation, the large eddy simulation and modeling with the Reynolds averaged
equations. We propose here a new model and a new way for modeling turbu-
lence. We consider the quantity obtained from the Newton’s law of viscosity
as a special expected value for the shear stresses. According to our approach,
in the simulation we should take into account not only the actual velocity
field but also the history of the velocity field to calculate this expected value.

We generalize the Navier–Stokes equation, using this hypothesis and get
a probabilistic–deterministic model.

Béla J. Szekeres
Department of Applied Analysis and Computational Mathematics, Eötvös Loránd Univer-
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1.2 Preliminaries

The Navier-Stokes equations for incompressible fluids can be given as

∂vx
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+ vx
∂vx
∂x

+ vy
∂vx
∂y

=
1

ρ

(∂σx
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∂vy
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∂vy
∂x

+ vy
∂vy
∂y

=
1

ρ

(∂σy
∂x

+
∂τxy
∂y

)
∂vx
∂x

+
∂vy
∂y

= 0. (1.1)

Here terms σx, σy denote the tensile stresses, τxy, τyx denote the shear
stresses, ρ the fluid density and v = (vx, vy) the velocity vector. Acording to
the Newton’s law of viscosity we additionally have

τij = µ
(∂vj
∂i

+
∂vi
∂j

)
, i, j ∈

{
x, y
}
. (1.2)

The tensile stresses are given as

σi = −P + µτii = −P + 2µ
∂vi
∂i
, i ∈

{
x, y
}
. (1.3)

Let us introduce the notations p := P
ρ for the pressure and ν := µ

ρ for the

kinematic viscosity. Using (1.2), (1.3) in (1.1) we can make it explicit, to
obtain the classical Navier–Stokes equations

∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

= −∂p
∂x

+ ν∆vx

∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

= −∂p
∂y

+ ν∆vy

div v = 0. (1.4)

1.3 Results

1.3.1 The fractional Newton’s law of viscosity

To work with fractional order differentiation we need the following definition
(see, e.g., [1]).

Definition 1. For each q ∈ [0, 1) and a ∈ R we say that f is q-times differ-
entiable if the following limit exists:
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1

Γ (1− q)
∂

∂t

∫ t

a

f(s)

(t− s)q
ds =:a D

qf(t). (1.5)

In [1] the authors investigated the accuracy of the approximation of (1.5):

aD
qf(t) ≈ [aD

q
h]f(t) :=

( t− a
N

)−q N−1∑
k=0

(
q

k

)
(−1)kf

(
t− k t− a

N

)
. (1.6)

Using the fractional order derivatives in (1.5) we introduce the following
generalization of (1.2):

τij(t, ·) = ν
[
t−T

Dq
(∂vj
∂i

(t, ·) +
∂vi
∂j

(t, ·)
)]
, 0 ≤ q < 1, i, j ∈

{
x, y
}
.

(1.7)
We modify the equations for the tensile stresses accordingly to obtain

σi(t, ·) = −p(t, ·) + τii(t, ·), i ∈
{
x, y
}
. (1.8)

Using the notation in (1.5) and substituting (1.7) and (1.8) into (1.4) we
arrive at the fractional Navier–Stokes equations

∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

= −∂p
∂x

+t−T D
q
(
ν∆vx

)
∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

= −∂p
∂y

+t−T D
q
(
ν∆vy

)
div v = 0. (1.9)

We need the following two theorems, the second one is discussed in [5] and
we proved the first one in the Appendix. Before we recall that for α ∈ R and

j ∈ N we define
(
α
j

)
= α(α−1)...(α−j+1)

j! .

Theorem 1. For each α ∈ C and h = 1/N the following is true:

lim
N→∞

N−1∑
j=0

(
α

j

)
(−1)j

hα
=

1

Γ (1− α)
. (1.10)

Theorem 2. For any α ∈ [0, 1) and j ∈ Z+ we have
(
α
j

)
(−1)j < 0 and the

following equality holds:
∞∑
j=0

(
α

j

)
(−1)j = 0. (1.11)

Let f : R → R α-times differentiable by means of Definiton 1 and it is
approximated using (1.6). For simplicity we assume that T := 1, then the
following estimations are valid
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t−1D
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( 1
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( 1
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α

k

)
(−1)k+1

[
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(
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=

1
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(
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N
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(1.12)
Let

pk = Γ (1− α)
( 1

N

)−α(α
k

)
(−1)k+1. (1.13)

According to Theorem 2 we have pk > 0, and Theorem 1 gives that

lim
N→∞

N−1∑
k=1

pk = 1. (1.14)

Consequently, the values {pk}k∈N define a probability density function, and
the limit distribution is Lévy type. We can also conclude that the general-
ization (1.7) of the Newton’s law can be considered as the expected value of
the variation of the shear stresses, where the distribution function is defined
by the values pk. This serves as a motivation for our model.

Note that the standard Newton’s law corresponds to the case q = 0 in (1.7),
which can be interpreted as the distribution of the variation is Gaussian, and
then the shear stresses are independent from the earlier stress values.

1.3.2 The algorithm

To discretize (1.9) we use the method of the work [3], which is a finite differ-
ence approximation on a staggered grid. The semidiscretization results then
in the following ODE:

ut + Lh(u)u + gradhp = 0

divhu = 0,
(1.15)

where Lh(u) = Dh(u) − ν[t−TD
α
h ]∆, Dh(u)u is the approximation of the

nonlinear terms, divh is the discrete divergence , gradh is the discrete gradient
operator, ν is the viscosity parameter and [t−TD

α
h ] defined in (1.6).

We solve then equations (1.15) using a simple predictor-corrector algo-
rithm. We start from an initial velocity field u0 and an initial value for the
pressure and apply the time step τ . The main steps of the algorithm are the
following.
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1. Solve the first equation in (1.15) for w:

w − un

τ
+ Lh(un)w + gradhp

n = 0. (1.16)

2. Solve the following equation for q:

divhgradhq =
1

τ
w. (1.17)

3. Compute the pressure values pn+1 = q + pn.
4. Compute the velocity vector un+1 = w − τgradhq.

1.3.3 The test problem

To test our simulation we use the real measurements of the work [2] and
we also compare our results with other numerical predictions. We choose a
classical benchmark problem, a backward facing step. The geometric setup
of this problem is shown in Fig. 1.1. We set the fluid memory T = 2.5 s, and
the time step τ = 0.005s. It is sufficient to assume this fluid memory because
for N = 500 and α = 0.2 we have 1−

∑N
k=1 pk = 2 · 10−4.

Fig. 1.1 The backward facing step problem.

The fluid flows into the channel on the upper part of the left hand side
of the channel and it flows out at the right hand side. We set the geometry

parameters to H = 1 cm, L = 10 cm, h = 0.5 cm and ν = 2
3 · 10−5 m2

s and

use the the Reynold’s number Re = 4hvmax

3ν . With these the exact boundary
conditions are the following:

• x = 0, y ∈ [H−h, h] (inflow section): vy = 0 and vx = − 4(H−y)(H−h−y)
h2 vmax,
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• x = L (outflow section): ∂vx∂x =
∂vy
∂x = 0 and p = 0,

• on the remaining part of the boundary: vx = vy = 0.

We notice that one can take also a channel before the inlet stage, because it
has some effect on the velocity field [4]. Focusing to the simplest version of
the problem we do not use this inlet channel. Whenever the problem seems
to be easy, many recent calculations underpredict certain well-measurable
quantities, the location of the so-called reattachment lengths r, s and rs.
The corresponding error rate is about 5 − 15%. For a visualization of the
reattachment lengths we refer to figure 1.2.

An important advance of our model is that we can predict this quantity
very precisely for different Reynold’s number by choosing the parameter α
properly. We made some comparison with other predictions and summarized
the results in Tables 1.1-1.3.

For the computations we divided the domain into 300 × 30 elementary
cells. Implementing then the algorithm in Section 1.3.2 we found that the
numerical method converges to a stationary solution. The simulated time
was 30 s using a number of 6000 time steps both for the equations (1.4) and
(1.9).

We also tested our model on a similar benchmark problem using a different

parameter set H = 1 cm, L = 12 cm, h = 0.6 cm and ν = 8 · 10−6 m2

s ,
with the Reynold’s number Re = 2425. We made some comparison with
other predictions with different turbulence models and measurements [9] and
summarized the results in Table 1.4.

Fig. 1.2 Reattachment lengths r, s and rs. The subdomains of the computational domain

with vx < 0 are shaded.
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Table 1.1 Summarized results for the reattachment lengths with Re = 800.

FNS=fractional Navier–Stokes, NNS=Classical Navier–Stokes

Experimental results Computed Results

Length

on

Exp. [2] Lee, Ma-

teescu [2]

Gartling

[6]

Kim,

Moin [7]

Sohn [8] Present

study,
NNS

Present

Study,
FNS,

(α =

0.06)
Lower

wall

r/H 6.45 6.0 6.1 6.0 5.8 6.11 6.43

Upper

wall

s/H 5.15 4.80 4.85 – – 5.08 5.33

Table 1.2 Numerical results for the reattachment lengths with Re = 1000.

FNS=fractional Navier–Stokes, NNS=Classical Navier–Stokes

Experimental results Computed Results

Length on Exp. [2] Present study,

NNS

Present Study,

FNS, (α = 0.17)
Lower wall r/H 7.5 6.68 7.46

Upper wall s/H 6.5 5.51 6.16

Table 1.3 Numerical results for the reattachment lengths with Re = 1200.

FNS=fractional Navier–Stokes, NNS=Classical Navier–Stokes

Experimental results Computed Results

Length on Exp. [2] Present study,

NNS

Present Study,

FNS, (α = 0.24)

Lower wall r/H 8.5 7.16 8.50
Upper wall s/H 7.5 5.93 7.06

Table 1.4 Summarized results for the reattachment lengths with Re = 2425.
FNS=fractional Navier–Stokes, NNS=Classical Navier–Stokes

Reattachment Length ratio r/H

Reynolds number Exp. [9] k − ε [9] RNG k − ε

[9]

SA [9] SST [9] Present

study,

FNS,
α = 0.4

2425 9.2 6.3 6.93 8.54 9.4 9.06

1.4 Conclusion

We introduced a new turbulence model in this work by assuming that the
variations of shear stresses are random variables and their distributions are
Lévy-type. In this way we use two new parameter for the governing equations:
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the fluid memory and a stability parameter. The most important task in the
practical computations was to choose correctly the stability parameter, while
the length of the memory is not so important in numerical calculations. We
could predict well the reattachment lengths in a classical benchmark problem
by a proper setting of the stability parameter.

We observed that for small Reynold’s numbers the choice of parameter
α = 0, which corresponds to the classical Navier–Stokes equations, gives
good accordance with the real measurements. If only the Reynold’s number
is increased and consequently, the flow becomes turbulent, the parameter α
has to be also increased. For example, if Re = 800, we found that the choice
α = 0.06 is optimal for the simulation. This corresponds to the fact, that
turbulent flows can be described rather statistically than explicitly, and in
the long run we can consider the present model also a statistical one.

Our future aim is to find experimentally the values α corresponding to the
Reynold’s number. It would also be important to compare this result with
numerical experiments on further test problems.
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and Gergő Nemes.

Appendix

Proof. (Theorem 1) Let α ∈ C be any fixed complex number. Let x be a real
or complex number such that |x| < 1, then

(1− x)α =

∞∑
N=0

(−1)N
(
α

N

)
xN . (1.18)

It is easy to see that

(1− x)α−1 =
(1− x)α−1

1− x
=

∞∑
N=0

(
N∑
k=0

(−1)k
(
α

k

))
xN . (1.19)

On the other hand

(1− x)α−1 =

∞∑
N=0

(−1)N
(
α− 1

N

)
xN , (1.20)

whence equating the coefficients of xN−1, we obtain
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N−1∑
k=0

(−1)k
(
α

k

)
= (−1)N−1

(
α− 1

N − 1

)
=

(
N − α− 1

N − 1

)
=

Γ (N − α)

Γ (N)Γ (1− α)
.

(1.21)

Thus

lim
N→∞

Nα
N−1∑
k=0

(−1)k
(
α

k

)
= lim
N→∞

NαΓ (N − α)

Γ (N)Γ (1− α)

=
1

Γ (1− α)
lim
N→∞

NαΓ (N − α)

Γ (N)
=

1

Γ (1− α)
,

(1.22)

where we have used Stirling’s formula (or the known asymptotics for gamma
function ratios) in the last step. ut
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