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Two IncA/C family plasmids from the 1960s have been sequenced and classified into A/C2 Type 1 14 

group. R16a and IP40a contain novel antibiotic resistance islands and a complete GIsul2 island not 15 

previously found in the family. In the 173.1 kb R16a the 29.9 kb ARI is located in a unique backbone 16 

position not utilized by ARIs. ARIR16a consists of Tn1, Tn6020, Tn6333 harboring the resistance genes 17 

blaTEM-1D, aphA1b and a mer module, respectively, a truncated Tn5393 copy and a gene cluster with 18 

unknown function. Plasmid IP40a is 170.4 kb in size and contains a 5.6 kb ARI inserted into kfrA gene. 19 

ARIIP40a carrying blaTEM-1D and aphA1b genes is composed of Tn1 with Tn6023 insertion. Additionally, 20 

IP40a harbors single IS2, IS186 and Tn1000 insertions scattered in the backbone, an IS150 copy in 21 

GIsul2 and a complete Tn6333 encoding a mer module at the position of ARIR16a. Loss of resistance 22 

markers in R16a, IP40a and R55 was observed during stability tests. Every phenotypic change proved 23 

to be the result of recombination events involving mobile elements. Intramolecular transposition of IS 24 

copies that generated IP40a derivatives lacking large parts of the backbone could account for the 25 

formation of other family members, too. MinION platform proved to be a valuable tool in bacterial 26 

genome sequencing since it generates long reads that span repetitive elements and facilitates full 27 

length plasmid or chromosome assembly. Nanopore technology enables rapid characterization of 28 

large, low-copy plasmids and their rearrangement products. 29 

 30 
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INTRODUCTION 31 

Plasmids belonging to the A/C incompatibility group (IncA/C) are large, low-copy, conjugative 32 

extrachromosomal elements that often encode resistance genes(1)(2)(3)(4). The efficient conjugation 33 

system, broad host range of IncA/C plasmids and their ability to mobilize multidrug-resistant genomic 34 

islands (GIs) are presumably responsible for the rapid dissemination of resistance genes among 35 

Gram-negative enteric bacteria(5)(6). IncA/C plasmids are classified into two distinct subgroups(2)(7) 36 

designated as A/C1 (RA1 as sole sequenced member) and A/C2 (all the other plasmids sequenced to 37 

date). Historically, the A/C complex was created by combining the IncA group, consisting only of RA1 38 

and RA2(8), with the IncC group, which has recently been suggested to correspond to the A/C2 39 

subgroup(9). A/C2 plasmids are further characterized as Type 1 or Type 2 based on the alleles of 40 

orf1832/1847 and rhs1/2 genes they possess in loci R1 and R2, respectively, and the 41 

presence/absence of two short insertions (i1 and i2)(10)(2). 42 

Comparative genomics of IncA/C plasmids revealed their modular structure: a conserved backbone 43 

contains genes required for maintenance (rep, par) and conjugative transfer (tra, aca), while the 44 

variable accessory modules are often identified as antibiotic resistance islands (ARIs) that harbor 45 

various resistance determinants associated with complex arrays of transposons (Tn3-family, Tn7-like 46 

and ISCR elements, IS26) and integrons(11)(12)(2). IncA/C plasmids contain ARIs (ARI-A in Type 1 47 

and ARI-B in Type 1 and 2) at two specific positions, though in some family members ARIs can also 48 

be found in the rhs-kfrA region(2). Relatively little is known about the origin of ARIs, but ARI-Bs 49 

presumably evolved by incorporation of GIsul2(13) into the IncA/C backbone in the early stage of 50 

evolution and subsequent internal replacements and rearrangements of the island(2). However, a 51 

direct evidence for this assumption, namely a family member containing a complete GIsul2, has not 52 

been reported so far. 53 

In the course of sequencing plasmids and bacterial chromosomes that harbor repetitive elements (e.g. 54 

IS elements and transposons) in multiple copies, it is challenging to assemble the short reads 55 

generated by new generation sequencing (NGS) platforms into a single contig. Third generation (i.e. 56 

single molecule, real-time and nanopore) sequencing produces long reads that can span repetitive 57 

elements and therefore facilitate more contiguous assembly of NGS contigs. Oxford Nanopore 58 

Technologies’ (ONT) MinION, a portable DNA sequencer device, detects bases of ssDNA passing 59 

through a nanopore(14). Despite the relatively high error rate, MinION reads are suitable for de novo 60 
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assembly of complete genomes(15)(16)(17)(18), scaffolding NGS contigs(19), metagenomic 61 

studies(20)(21) and real-time epidemiological investigations(22)(23). The main advantages of MinION 62 

platform over NGS technologies are long reads (there is no theoretical limit of read length), low 63 

investment cost per device, portability, flexible run and reduced turnaround time(22)(24). 64 

Plasmids R16a and IP40a (R40a)(25) were isolated in the Pasteur Institute from abscess and urine 65 

samples collected in 1966 (St-Antoine Hospital, Paris) and 1969 (Necker Hospital, Paris), respectively. 66 

The nucleotide sequences of the two IncA/C plasmids and their spontaneous rearrangement products 67 

have been determined in the framework of the ONT MinION Access Programme (MAP). Both 68 

plasmids belong to A/C2 Type 1 group and carry aphA1b, blaTEM-1D and sul2 genes conferring the 69 

previously determined resistance to kanamycin, ampicillin and sulphonamides(26), respectively. In 70 

addition, both plasmids provide resistance to mercury. The rearrangements detected in R16a, IP40a 71 

and R55(25) seem to be associated with transposons. The presence of relatively few and archaic 72 

antibiotic resistance genes and the complete GIsul2 island, which is absent from all the known IncA/C 73 

plasmids, suggests that these plasmids represent an ancestral stage in Type 1 lineage. 74 

 75 

MATERIALS AND METHODS 76 

DNA and microbial techniques. Plasmid DNA was extracted by using QIAGEN Plasmid Midi kit 77 

(Qiagen). R16a and IP40a were purified from their E. coli K-12 TG90F
-
 transconjugants obtained from 78 

crosses with E. coli K-12 J53 donor strains (gifts from Benoît Doublet). The recipient strain TG90F
-
 79 

derived from TG90(27) by curing F’. Deletion derivatives were isolated by replica plating following 1-5 80 

passages of TG1Nal(28) transconjugants harboring R16a, IP40a or R55 under non-selective 81 

conditions(28). Mercury resistance of TG1Nal, TG1Nal/R16a and TG1Nal/IP40a strains was tested as 82 

follows: cells were grown in LB until OD600~0.8, serially diluted tenfold to 10
7
, then each dilution was 83 

dropped onto LB plates supplemented with 0, 2.5, 5, 10, 15 or 20 µg/ml HgCl2 and incubated overnight 84 

at 30 ºC. Bacterial strains were routinely grown at 37 ºC in LB supplemented (if applicable) with 85 

ampicillin (150 µg/ml), chloramphenicol (20 µg/ml), kanamycin (30 µg/ml), nalidixic acid (20 µg/ml), 86 

gentamicin (25 µg/ml), tetracycline (10 µg/ml). 87 

 88 

Sequencing and analysis. R16a and IP40a were sequenced on Illumina platform at the Department 89 

of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, 90 
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Hungary. MiSeq 2×300 bp paired-end reads were de novo assembled using MIRA 4.0.2(29). Gap 91 

closure and exact determination of deletion endpoints were performed by Sanger sequencing of PCR 92 

amplicons covering these regions on ABI 3130xl instrument. PCRs were carried out using Pwo 93 

(Roche) or Phusion polymerases and Long PCR enzyme mix (Thermo Scientific) according to the 94 

manufacturer’s recommendations. For oligonucleotide primers and detailed workflow see Table S1 95 

and Text S1. 96 

MinION libraries were prepared using SQK-MAP005 (deletion derivatives) and SQK-MAP006 (original 97 

plasmids) kits according to the manufacturer’s instructions and sequenced on R7.3 flow cells. Fast5 98 

read files were base-called via 2D workflow of ONT's Metrichor software. Earlier versions of 2D 99 

workflow (v.1.12-1.14) yielded 1D and 2D reads for deletion derivatives, while higher versions (v.1.16) 100 

resulted only 2D reads for R16a and IP40a (Table 1). 101 

R16a and IP40a MinION reads were de novo assembled into a single full length contig by Minimap 102 

and Miniasm(30). LAST v. 393(31) was used to align MinION reads from the deletion derivatives to the 103 

complete R16a, IP40a and R55 reference sequences, and to map MiSeq MIRA-contigs to the 104 

corresponding single Miniasm-contigs of R16a and IP40a. Final sequences of plasmids were 105 

annotated using RAST version 2.0(32) and corrected manually. 106 

Libraries of deletion derivatives prepared by SQK-MAP005 kit and protocol yielded less favorable read 107 

length distribution (Figure S1), lower number of 2D reads (Table 1), and therefore significantly lower 108 

coverage and accuracy compared to R16a and IP40a libraries generated by SQK-MAP006. Thus, for 109 

determination of deletions all 1D and 2D reads were mapped to the complete reference sequences. 110 

Endpoints were identified by sequencing the PCR amplicons spanning the deleted regions (Text S1). 111 

 112 

Accession numbers. Complete sequences of R16a and IP40a were deposited in GenBank under the 113 

accession numbers KX156773 and KX156772, respectively. MiSeq Fastq and base-called MinION 114 

Fast5 read files are available under the BioProject PRJNA318408 115 

(https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA318408), while the Miniasm-contigs (g00003c 116 

and g00001c) and Mira-contigs generated for the two plasmids are available at 117 

http://emboss.abc.hu/minionarticle/. Accession numbers of all the other sequenced IncA/C plasmids 118 

are listed in Table S2. 119 

 120 
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RESULTS AND DISCUSSION 121 

Plasmid sequencing. The loss of resistance markers was observed when plasmids R55, R16a and 122 

IP40a were passaged without selection. To study the background of rearrangements, the yet unknown 123 

plasmids R16a and IP40a were sequenced on Illumina platform. After filtering E. coli chromosomal 124 

sequences, 22 and 8 contigs were obtained from R16a (N50: 158234; coverage 115; 68555 mapped 125 

reads; Phred scores, r1: 36, r2: 31) and IP40a (N50: 31122; coverage 120; 69652 mapped reads; 126 

Phred scores, r1: 36, r2: 29), respectively. Due to the abundance of repetitive elements MiSeq reads 127 

alone could not be assembled unambiguously into single contigs. However, de novo assembly of long 128 

MinION reads (Figure S1) by using Miniasm software, which was developed for the efficient mapping 129 

and assembling of low accuracy reads without error correction, yielded full-length contigs, even for 130 

IP40a where relatively low coverage was achieved (Table 1). Single Miniasm-contigs were used for 131 

aligning the corresponding MIRA-contigs (Figure S2). Deduced plasmid sequences were confirmed by 132 

PCR and direct sequencing of gap-bridging amplicons (Text S1). 133 

 134 

Comparative analysis of R16a and IP40a. Sequence analysis revealed that R16a and IP40a 135 

possess all distinctive traits of A/C2 Type 1 group(2) as they carry orf1832 and rhs1 alleles at R1 and 136 

R2 loci, and lack i1 and i2 insertions (Table 2). Both plasmids harbor an intact GIsul2, the presumptive 137 

ancestor of ARI-Bs, in the standard ARI-B site and unique ARIs (ARIR16a and ARIIP40a) at 138 

unconventional sites, while neither contains ARI-A. A newly identified Tn3-family transposon Tn6333 139 

was found in the same position of R16a and IP40a. While it is intact in IP40a, the insertion of a 140 

transposon-like gene cluster in Tn6333 led to the formation of ARIR16a in R16a. 141 

The two plasmids are apparently very close relatives (Figure 1A) as their 127.7 kb backbones only 142 

differ in 12 SNPs and they both contain a 131-bp deletion unique among the known family members. 143 

The deletion causes frameshift after the Thr61 codon of a putative nitrite reductase gene downstream 144 

of dsbA (starting at 11670 bp in R16a). Furthermore R16a carries an 11-bp insertion upstream of mobI 145 

and a single base insertion upstream of a DNA primase gene near to rhs1. Compared to the ca. 40 146 

years later isolated R148(33) the backbones of R16a and IP40a differ in 51 and 53 SNPs, 147 

respectively, and have the same 3-bp insertion and 1-bp deletion (the latter is probably a sequencing 148 

mistake in a 7-8-bp oligoT-stretch). The IP40a backbone contains an additional 1-bp insertion. The 149 
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presence of complete GIsul2 is exceptional among the known IncA/C plasmids and suggests that 150 

these plasmids represent ancestral forms in Type 1 lineage. 151 

The major differences between the plasmids are in the structure of ARIs and the presence of four 152 

additional transposons in IP40a. These Tns are typical for E. coli, though IS186 and Tn1000 (γδ) can 153 

be found in strains of P. aeruginosa, the original host of IP40a, while IS2 and IS150 have also been 154 

described from several species (Shigella, Salmonella, Proteus, Morganella, Yersinia, etc.). The 155 

question whether IP40a had captured these elements before its isolation in 1969 or after its transfer to 156 

E. coli K-12 J53, during the ca. 45 years of laboratory maintenance, is difficult to answer. The first 157 

scenario is supported, however, by the fact that R16a did not acquire these elements even though it 158 

has undergone similar procedures (Benoît Doublet, pers. comm.). Furthermore, Tn1000, a regular 159 

resident of the F plasmid in E. coli K-12, can derive neither from the original donor J53 strain, which is 160 

F
-
 and has no genomic Tn1000 copy (NZ_AICK01000000), nor the F

’
-cured recipient TG90F

-
 strain 161 

(see. Materials and methods). 162 

 163 

Structure of R16a ARIs. The 173094 bp R16a contains the ARIR16a integrated into the backbone at a 164 

site (127177 bp) not utilized by ARIs in other family members (Figure 1B). ARIR16a is composed of the 165 

IS26-based compound transposon Tn6020(34) and three different Tn3-family members, i.e. Tn1(35), 166 

Tn5393(36) and the newly identified Tn6333. All resistance genes of ARIR16a are located in 167 

transposons Tn1 (blaTEM-1D), Tn6020 (aphA1b) and Tn6333 (mer
 
module). Interestingly, integrons, 168 

often accumulating resistance genes in other family members, were not found either on R16a or 169 

IP40a. ARIR16a is delimited by IRs of Tn6333 inserted at position 124178 bp of R16a (145801 bp in 170 

R148). The Tn6333 transposase (Tpase) gene is interrupted by a transposon-like cluster flanked by an 171 

intact and a truncated copy of Tn1 elements in direct orientation (Figure 1B). The full length Tn1 172 

shows 99% homology to Tn1 of IncP plasmid RK2(37) (4936/4950 bp identity and 2 gaps) and its 173 

closest relatives were found in Shigella dysenteriae plasmids pA5468 and pBU53M1 (4942/4949 bp 174 

identity). The truncated Tn1 has 7 SNPs compared to the corresponding region of the intact copy, and 175 

its closest relatives, differing in 6 SNPs and an 1-bp insertion, can be found in several plasmids and 176 

genomic islands. The Tn1-delimited cluster, which cannot be found in GenBank as a unit, includes a 177 

yet undescribed 5757 bp region carrying 12 orfs, a truncated copy of Tn5393 and a compound 178 

transposon Tn6020 consisting of two identical, directly oriented IS26 elements. The Tn5393 fragment 179 
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has 100% homologues in numerous plasmids and bacterial chromosomes, but it differs from the 180 

corresponding region of Tn5393 prototype described from Erwinia amylovora plasmid pEa34(36) in 7 181 

SNPs. The sequences of IS26 elements in Tn6020 are identical to IS15DII (https://www-182 

is.biotoul.fr//)(38) and contain 1 SNP compared to IS26 (GenBank: X00011). 183 

The lack of 8-bp target duplication (TD) typical for IS6 family (http://www-is.biotoul.fr) indicates that 184 

after insertion Tn6020 generated a deletion via intramolecular transposition leading to the actual 185 

structure, where Tn6020 is bracketed by the two truncated Tn3-family elements. On the other hand, 186 

the IRs of Tn6333 and the outer IRs of the Tn1-based cluster are delimited by 5-bp TD (Figure 1B) 187 

characteristic for Tn3 family transposons. This arrangement of TDs and the inactivation of Tn6333 188 

Tpase by Tn1 insertion suggest a scenario in which Tn6333 integration preceded the insertion of Tn1-189 

based cluster. 190 

The other island in R16a, the complete GIsul2 located in the previously described site of ARI-B, 191 

contains the sul2 gene and an arsenic resistance operon (ars
R
). GIsul2 has been found in the 192 

chromosome and/or plasmids of several species, such as Providencia stuartii, Escherichia coli, 193 

Sphingopyxis granuli, Morganella morganii, Shigella flexneri, Achromobacter xilosoxidans, 194 

Enterobacter cloacae, Acinetobacter baumannii, but not in other IncA/C plasmids. Compared to the 195 

copy described from A. baumannii ATCC 17978(13) GIsul2 in R16a is 278 bp longer and it contains 196 

five SNPs and six 1-bp indels, but it is almost identical to the variants found in P. stuartii ATCC 33672 197 

chromosome and pHUSEC411-like plasmid of E. coli PMV-1 (2 SNPs). GIsul2 in R16a, similarly to 198 

other intact GIsul2 copies found in databases, is bordered by GGGA direct repeats (Table S3). The 199 

chromosomal GIsul2 islands are all integrated into the 3’ end of a GMP synthase gene guaA, while the 200 

plasmid-borne copies are located at different sites, such as the intergenic region near tolA gene in 201 

pHUSEC411-like plasmid, the topoisomerase gene in R485, or the 3’ end of a hypothetical gene in 202 

R16a. Although the short direct repeats are reminiscent of TDs generated via transposition, the 203 

preference for the guaA integration site and the lack of Tpase able to produce TDs may support the 204 

idea that GIsul2 is an integrating element(13). 205 

 206 

Structure of IP40a ARIs. The 170404 bp IP40a has the same resistance genes in similar components 207 

as R16a, but arranged into three blocks (Figure 1B). In the position of ARIR16a IP40a harbors an intact 208 

Tn6333 copy including the mer module. This situation may represent the initial state of ARIR16a 209 
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formation as it was suggested above. BlaTEM-1D and aphA1b genes are carried by a unique 210 

transposon-in-transposon structure ARIIP40a inserted into the kfrA gene at a position not utilized by 211 

other ARIs in the IncA/C family (Table S2). The first step of ARIIP40a evolution was most likely the 212 

simple insertion of the blaTEM-1D-bearing Tn1 into kfrA. The presence of a 5-bp TD delimiting Tn1 IRs 213 

clearly supports this idea. The second step must have been the Tn6023 insertion that was presumably 214 

followed by an intramolecular transposition event. This removed the inner part (1507-3441 bp) of Tn1 215 

(the remaining parts differ from the full length copy of R16a in 3 SNPs), inactivated the Tpase gene by 216 

deleting its 5’ half and led to the present state, where no TD flanks the outer IRs of Tn6023. AphA1b is 217 

carried by Tn6023 composed of two identical, inversely oriented IS26 elements (Figure 1B). These 218 

IS26 copies are identical to IS15DI and carry 3 SNPs compared to the reference sequence of IS26 219 

(https://www-is.biotoul.fr//). The IP40a-borne Tn6023 is not identical to the prototype found in 220 

pSRC125,(39) in which the aphA1 cassette is 21 bp longer and the second IS26 copy contains 3 221 

SNPs. It also differs from Tn6020 of R16a in the orientation and sequence of the IS elements (4 222 

SNPs), and in the intervening segment that contains the resistance gene without any additional orf. 223 

The other resistance genes (sul2 and ars
R
 operon) reside in GIsul2, which has 2 SNPs compared to 224 

the R16a-borne version and an IS150 insertion in the integrase gene, but resides at the same position 225 

as in R16a and is also flanked by GGGA direct repeats. 226 

 227 

Description of Tn6333 The novel 11514 bp transposon, Tn6333, is delimited by 37-bp inverted 228 

repeats and generates 5-bp target duplication (Figure 1C). The transposon shares the highest 229 

homology with two unidentified transposons found in the genome of Providencia stuartii strain ATCC 230 

33672 (GenBank: CP008920) and Shewanella sp. ANA-3 plasmid 1 (GenBank: CP000470), 231 

respectively. Compared to Tn6333 the Tn copy in P. stuartii is identical except it has an IS26 insertion 232 

in the Tpase gene, while the one on Shewanella sp. plasmid has 21 SNPs, a 12-bp internal deletion 233 

and 451-bp deletion effecting the left end. Based on the amino acid sequence of the transposase, 234 

Tn6333 was classified into the Tn3 family. The transposon also contains a resolvase gene (res), a 235 

putative partitioning protein gene (parA), 4 hypothetical orfs with unknown function and the 7 orfs of 236 

mer module. The mer module, which is located between the Tpase and resolvase genes, contains a 237 

mercuric reductase gene (merA), mercuric transport protein genes (merC,P,T), a Hg(II)-responsive 238 

transcriptional regulator gene (merR) and a short orf encoding a putative MerR-family transcription 239 
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coregulator domain. The module also includes an orf encoding a putative signaling protein with the 240 

conserved EAL domain (Figure 1C). The mer module provides equal level of resistance to mercury for 241 

both plasmids. Five µg/ml HgCl2 that was completely inhibitory for the growth of the negative control 242 

TG1Nal strain had no significant effect on the titer of plasmid bearing derivatives (LB+5 µg/ml HgCl2: 243 

4.0×10
8
; LB:1.7×10

9
 CFU/ml), and single colonies were obtained even on 15 µg/ml concentration, but 244 

with 4 orders of magnitude less frequency than on LB or LB+5 µg/ml (LB+15 µg/ml HgCl2: 7.0×10
4
 245 

CFU/ml). 246 

 247 

Analysis of spontaneous rearrangements detected in three IncA/C plasmids. 248 

R55, a previously sequenced Type 2 plasmid isolated simultaneously with R16a and IP40a, was 249 

included in the stability tests, where the loss of resistance markers was examined. Frequency of 250 

plasmid species that lost one or several markers was in the range of 1.8-38.0×10
-3

 in the passaged 251 

cell populations (Table S4). We first examined whether homologous recombination between directly 252 

repeated elements of the original plasmids could lead to the observed phenotypes as it was described 253 

for SGI1 variants(28). Considering the structure of ARIR16a, Km
S
Ap

R
 R16a derivatives can arise by 254 

recombination between the directly oriented IS26 or Tn1 copies. Similarly, the observed 255 

Km
S
Gm

S
Ap

S
Flo

R
Cm

R
 phenotype in R55 can be the result of deletions between the directly oriented 256 

IS5075 copies bracketing Tn6187. Km
S
Ap

S 
IP40a derivatives, however, could not be formed this way 257 

due to the lack of extensive direct repeats around the resistance region. 258 

R16a and R55 derivatives were tested by PCRs indicative for the presumed deletions (Text S1). Type 259 

R16a_d1, R16a_d3 and R55_d11 deletions corresponded to the three predicted rearrangements 260 

(Figure 2), while deletion types R16a_d2 and R55_d20 could not be mapped this way. The structure of 261 

R16a_d1-type deletion, which was independently isolated three times, was consistent with the putative 262 

product of homologous recombination between IS26 elements of Tn6020. The single isolate R16a_d3 263 

and R55_d11, which were detected in four independent assays, appeared to derive in a similar way 264 

involving two directly repeated Tn1 segments and IS5075 elements, respectively (Figure 2). Although 265 

the most probable explanation for the formation of the three deletion-types is homologous 266 

recombination, R16a_d1 could be the result of IS26 transposition (40)(41)(42), too. 267 

R16a_d2 and R55_d20, which could not be determined in the first round, were further analyzed by 268 

PCR and sequencing, together with IP40a derivatives IP40a_d5 and IP40a_d8, in which the 269 
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rearrangements were not predictable from the plasmid sequence. Subsequent PCR test revealed that 270 

R16a_d2 carries a deletion between the IRR of the first IS26 element and the resolvase gene of 271 

Tn6333, indicating that it has been formed by intramolecular transposition. Rearrangements in 272 

R55_d20 and the two IP40a deletions were identified by MinION sequencing. Alignment of MinION 273 

reads from R55_d20 to the reference showed that the deletion occurred inside the ARI and started 274 

from the IRR of a single IS1 element located next to the catA1 gene. The same method revealed that 275 

the transposition of the right IS26 copy of Tn6023 eliminated considerable part of IP40a backbone in 276 

IP40a_d5 and IP40a_d8 as the endpoints of deletions are in the Tn1000 Tpase gene and the 277 

intergenic region near to the left end of Tn1000, respectively (Figure 2). Highly truncated versions of 278 

the 127 kb conserved backbone, similar to the IP40a derivatives, can be found in numerous IncA/C 279 

family members. In these plasmids the remaining backbone segments are often delimited by IS 280 

elements (Figure S3) suggesting that their origin is analogous to that of IP40a_d5 and IP40a_d8, and 281 

supporting the idea that transposons are key players in remodeling of IncA/C plasmids(43). 282 

 283 

Conclusions. Two early IncA/C isolates containing novel ARIs and complete GIsul2 have been 284 

described in this work. Compared to other ARIs in the family (e.g. ARIR55), ARIR16a and ARIIP40a have a 285 

relatively simple structure that can be explained by a few transposition events. In R16a and IP40a the 286 

absence of integrons and “modern” antibiotic resistance genes, and the presence of a complete 287 

GIsul2 suggest that they represent an early stage of IncA/C evolution. However, due to the unique 288 

131-bp deletion in both backbones, it is unlikely that these plasmids are direct ancestors of present 289 

family members. The analysis of further IncA/C plasmids collected in the pre- and early antibiotic era 290 

could contribute to the better understanding of the lineages. The current taxonomy of family 291 

members(2), that is based on 4 backbone markers, appears to be adequate for the majority of the ca. 292 

110 plasmid species identified to date. However, classification of emerging deletion derivatives and 293 

hybrids (pNDMCFuy, pHM881QN), presumably originating from recombination between Type 1 and 2 294 

species, is ambiguous and further loci should be considered in the classification scheme. The third 295 

generation MinION sequencer proved to be a suitable tool for mapping deletions and generating 296 

complete sequences from plasmids abundant with repetitive elements. The IS-mediated 297 

rearrangements identified in three IncA/C plasmids may elucidate the evolution of ARIs and the origin 298 

of family members having truncated backbone sequences. 299 
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Legends to Figures 430 

Figure 1 (A) Comparison of R16a and IP40a to reference IncA/C2 Type 1 plasmid R148. Major 431 

backbone genes and the site of ARIs are indicated. The intact transposons and IS elements 432 

located outside of ARIIP40a are shown below the graph (B) Detailed structure of ARIs in R16a and 433 

IP40a. The horizontal lines with the major backbone genes represent the whole plasmid 434 

sequences. Coordinates below the maps show the ends of ARIs and the standard position of 435 

ARI-A. Orfs of ARIs encoding >50 amino acids are shown by arrows. Transposons and IS 436 

elements are represented by color-coded rectangles with white (IRL) and black (IRR) 437 

arrowheads indicating the inverted repeats of the element. Direct repeats bracketing the mobile 438 

elements are shown in capitals. IS26 variants are marked with ‘26’. Antibiotic resistance genes 439 

are marked as red, the ISCR2 element is light brown, metal-resistance operons, compound 440 

transposons and prophages are indicated. Insertion site of E. coli-related IS elements and 441 

Tn1000 are indicated below the graph of IP40a. Figures are drawn not to scale. (C) Schematic 442 

representation of Tn6333. Orfs are color coded, depending on functional annotations: green, 443 

transposition/recombination; orange, mer resistance, grey, partitioning; white, unknown function. 444 

EAL (glutamate-alanine-leucine) domain: gene encoding a putative signaling protein with the 445 

conserved diguanilate phosphodiesterase EAL domain. Linear maps are drown to scale except 446 

the enlarged regions showing ARIs in detail. 447 

Figure 2 Deletion derivatives of three IncA/C plasmids. The name and endpoints of deletions are 448 

shown below the plasmid maps. Plasmid backbones are represented by horizontal lines. ARIs 449 

involved in rearrangements are shown in more details, otherwise only mobile elements (color-450 

coded) and antibiotic resistance genes (red arrows) are indicated. Coordinates of GIs, ARIs and 451 

some transposable elements involved in the formation of deletions are indicated below the 452 

graphs. Plasmid map of R55 was created according to the published R55 sequence 453 

JQ010984.1.(44) Figures are drawn not to scale. 454 

455 
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Table 1 MinION reads and coverage data 456 

 R16a 
a

 IP40a
 a

 IP40a_d5 IP40a_d8 R55_d20 

Library preparation protocol and kit SQK-MAP006 SQK-MAP005 

Total reads - - 52308 4065 5126 

Reads mapped to ref.  - - 4785 774 716 

Mean length of mapped reads - - 2158 3263 2330 

Median length of mapped reads - - 1194 1999 1230 

Coverage of mapped reads - - 73 29 10 

Mean Sequence Quality (Phred Score) - - 5 5 7 

2D reads 19966 12702 10554 344 804 

2D reads mapped to ref. 13685 3119 1304 75 158 

Mean length of mapped 2D reads 6383 4340 1557 3985 2113 

Median length of mapped 2D reads 6349 3067 810 2914 996 

Coverage of mapped 2D reads 305 55 19 4 3 

Mean Sequence Quality (Phred Score) 10 10 8 9 10 

a

 2D basecalling work-flow v.1.16 provided only 2D reads for R16a and IP40a. 457 

 458 

Table 2 Major characteristics of R16a and IP40a compared to reference plasmids 459 

 R16a IP40a R148 (Type 1) R55 (Type 2) 

i1 - - - + 

i2 - - - + 

R1 orf1832 orf1832 orf1832 orf1847 

R2 rhs1 rhs1 rhs1 rhs2 

ARI-A - - + - 

ARI-B GIsul2 GIsul2 - + 

other ARI + 

(unique position) 

+ 

(unique position in kfrA) 

- + 

(unique position in kfrA) 

ISEcp1 - - - - 

 460 


