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Abstract

A longest sequence S of distinct vertices of a graph G such that each vertex of
S dominates some vertex that is not dominated by its preceding vertices, is called a
Grundy dominating sequence; the length of S is the Grundy domination number of
G. In this paper we study the Grundy domination number in the four standard graph
products: the Cartesian, the lexicographic, the direct, and the strong product. For
each of the products we present a lower bound for the Grundy domination number
which turns out to be exact for the lexicographic product and is conjectured to be
exact for the strong product. In most of the cases exact Grundy domination numbers
are determined for products of paths and/or cycles.
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1 Introduction

If G is a graph, then a sequence S = (v1, . . . , vk) of distinct vertices of G is called a legal
(closed neigborhood) sequence if, for each i,

N [vi] \
i−1⋃

j=1

N [vj ] 6= ∅ .

In words, for any i the vertex vi dominates at least one vertex not dominated by v1, . . . , vi−1.
If the set of vertices from a legal sequence S forms a dominating set of G, then S is called
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a dominating sequence of G. Clearly, the length of a dominating sequence is bounded from
below by the domination number γ(G) of a graph G. The maximum length of a dominating
sequence in G is called the Grundy domination number of G and denoted by γgr(G). The
corresponding sequence is called a Grundy dominating sequence of G or γgr-sequence of G.

These concepts were introduced in [5], where the Grundy domination number was es-
tablished for graphs of some well-known classes (such as split graphs and cographs), and a
linear time algorithm to determine this number in an arbitrary tree was presented. It was
also shown that the decision version of the problem is NP-complete, even when restricted to
chordal graphs. Motivated by the question, when a Grundy dominating sequence produces a
minimum dominating set (and hence any legal sequence is of the same length), the classes of
graphs with domination numbers up to 3 having this property have been characterized. The
concept was further studied in [4], where exact formulas for Grundy domination numbers
of Sierpiński graphs were proven, and a linear algorithm for determining these numbers in
arbitrary interval graphs was presented.

It is natural to study graph invariants on graph products, especially on the four standard
ones: the Cartesian, the lexicographic, the direct and the strong product [9]. Among different
reasons for the popularity of graph products, we emphasize the fact that several intriguing
questions, related to products of graphs, gave new insights and new developments in studies
of the involved invariants. Let us mention the still open, famous Vizing’s conjecture on the
domination number of the Cartesian product of graphs, which was posed in the 1960’s [18],
and initiated the introduction of several new concepts and methods, cf. [3]. The domination
number of the Cartesian product of paths was completely determined only in 2011 [8], after
a long period in which various attempts produced different approaches to graph domination
problems. Cartesian products of paths by cycles were investigated in [15] and products of
cycles in [11].

With respect to other standard products, an emphasis was given on r-perfect codes.
Recall that a set S of vertices of a graph G is an r-perfect code if vertices from S are
pairwise at distance at least 2r + 1 and every vertex of G is at distance at most at r from
some vertex from S. It is easy to observe that if a graph admits a 1-perfect code, then its
size is the domination number of the graph. In [12, 19] perfect codes in direct products
of cycles were characterized, while in [1] and [17] perfect codes were investigated in strong
and lexicographic products, respectively. In particular, the strong product of graphs has a
perfect r-code if and only if each factor has a perfect r-code. For a uniform treatment of
domination (and other invariants) on graph products see [13].

In this paper we focus on dominating sequences in the four standard graph products.
While we could find some general results or bounds for Grundy domination numbers in all
four graph products, we nevertheless focused mainly on the products of paths and/or cycles.
(As noted above, obtaining the exact formulas for the standard domination number of these
relatively simple classes of graphs has turned out to be rather non-trivial.) For each of the
four products we consider the Grundy domination number of grids (the products of paths),
cylinders (the products of paths by cycles), and tori (the products of cycles) and proceed as
follows. In the next section we introduce concepts and terminology needed, and present two
general upper bounds on the Grundy domination number which will be applied later and
could be of independent interest. In particular, the Grundy domination number is bounded
by the edge clique number. In the subsequent four sections we respectively consider the
Grundy domination number of the four standard graph products.

In Section 3 we first prove that the Grundy domination number of two graphs is bounded
from below by the product of the Grundy domination number of one factor and the order of
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the other factor. We then show that this bound is attained in all grids, cylinders and tori,
with the sole exception of the Cartesian product of two cycles of the same odd length. In
addition, certain isoperimetric inequalities enable us to determine the Grundy domination
numbers of certain multiple Cartesian products. In the case of the lexicographic product
(see Section 4), we give a formula for the Grundy domination number of the product of two
arbitrary graphs as a function of all dominating sequences of the first factor. This yields
exact values of the Grundy domination numbers of products of paths and/or cycles. In
the main part of Section 5 we consider lower bounds on the Grundy domination number of
direct products of graphs. We also give an upper bound for the products of two paths. These
results yield an exact value in the case when a shortest path is of even order. The main
theme of the section on the strong product (Section 6) is the following conjecture posed for
arbitrary graphs G and H :

γgr(G ⊠H) = γgr(G)γgr(H) .

While γgr(G⊠H) ≥ γgr(G)γgr(H) is easily seen to be true, we prove the reversed inequality
if one of the factors is a caterpillar.

2 Preliminaries

If S = (v1, . . . , vk) is a sequence of distinct vertices of a graph G, then the corresponding

set {v1, . . . , vk} will be denoted by Ŝ. The initial segment (v1, . . . , vi) of S will be denoted

by Si. Each vertex u ∈ N [vi] \
⋃i−1

j=1
N [vj ] is called a private neighbor of vi with respect

to {v1, . . . , vi}. We will also use a more suggestive term by saying that vi footprints the

vertices from N [vi]\
⋃i−1

j=1
N [vj ], and that vi is the footprinter of any u ∈ N [vi]\

⋃i−1

j=1
N [vj ].

For a dominating sequence S any vertex in V (G) has a unique footprinter in Ŝ. Thus the

function fS : V (G) → Ŝ that maps each vertex to its footprinter is well defined.
Arising from the total domination number of graph, a related invariant was introduced

recently in [6], which is defined on graphs G with no isolated vertices. A sequence S =
(v1, . . . , vk) of distinct vertices of G, is called a legal open neighborhood sequence if N(vi) \⋃i−1

j=1
N(vj) 6= ∅, holds for every i ∈ {2, . . . , k}. If, in addition, Ŝ is a total dominating set

of G, then we call S a total dominating sequence of G. (The meaning of footprinting in
the context of total dominating sequences is analogous as above, and should be clear.) The
maximum length of a total dominating sequence in G is called the Grundy total domination
number of G and is denoted by γt

gr(G). The corresponding sequence is called a Grundy total
dominating sequence of G.

Recall that for all of the standard graph products, the vertex set of the product of graphs
G and H is equal to V (G)× V (H), while their edge-sets are as follows. In the lexicographic
product G ◦ H (also denoted by G[H ]), vertices (g1, h1) and (g2, h2) are adjacent if either
g1g2 ∈ E(G) or (g1 = g2 and h1h2 ∈ E(H)). In the strong product G⊠H vertices (g1, h1) and
(g2, h2) are adjacent whenever (g1g2 ∈ E(G) and h1 = h2) or (g1 = g2 and h1h2 ∈ E(H)) or
(g1g2 ∈ E(G) and h1h2 ∈ E(H)). In the direct product G×H vertices (g1, h1) and (g2, h2)
are adjacent when g1g2 ∈ E(G) and h1h2 ∈ E(H). Finally, in the Cartesian product G�H
vertices (g1, h1) and (g2, h2) are adjacent when (g1g2 ∈ E(G) and h1 = h2) or (g1 = g2
and h1h2 ∈ E(H)). Hence in general we have E(G�H) ⊆ E(G ⊠ H) ⊆ E(G ◦ H), and
E(G × H) ⊆ E(G ⊠ H), E(G × H) ∩ E(G�H) = ∅, while E(G × H) ∪ E(G�H) =
E(G ⊠H). With the exception of the lexicographic product, the standard graph products
are commutative. For this and other properties of the standard products see [9].
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Let G and H be graphs and ∗ be one of the four graph products under consideration.
For a vertex h ∈ V (H), we call the set Gh = {(g, h) ∈ V (G ∗H) : g ∈ V (G)} a G-layer or
a row of G ∗H . By abuse of notation we will also consider Gh as the corresponding induced
subgraph. Clearly Gh is isomorphic to G unless ∗ is the direct product in which case it is an
edgeless graph of order |V (G)|. For g ∈ V (G), the H-layer or the column gH is defined as
gH = {(g, h) ∈ V (G ∗H) : h ∈ V (H)}. We may again consider gH as an induced subgraph
when appropriate. The map pG : V (G ∗H) → V (G), pG(g, h) = g, is the projection onto G
and pH : V (G ∗H) → V (H), pH(g, h) = h, is the projection onto H . We say that G ∗H is
nontrivial if both factors are graphs on at least two vertices.

We now give two upper bounds on the Grundy domination number of arbitrary graphs.
If G is a graph and S ⊆ V (G), then the boundary ∂S of S is defined with

∂S = {u ∈ V (G) \ S : u has a neighbor in S}.

The first upper bounds reads as follows.

Lemma 2.1 For a graph G the inequality γgr(G) ≤ |V | − k holds if and only if every
Grundy dominating sequence has an initial segment S such that |∂S| ≥ k. In particular, if
there exists an m ≤ |V (G)| such that for any m-subset A of V (G) we have |∂A| ≥ k, then
γgr(G) ≤ |V | − k holds.

Proof. If γgr(G) ≤ |V | − k holds, then for the set S of all the elements of any Grundy
dominating sequence we must have |∂S| ≥ k. The other direction follows from the fact that
the size of the boundary of the initial segments is non-decreasing and obviously for the set
S of all the elements of any Grundy dominating sequence we have |S|+ |∂S| = |V (G)|. �

We follow with the next general upper bound, which will be used in Section 6.2 in the
context of strong products of graphs. Let G be a graph. If C = {Q1, . . . , Qr} is a set of
cliques of G such that any edge of G is contained in a clique of C, then C is called an edge
clique cover of G. The size of a smallest edge clique cover of G is the edge clique cover
number of G and denoted by θe(G). It is well-known that θe(G) is equal to the intersection
number of G, cf. [7, 14].

Proposition 2.2 If G is a graph without isolated vertices, then γgr(G) ≤ θe(G).

Proof. Let Q be a minimum edge clique cover of G and let S = (d1, . . . , dp) be a Grundy
dominating sequence in G, where p = γgr(G). We claim that at each term of the sequence
S at least one clique of Q becomes completely dominated. Since di is a legal choice, at
least one vertex from N [di] is not dominated by Ŝi−1. If di footprints itself, let x be an
arbitrary neighbor of di. (Note that x exists because G has no isolated vertices.) And if di
footprints some other vertex, let x be this vertex. In either of the cases the edge dix lies
in a clique Q ∈ Q that is not yet completely dominated. It follows that after di is selected,
all the vertices of Q are dominated. Consequently, Q contains at least p cliques, that is
θe(G) = |Q| ≥ p = γgr(G). �

The bound in Proposition 2.2 is sharp, as demonstrated by complete graphsKn and paths
Pn. Moreover, within the class of trees, the above bound is sharp precisely in caterpillars
(i.e., the trees in which there is no vertex having more than two non-leaf neighbors). Indeed,
note that in bipartite graphs θe(G) equals the number of edges, and, as mentioned in [5],
in any caterpillar G we have γgr(G) = |V (G)| − 1. On the other hand, [5, Lemma 2.4]
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implies that if there exists a vertex in a tree with more than two non-leaf neighbors, then
γgr(G) < |V (G)| − 1. Hence, caterpillars are really the only trees that enjoy the equality in
the bound from Proposition 2.2.

3 Cartesian product

In this section we determine the Grundy domination number of grids, cylinders and tori
(with respect to the Cartesian product) and use isoperimetric inequalities to determine the
Grundy domination number of some products of several paths and cycles. We begin with
the following general lower bound.

Proposition 3.1 For any two graphs G and H,

γgr(G�H) ≥ max{γgr(G)|V (H)|, γgr(H)|V (G)|}.

Proof. Set V (H) = {h1, . . . , hk}. Let m = γgr(G) and let (d1, . . . , dm) be a Grundy
dominating sequence in G. Observe that

((d1, h1), . . . , (d1, hk), (d2, h1), . . . , (d2, hk), . . . , (dm, h1), . . . , (dm, hk))

is a dominating sequence in G�H . Indeed, (di, hj) footprints (gi, hj), where gi is footprinted
by di in G. Hence γgr(G�H) ≥ mk = γgr(G)|V (H)|. By reversing the roles of G and H
the statement follows. �

It is natural to ask whether in the inequality in Proposition 3.1 always equality holds.
To see that this need not be the case consider the Cartesian product of complete graphs.
Indeed, let V (Kn) = {a1, . . . , an}, V (Km) = {b1, . . . , bm} and m,n ≥ 3. Then

((a1, b1), (a2, b1), . . . , (an−1, b1), (a1, b2), (a1, b3), . . . , (a1, bm))

is a dominating sequence of length n+m− 2, which in turn implies that

max{γgr(Kn)|V (Km)|, γgr(Km)|V (Kn)|} = max{m,n} < n+m− 2 ≤ γgr(Kn �Km) .

This example actually shows that the left-hand side of the inequality of Proposition 3.1 can
be arbitrary larger that the right-hand side of it.

Theorem 3.2 Let Pk be the path and Ck be the cycle on k vertices. Then we have

(a) γgr(Pk �Pl) = k(l − 1), if 2 ≤ k ≤ l;

(b) γgr(Pk �Cl) = max{l(k − 1), k(l− 2)}, if 2 ≤ k and 3 ≤ l;

(c) γgr(Ck �Cl) = k(l − 2), if 3 ≤ k ≤ l and (k, l) 6= (2t+ 1, 2t+ 1) for some 1 ≤ t;

(d) γgr(Ck �Ck) = k(k − 2) + 1 if k is odd.

Proof. The fact that the left-hand side in (a), (b) and (c) is at least the right-hand side
is a consequence of Proposition 3.1 and the facts that γgr(Pl) = l − 1 and γgr(Ck) = k − 2.

To prove the same for (d) we construct a dominating sequence of length k(k− 2) + 1 in
Ck �Ck for odd k. We do it in two steps.

5



Suppose that k = 2t+1. Let V (Ck �Ck) = {(x, y) ∈ Z2 : |x|, |y| ≤ t} and E(Ck �Ck) =
{{(x, y), (x′, y′)} : |x − x′| + |y − y′| = 1, or x = x′ and y = −y′ = t, or y = y′ and x =
−x′ = t}.

Set
A1 := {(x, y) ∈ V (Ck �Ck) : |x− 1/2|+ |y| ≤ t− 1/2}

with the following ordering: for (x, y), (x′, y′) ∈ A1, (x, y) ≺1 (x′, y′) if and only if

• |y| < |y′|, or

• |y| = |y′| and y′ < 0 < y, or

• y = y′ and x < x′.

It is obvious that ≺1 is a total (and so a well-)ordering of A1. We choose the vertices
of A1 into our dominating sequence in the order ≺1. As (x, y) ∈ A1 will dominate the
undominated vertex (x, y + 1) if y ≥ 0 and (x, y − 1) if y < 0, each element of A1 will be a
legal choice in this order.

In the next step we consider the set

A2 := {(x, y) ∈ V (Ck �Ck) : |x| < t and |x− 1/2|+ |y| > t− 1/2}

with the following ordering. For (x, y), (x′, y′) ∈ A2, (x, y) ≺2 (x′, y′) if and only if

• |x| < |x′|, or

• |x| = |x′| and x > 0 > x′, or

• x = x′ and y < y′.

One can easily check that ≺2 is a total (and hence a well-)ordering of A2. We will
choose the elements of the dominating sequence after the elements of A1 in the order ≺2.
Each element can be chosen into a legal sequence, since (x, y) ∈ A2 dominates the so far
undominated element (x+ 1, y) if x > 0 and (x− 1, y) if x ≤ 0.

We are done since the length of this dominating sequence is k(k− 2) + 1. A dominating
sequence of C5 �C5 is constructed in Figure 1.

Now we prove that the left-hand side in (a), (b), (c), and (d) is at most the right-hand
side. We will use Lemma 2.1.

To prove (a) let S = ((a1, b1), (a2, b2), . . . , (am, bm)) be a Grundy dominating sequence
of Pk �Pl. Let i be the minimum index such that either there is a column containing l
vertices of Ŝi or a row containing k vertices of Ŝi. If there is no such i, then m ≤ k(l − 1)
and we are done. Note that the two cases cannot happen simultaneously at any step i since
otherwise all the neighbors of (ai, bi) and (ai, bi) itself would already be dominated by Ŝi−1

and so S would not be a legal sequence. So without loss of generality we can assume that
there is horizontal segment of length k. Since in each column of Pk �Pl there is at least
one and at most l − 1 elements of the set Ŝi, we have that |∂Ŝi| ≥ k, which—by Lemma
2.1—proves (a).

To prove (b) let S = ((a1, b1), (a2, b2), . . . , (am, bm)) be a Grundy dominating sequence
of Pk �Cl. Let i be the minimum index such that either there is a column containing l − 1
vertices of Ŝi or a row containing k vertices of Ŝi. There exists such an i as otherwise
m ≤ max{l(k − 1), k(l − 2)} and we are done. We observe again that both cases cannot
happen at the same time since otherwise all the neighbors of (ai, bi) and (ai, bi) itself would
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x

y

1 2 3 4

15 5 6

14 7 8

16 10 12

13 9 11

Figure 1: A dominating sequence of C5 �C5

already be dominated. Suppose first that there is a column containing l − 1 vertices of Ŝi.
Then in each row there is an element of the boundary of Ŝi. By Lemma 2.1, this means
that the length of the Grundy dominating sequence is at most l(k − 1). Now suppose that

there is column containing k vertices of Ŝi. Then—since there is an element in each column
and there is no column containing l − 1 vertices of Ŝi—we have that the cardinality of the
boundary of Ŝi is at least 2k. By Lemma 2.1, the length of the Grundy dominating sequence
is at most k(l − 2) and we are done with (b).

Now we prove (c).

Case I. k + 1 ≤ l.
Let S = (a1, b1), (a2, b2), . . . , (am, bm) be a Grundy dominating sequence of Ck �Cl. Let i1
be the minimum index such that either there is a column containing l − 1 vertices of Ŝi or
there is a row containing k− 1 vertices of Ŝi. Note that it cannot happen that both of these
hold as then (ai1 , bi1) would not dominate any new vertex.

Subcase IA. There exists a column containing l − 1 vertices of Ŝi1 .

Then |∂Ŝi1 | ≥ 2(l− 1) ≥ 2k and we are done by Lemma 2.1.

Subcase IB1. There exists a row P v
k containing k − 1 vertices of Ŝi1 , and before the

appearance of another such row and before the first row containing k vertices appears, there
exists a column uPl containing l − 1 vertices of Ŝi2 for some i2 > i1.

Then the boundary of Ŝi2 contains uPl \ Ŝi2 , P
v
k \ Ŝi2 and 2 vertices from every other row.

Therefore |∂Ŝi2 | ≥ 1 + 1 + 2(l − 2) ≥ 2k holds and we are done by Lemma 2.1.

Subcase IB2. There exists a row P v
k containing k − 1 vertices of Ŝi1 , and before the

appearance of another such row and before a column uPl containing l − 1 vertices appears,
the vertex in P v

k \ Ŝi1 becomes the i2nd vertex of S for some i2 > i1.

Then the boundary of Ŝi2 contains two vertices from every column and therefore |∂Ŝi2 | ≥ 2k
and we are done by Lemma 2.1.
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Subcase IB3. There exists a row P v
k containing k − 1 vertices of Ŝi1 , and before the

appearance of a column uPl containing l − 1 vertices and before the vertex in P v
k \ Ŝi1

appears in S, there exists another row Pw
k containing k − 1 vertices from Ŝi2 for some

i2 > i1.
Then either every column contains a vertex from Ŝi2 and then |∂Ŝi2 | ≥ 2k or the vertices of

P v
k \ Ŝi2 and Pw

k \ Ŝi2 are in the same column. Then these two vertices are in the boundary of

Ŝi2 and two vertices from every other column belongs to ∂Ŝi2 and thus |∂Ŝi2 | ≥ 2+2(k−1) =
2k. We are done by Lemma 2.1.

Case II. k = l even.
Let k = 2t, V (Ck �Ck) = {(x, y) ∈ Z2 : −t+1 ≤ x, y ≤ t} andE(Ck �Ck) = {((x, y), (x′, y′)) :
|x − x′| + |y − y′| = 1, or x = x′ and |y − y′| = k, or y = y′ and |x − x′| = k}. Let
S = (a1, b1), (a2, b2), . . . , (am, bm) be a Grundy dominating sequence of Ck �Ck and let i
be the minimum index such that either a row or a column contains k − 1 vertices from
Ŝi. As in the previous case, there cannot be both a row and a column that contain k − 1
vertices of Ŝi as N [(ai, bi)] would already be dominated by Ŝi−1. We can assume without

loss of generality that Ŝi contains {(0, y) : |y| ≤ t − 1}. As then every row contains at

most k− 2 vertices of Ŝi, we obtain that ∂Ŝi contains 2 vertices in each row except the row
Rt = {(x, t) : −t+1 ≤ x ≤ t}. The row {(x, y) : −t+ 1 ≤ x ≤ t} will be denoted by Ry. As

(0, t) ∈ ∂Ŝi, we have |∂Ŝi| ≥ 2k − 1. If |∂Ŝi| ≥ 2k holds, then we are done by Lemma 2.1.

Otherwise, we must have |∂Ŝi| = 2k− 1 and ∂Ŝi ∩Rt = {(0, t)}. This implies R−t+1 ∩ Ŝi =

{(0,−t + 1)} and Rt−1 ∩ Ŝi = {(0, t − 1)}. Note that if for some row |Ru ∩ Ŝi| < k − 2,

then Ru ∩ Ŝi must be an interval as otherwise |Ru ∩ ∂Ŝi| ≥ 3 and thus |∂Ŝi| ≥ 2k would

hold. Also, if for some row |Ru ∩ Ŝi| < k − 2 and Ru ∩ Ŝi = {(x, u) : α ≤ x ≤ β}, then

Ru−1∩ Ŝi ⊆ {(x, u−1) : α−1 ≤ x ≤ β+1} and Ru+1∩ Ŝi ⊆ {(x, u+1) : α−1 ≤ x ≤ β+1}

hold as otherwise |Ru ∩ ∂Ŝi| ≥ 3 and thus |∂Ŝi| ≥ 2k would hold.

From the above it follows that Ŝi ⊆ T := {(x, y) : |x|+ |y| ≤ t− 1} holds, see Figure 2.
However the number of vertices in T is less than k(k − 2), so there must exist a minimal j

such that Ŝj contains a vertex outside of T . An esay case analysis shows that |∂Ŝj | ≥ 2k
holds and therefore we are done by Lemma 2.1.

Finally, let us prove the upper bound in (d). Let S = (a1, b1), (a2, b2), . . . , (am, bm) be a
Grundy dominating sequence of Ck �Ck for odd k. Let i be the minimum index such that
there is either a row or a column containing k − 1 vertices from Ŝi. We observe again that
both cannot happen at step i since otherwise all the neighbors of (ai, bi) and (ai, bi) itself
would already be dominated. So we can assume without loss of generality that there exists
a column containing k− 1 vertices from Ŝi. Then in each row we have at least two elements
in the boundary of Ŝi, except one, where we have at least one element. By this we have
|∂Ŝi| ≥ 2k − 1, and the upper bound of (d) follows by Lemma 2.1. �

In the remainder of this section we show how Lemma 2.1 and isoperimetric inequalities
can be applied to prove results on the Grundy domination number of products of several
paths and products of several even cycles. For a graph G, a vertex v ∈ V (G) and natural
number r let us denote by B(G, v, r) those points in G, whose distance from v is at most
r. We will need the following two isoperimetric theorems that are consequences of the cited
results for graphs of special vertex cardinalities.

Theorem 3.3 (Bollobás, Leader, [2, Theorem 8]) Suppose that H ⊂ C2k1
� · · · �C2kn

and
|V (H)| = |B(C2k1

� · · · �C2kn
, v, r)| for some v ∈ V (C2k1

� · · · �C2kn
) and a natural
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x

y

Figure 2: A set T in C6 �C6

number r. Then
|∂H | ≥ |∂B(C2k1

� · · · �C2kn
, v, r)|.

Theorem 3.4 (Riordan, [16, Theorem 1.1]) Suppose that H ⊂ Pk1
� · · · �Pkn

and |V (H)| =
|B(Pk1

� · · · �Pkn
, v, r)| for some vertex v ∈ V (Pk1

� · · · �Pkn
) of minimum degree and

some natural number r. Then

|∂H | ≥ |∂B(Pk1
� · · · �Pkn

, v, r)|.

Proposition 3.5 If k1 ≤ · · · ≤ kn and
∑n−1

i=1
ki + 2 ≤ kn, then we have

γgr(C2k1
� · · · �C2kn

) = 2nk1 · · · kn−1(kn − 1).

If k1 ≤ · · · ≤ kn and
∑n−1

i=1
ki + 1 ≤ kn, then we have

γgr(Pk1
� · · · �Pkn

) = k1 · · · kn−1(kn − 1).

Proof. In both statements, the lower bound on the Grundy domination number follows
from Proposition 3.1.

The upper bound in the first statement follows from Lemma 2.1 and Theorem 3.3, while
the upper bound of the second statement follows from Lemma 2.1 and Theorem 3.4. �

4 Lexicographic product

In this section we give an expression for the Grundy domination number of the lexicographic
product of graphs in terms of corresponding invariants of the factors. From this result we in
particular did use explicit formulas for the Grundy domination number of grids, cylinders
and tori (with respect to the lexicographic product).
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Proposition 4.1 Let G and H be graphs. Then

γgr(G ◦H) ≥ max{α(G)γgr(H), γgr(G)}.

Proof. Let ℓ = α(G), n = γgr(H), let {d1, . . . , dℓ} be a maximum independent set in G,
and (d′1, . . . , d

′

n) be a Grundy dominating sequence in H . Observe that

((d1, d
′

1), . . . , (d1, d
′

n), (d2, d
′

1), . . . , (d2, d
′

n), . . . , (dℓ, d
′

1), . . . , (dℓ, d
′

n))

is a dominating sequence in G ◦H . Hence γgr(G ◦H) ≥ ℓn = α(G)γgr(H).
The bound γgr(G ◦H) ≥ γgr(G) is trivial. �

The lower bound from Proposition 4.1 is sharp. For instance, if H is a complete graph
then clearly γgr(G ◦H) = γgr(G). It is easy to see that γgr(G)γgr(H) is an upper bound
for γgr(G ◦ H). Thus for any graph G, in which γgr(G) = α(G), we have γgr(G ◦ H) =
α(G)γgr(H). On the other hand, there are graphs in which this bound is not sharp. For
instance, let T be the tree from Fig. 3, and let H be any graph, which is not complete, thus
γgr(H) ≥ 2. Note that the filled vertices in the figure present a maximum independent set
of T , and so α(T ) = 5. Hence the bound in Proposition 4.1 is α(T )γgr(H) = 5γgr(H), but
γgr(T ◦ H) ≥ 5γgr(H) + 1. Indeed, let S be the sequence that starts in the layer uH , by
legally picking γgr(H) vertices, then choosing a vertex from vH , and then choosing γgr(H)
vertices in each of the layers that correspond to the remaining four leaves of T . This yields
a legal sequence of the desired length.

vu

Figure 3: The tree T .

Next, we present an exact formula for γgr(G ◦ H). Given a dominating sequence D =
(d1, . . . , dk) in a graph G, let a(D) denote the cardinality of the set of vertices di from D,
which are not adjacent to any vertex from {d1, . . . , di−1}.

Theorem 4.2 Let G and H be graphs. Then

γgr(G ◦H) = max{a(D)(γgr(H)− 1) + |D̂| ; D is a dominating sequence of G}.

Proof. Let D = (d1, . . . , dm) be any dominating sequence of G, and let (d′1, . . . , d
′

k) be a
Grundy dominating sequence of H . Then one can find a dominating sequence S in G ◦H
of length a(D)(γgr(H) − 1) + |D̂| as follows. Let S be the sequence that corresponds to

D, only those vertices di ∈ D̂ which are not adjacent to any vertex from {d1, . . . , di−1}
are repeated γgr(H) times in a row, so that the corresponding subsequence is of the form

((di, d
′

1), . . . , (di, d
′

k)). On the other hand, the vertices di ∈ D̂ which are adjacent to some
vertex from {d1, . . . , di−1} are projected only once, from any vertex (di, h) ∈ diH. It is easy to
see that in either case the vertices in S are legally chosen. In the first case this is true because
no vertex of diH is dominated at the point when (di, d

′

1) is chosen, thus ((di, d
′

1), . . . , (di, d
′

k))

10



is a legal subsequence. In the second case this is true because D is a legal sequence in G, and
so when di is chosen, which is at that point already dominated, this implies that there exists
another vertex t ∈ V (G) that di footprints. Hence, when (di, h) is chosen in S, it footprints

vertices from tH . Note that the length of S is a(D)(γgr(H) − 1) + |D̂|, and that D is an

arbitrary legal sequence of G. This implies that γgr(G ◦H) ≥ max{a(D)(γgr(H)− 1)+ |D̂|.
For the converse, let S be an arbitrary dominating sequence in G ◦H . Let si = (x, y) be

a vertex from S, where x ∈ V (G), y ∈ V (H). Note that when si is added to S, all vertices
from the layers hH , where h ∈ N(x), are dominated. In particular, at most one vertex from
each of the layers hH can be in S after si.

Now, consider the sequence D of vertices from G, defined as follows: for each si =
(x, y) ∈ S add x to D if si is the first vertex from S which is in xH . First note that D is
a legal sequence of G. Indeed, when x is added to D, (x, y) footprints some vertex, either
from xH or from zH , where z ∈ N(x). If (x, y) footprints a vertex (x, h), this implies that
no vertex sj ∈ S, where j < i, is in N [x]× V (H). Thus in this case x footprints itself with
respect to D. In the case when (x, y) footprints a vertex from a layer gH , where g ∈ N(x), x
footprints g with respect to D. In either case x is a legal choice, hence D is a legal sequence
in G. It is clear that D̂ is a dominating set, since D̂ = pG(Ŝ) and Ŝ is a dominating set of
G ◦H .

Let A(D) be the set of all vertices dk from D, such that dk is not adjacent to any vertex
from {d1, . . . , dk−1}. (Note that |A(D)| = a(D) by definition.) By the way D is constructed,
if dk 6∈ A(D), then at the point when si = (dk, y) is added to S, all vertices of the layer
dkH are already dominated. Hence, at most one vertex from dkH can lie in S. On the other
hand, clearly at most γgr(H) vertices from layers dkH , where dk ∈ A(D), can lie in S. We

infer that |Ŝ| ≤ (|D̂| − a(D)) + a(D)γgr(H), from which the desired inequality follows. �

Corollary 4.3 Let H be an arbitrary graph that is not a complete graph. Then

γgr(Pk ◦H) =

{
k
2
· γgr(H) + 1, k is even, k 6= 2⌈
k
2

⌉
· γgr(H), k is odd.

Proof. Let Pk = v1, v2, . . . , vk. Using Theorem 4.2, we would like to find a dominating
sequence D = (d1, . . . , dt) of Pk with the largest value a(D)γgr(H) + (|D̂| − a(D)). From

the proof of Theorem 4.2 it follows that the vertices di ∈ D̂ that are not adjacent to vertices

D̂i−1 contribute γgr(H) ≥ 2 to the Grundy dominating sequence of Pk ◦H , but the other

vertices of D̂ contribute just 1 to the Grundy dominating sequence of Pk ◦ H . Therefore
D is optimal if and only if a(D) is as big as possible. Thus a(D) =

⌈
k
2

⌉
. In the case

when k is odd, D = (v1, v3, . . . , vk) and this is the only case with a(D) = k+1

2
. Thus

γgr(Pk ◦ H) =
⌈
k
2

⌉
· γgr(H). If k is even, then a(D) = k

2
implies |D̂| ≤ k

2
+ 1. The set D

can be chosen in such a way that the equality holds, for example D = (v1, v2, v4, v6, . . . , vk)
contains k

2
+ 1 vertices. Thus γgr(Pk ◦H) = k

2
· γgr(H) + 1. �

Corollary 4.4 Let k, l > 2. Then

γgr(Pk ◦ Pl) =

{
k
2
· (l − 1) + 1, k is even⌈
k
2

⌉
· (l − 1), k is odd.

11



Corollary 4.5 Let k, l > 2. Then

γgr(Pk ◦ Cl) =

{
k
2
· (l − 2) + 1, k is even⌈
k
2

⌉
· (l − 2), k is odd.

Using Theorem 4.2 and the same ideas as in the proof of Corollary 4.3, we obtain the
following result.

Corollary 4.6 Let H be an arbitrary graph that is not a complete graph, and let k > 3.
Then

γgr(Ck ◦H) =

{
k
2
· γgr(H), k is even⌊
k
2

⌋
· γgr(H) + 1, k is odd.

Corollary 4.7 Let k, l > 3. Then

γgr(Ck ◦ Cl) =

{
k
2
· (l − 2), k is even⌊
k
2

⌋
· (l − 2) + 1, k is odd.

5 Direct product

Quite often the direct product is the most difficult one among the standard products when
investigating its invariants and similar problems. This phenomenon is also true in the case
of the Grundy domination number. In this section we give a general lower bound on the
Grundy domination number and specialize it to products of paths and cycles. In the case
of the product of two paths where a shortest path is of even order we also give an exact
value. We begin with the following general lower bound where a(D) is the same function as
in Section 4.

Proposition 5.1 Let G and H be graphs. Then

γgr(G×H) ≥ max
{

max{a(D)|V (H)|+ γt
gr(H)(|D̂| − a(D)) ; D is a dominating sequence of G}

max{a(D)|V (G)|+ γt
gr(G)(|D̂| − a(D)) ; D is a dominating sequence of H}

}

Proof. We first note that it suffices to present a construction that yields a dominating
sequence of length

max{a(D)|V (H)|+ γt
gr(H)(|D̂| − a(D)) ; D is a dominating sequence of G} .

Let D be a dominating sequence of G. Now we construct a sequence S in G × H that
corresponds to D in the following way. For a vertex di ∈ D̂, which is not adjacent to any
vertex from {d1, . . . , di−1}, all vertices of diH are added to S (this is legal because diH is
an independent set, and (di, h) is not adjacent to any (dj , h

′) for j < i). On the other
hand, if di is adjacent to some dj , j < i, then di footprints a vertex g with respect to D
in G. Given a Grundy total dominating sequence T = (t1, . . . , tr) in H , where r = γt

gr(H),
we add to S the sequence (di, t1), . . . , (di, tr) (indeed this is legal because (di, tj) footprints
(g, t′j), where t′j is a neighbor of tj footprinted by tj with respect to T ). The length of S is

a(D)|V (H)|+ γt
gr(H)(|D̂| − a(D)), as desired. �

In the next few results we will use the following notations V (Pk) = [k], E(Pk) = {{i, i+
1} : 1 ≤ i ≤ k − 1} and V (Ck) = [k], E(Ck) = {{i, i+ 1} : 1 ≤ i ≤ k − 1} ∪ {1, k}.

Proposition 5.1 yields the following lower bounds.

12



Corollary 5.2 If k ≥ 2 and l ≥ 4, then

γgr(Pk × Cl) ≥





max{kl− 2k − l + 6, kl− 2k}, k, l are even
kl− k − l+ 3, k, l are odd.
max{kl− 2k, kl− k − l + 3}, k is even, l is odd
kl− 2k − l + 6, k is odd, l is even

Proof. The proof of all four cases is similar, the only difference is in total Grundy domina-
tion number of paths and cycles with respect to the parity of the length. That is

γt
gr(Pk) =

{
k, k is even
k − 1, k is odd

and

γt
gr(Cl) =

{
l − 2, l is even
l − 1, l is odd.

Let D = (1, . . . , k−2, k) be a dominating sequence of Pk and D′ = (1, . . . , l−2) a dominating
sequence of Cl. Then a(D) = 2 and a(D′) = 1. First let k and l be even. Since γt

gr(Cl) =

l − 2, Proposition 5.1 implies that γgr(Pk × Cl) ≥ a(D)|V (Cl)| + γt
gr(Cl)(|D̂| − a(D)) =

2l + (k − 3)(l − 2) = kl − 2k − l + 6. Since γt
gr(Pk) = k it follows from Proposition 5.1 that

γgr(Pk × Cl) ≥ a(D′)|V (Pk)|+ γt
gr(Pk)(|D̂′| − a(D′)) = k + (l − 3)k = kl − 2k.

If k is even and l is odd, then γgr(Pk × Cl) ≥ a(D)|V (Cl)| + γt
gr(Cl)(|D̂| − a(D)) =

2l+(k−3)(l−1) = kl−k− l+3 and γgr(Pk×Cl) ≥ a(D′)|V (Pk)|+γt
gr(Pk)(|D̂′|−a(D′)) =

k + k(l − 3) = kl − 2k.

If k is odd and l is even, then γgr(Pk × Cl) ≥ a(D)|V (Cl)| + γt
gr(Cl)(|D̂| − a(D)) =

2l + (k − 3)(l − 2) = kl − 2k − l + 6.

Finally let k and l be odd. Then γgr(Pk × Cl) ≥ a(D)|V (Cl)| + γt
gr(Cl)(|D̂| − a(D)) =

2l + (k − 3)(l − 1) = kl − k − l + 3. �

The proof of the next result is omitted, as it follows from the Grundy total domination
number of a cycle and a dominating sequence of a cycle Cn of length n− 2.

Corollary 5.3 If l ≥ k ≥ 4, then

γgr(Ck × Cl) ≥





kl− 2k − 2l + 6, k, l are even
kl− 2k − l + 3, k is odd.
kl− k − 2l+ 3, k is even, l is odd.

Corollary 5.4 If 2 ≤ k ≤ l, then

γgr(Pk × Pl) ≥





kl − k, k is even
kl − k − l + 3, k, l are odd.
max{kl − l, kl− k − l + 3}, k is odd, l is even.

Proof. Let D = (1, . . . , k − 2, k) be a dominating sequence of Pk and D′ = (1, . . . , l − 2, l)
a dominating sequence of Pl. Then a(D) = a(D′) = 2. If k is even, then it follows from

Proposition 5.1 that γgr(Pk ×Pl) ≥ a(D′)|V (Pk)|+ γt
gr(Pk)(|D̂′| − a(D′)) = 2k+ (l− 3)k =

kl − k. If both k and l are odd, then γgr(Pk × Pl) ≥ 2l + (k − 3)(l − 1) = kl − k − l + 3.
If k is odd and l is even, then γgr(Pk × Pl) ≥ max{2l + (k − 3)l, 2k + (l − 3)(k − 1)} =
max{kl− l, kl− k − l+ 3}.

�
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Proposition 5.5 If 2 ≤ k ≤ l, then γgr(Pk × Pl) ≤ kl − k.

Proof. The proof is very similar to that of the upper bound in Theorem 3.2 (a). The graph
Pk×Pl has two components Codd = {(a, b) : a+b is odd} and Ceven = {(a, b) : a+b is even}.
We will prove that the length of a dominating sequence is ⌊k/2⌋ less than the number of
vertices in one of them and ⌈k/2⌉ less than the number of vertices in the other. Let us
consider the component Codd. Let Lodd,+ denote the set of lines {(x, y) : x + y = c} where
c is an odd integer with ⌊k/2 + 1⌋ ≤ c ≤ ⌊3k/2 + 1⌋, and let Lodd,− denote the set of
lines {(x, y) : x − y = c} where c is an odd integer with 1 − ⌊k/2⌋ ≤ c ≤ ⌈k/2⌉. Finally,
let S = ((a1, b1), (a2, b2), . . . , (am, bm)) be a dominating sequence of Codd and let i be the

smallest index for which either every line in Lodd,− contains a vertex from Ŝi or every line

in Lodd,+ contains a vertex from Ŝi (or both). Such an index exists as if not then the vertex

ℓ− ∩ ℓ+ with ℓ− ∈ Lodd,−, ℓ+ ∈ Lodd,+ is not dominated by Ŝ if none of ℓ− and ℓ+ contain a

vertex from Ŝ. Observe that |∂Ŝi| ≥ min{|Lodd,−|, |Lodd,+|} holds as if every line in Lodd,−

contains a vertex from Ŝi, then every line in Lodd,+ contains a vertex from ∂Ŝi and vice
versa. �

Corollary 5.4 and Proposition 5.5 give the following exact result.

Corollary 5.6 Let 2 ≤ k ≤ l and let k be even. Then γgr(Pk × Pl) = kl − k.

6 Strong product

In this section we first observe that γgr(G⊠H) ≥ γgr(G)γgr(H) holds for any graphs G and
H , and conjecture that it always holds with equality. Among other results proved here we
confirm the conjecture for strong products of caterpillars with arbitrary graphs.

Proposition 6.1 For any graphs G and H,

γgr(G⊠H) ≥ γgr(G)γgr(H).

Proof. Let p = γgr(G), q = γgr(H), let (d1, . . . , dp) be a Grundy dominating sequence in
G, and (d′1, . . . , d

′

q) be a Grundy dominating sequence in H . Let di footprint ui, i ∈ [p] and
let d′j footprint u′

j, j ∈ [q]. Consider the following sequence

S = ((d1, d
′

1), . . . , (d1, d
′

q), (d2, d
′

1), . . . , (d2, d
′

q), . . . , (dp, d
′

1), . . . , (dp, d
′

q))

of vertices of G⊠H . It is clear that Ŝ is a dominating set. Moreover a chosen vertex (di, d
′

j)
is legal since it footprints (ui, u

′

j). Hence γgr(G⊠H) ≥ pq = γgr(G)γgr(H). �

We conjecture that the lower bound of Proposition 6.1 is always tight:

Conjecture 6.2 For any graphs G and H, γgr(G⊠H) = γgr(G)γgr(H).

Recall that the edge cover number θe(G) presents an upper bound for the γgr(G) in any
graphG. We next show that this parameter behaves nicely in strong products of triangle-free
graphs.

Proposition 6.3 If G and H are triangle-free graphs, then θe(G⊠H) = |E(G)| · |E(H)|.
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Proof. Let e = gg′ and f = hh′ be arbitrary edges in G and H , respectively. Then the
edge (g, h)(g′h′) of G⊠H lies in a unique maximal clique Qe,f induced by the four vertices
in {g, g′}×{h, h′}. It follows that θe(G⊠H) ≥ |E(G)| · |E(H)| = θe(G)θe(H). On the other
hand the set of cliques {Qe,f : e ∈ E(G), f ∈ E(H)} forms an edge clique cover of G⊠H ,
so that θe(G⊠H) ≤ |E(G)| · |E(H)|. �

Corollary 6.4 If k, l ≥ 2, then γgr(Pk ⊠ Pl) = (k − 1)(l − 1).

Proof. The lower bound follows from Proposition 6.1 and the upper bound from Proposi-
tion 2.2 and Proposition 6.3. �

We approach Conjecture 6.2 with the following upper bound on the Grundy domination
number of the strong product of graphs.

Proposition 6.5 Let G and H be arbitrary graphs. Then

γgr(G⊠H) ≤ min{|V (G)|γgr(H), γgr(G)|V (H)|}.

Proof. Let D be a (Grundy) dominating sequence of G⊠H. Consider a layerGh, h ∈ V (H),
and let Dh be the subsequence of D that consists only of the vertices in Gh. We claim that
the corresponding sequence pG(D

h) is a legal sequence in G. Indeed, let (g, h) ∈ Dh and let
(g′, h′) be a vertex footprinted by (g, h) with respect to the sequence D. It is clear that g
footprints g′ with respect to the sequence pG(D

h). This implies that in each G-layer there
are at most γgr(G) vertices from D. Therefore, γgr(G ⊠H) ≤ γgr(G)|V (H)|. By reversing
the roles of G and H the claimed inequality follows. �

Recall that a vertex is called simplicial if its neighborhood induces a complete graph.

Proposition 6.6 Let G and H be arbitrary graphs. If v is a simplicial vertex in G, then

γgr(G⊠H) ≤ γgr(H) + γgr((G − v)⊠H).

Proof. Consider a Grundy dominating sequenceD of G⊠H such that D contains maximum
number of vertices from vH . LetD1 be the subsequence ofD that consists only of the vertices
in vH and let D2 be the complementary subsequence of D. Analogously to the proof of
Proposition 6.5, one can show that D1 is a dominating sequence in vH . Consequently,

|D̂1| ≤ γgr(H).
Now assume that a vertex (g, h), which is not from vH , footprints a vertex (v, h′) in vH .

Since v is simplicial, NG[v] ⊆ NG[g]. Further, either h = h′ or (v, h) and (v, h′) must be
adjacent. Therefore, if (g, h) is replaced by (v, h) in D, we obtain a Grundy dominating
sequence again, and this one contains more vertices from vH than D did. This contradicts

the choice of D and proves that no vertex from D̂2 footprints a vertex outside (G− v)⊠H .
We may conclude that D2 is a dominating sequence in (G−v)⊠H , and the desired inequality

γgr(G⊠H) = |D̂1|+ |D̂2| ≤ γgr(H) + γgr((G − v)⊠H)

holds. �

We say that a graph G satisfies Conjecture 6.2 if for every graph H , γgr(G ⊠ H) =
γgr(G)γgr(H) holds. As a consequence of Proposition 6.6, we obtain the following result
related to the conjecture.
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Corollary 6.7 Every caterpillar satisfies Conjecture 6.2.

Proof. Let G be a caterpillar and let H be an arbitrary graph. If G is of order 1 or
2, γgr(G ⊠ H) = γgr(G)γgr(H) = γgr(H) can be shown directly. Then, we proceed by
induction on n. As we mentioned at the end of Section 2, it is shown in [5] that any
nontrivial caterpillar G of order n satisfies γgr(G) = n− 1. If n ≥ 3, delete an arbitrary leaf
v from G. By the induction hypothesis we have γgr((G − v)⊠H) = (n− 2)γgr(H). Then,
Proposition 6.6 gives

γgr(G⊠H) ≤ γgr(H) + (n− 2)γgr(H) = (n− 1)γgr(H) = γgr(G)γgr(H).

Together with Proposition 6.1 this establishes our statement. �

We immediately derive the exact value of Grundy domination number of cylinders and
an upper bound for tori.

Corollary 6.8 If k ≥ 2 and l ≥ 3, then γgr(Pk ⊠ Cl) = (k − 1)(l − 2).

Corollary 6.9 If 3 ≤ k ≤ l, then γgr(Ck ⊠ Cl) ≤ (k − 2)(l − 1).

Note that the conjectured value for a torus is γgr(Ck ⊠ Cl) = (k − 2)(l − 2). We further
remark that, by Corollary 6.7, strong products of any number of caterpillars also satisfy
Conjecture 6.2. Particularly, the following exact results can be derived:

γgr(Pk1
⊠ · · ·⊠ Pkn

) = (k1 − 1) · · · (kn − 1)

γgr(Pk1
⊠ · · ·⊠ Pkn

⊠ Cl) = (k1 − 1) · · · (kn − 1)(l − 2).

Finally, we consider a graph operation related to the conjecture. We say that G′ is
obtained from G by substituting a vertex v ∈ V (G) with Kℓ if v is replaced with the
complete graph on ℓ vertices such that each of these ℓ new vertices is made adjacent to the
entire NG(v).

Proposition 6.10 If G satisfies Conjecture 6.2 and G′ is obtained from G by substituting
a vertex v ∈ V (G) with a complete graph, then G′ also satisfies Conjecture 6.2.

Proof. Clearly, a graph isomorphic to G′ can be obtained from G by successively adding
(true) twin vertices to v. It was observed in [4] that if x has a twin in a graph F then
γgr(F − x) = γgr(F ). Further, if x has a twin in F , then for every graph H and for every
h ∈ V (H), the vertex (x, h) also has a twin in F ⊠ H . These imply γgr((F − x) ⊠ H) =
γgr(F ⊠ H). Using these statements in opposite direction and successively, we obtain the
following. If G satisfies Conjecture 6.2 then

γgr(G
′
⊠H) = γgr(G⊠H) = γgr(G)γgr(H) = γgr(G

′)γgr(H)

holds for every graph H . �

Acknowledgements
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[19] J. Žerovnik, Perfect codes in direct products of cycles—a complete characterization,
Adv. in Appl. Math. 41 (2008) 197–205.

17

http://arxiv.org/abs/1603.05116

	1 Introduction
	2 Preliminaries
	3 Cartesian product
	4 Lexicographic product
	5 Direct product
	6 Strong product

