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Abstract  

Introduction: The in vivo fate and effectiveness of a drug depends highly on its absorption, 

distribution, metabolism, excretion and toxicity (ADME-Tox). Organic anion transporting 
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polypeptides (OATPs) are membrane proteins involved in the cellular uptake of various 

organic compounds, including clinically used drugs. Since OATPs are significant players in 

drug absorption and distribution, modulation of OATP function via pharmacotherapy with 

OATP substrates/inhibitors, or modulation of their expression, affects drug pharmacokinetics. 

Given their cancer-specific expression, OATPs may also be considered anticancer drug 

targets. 

Areas covered: We describe the human OATP family, discussing clinically relevant 

consequences of altered OATP function. We offer a critical analysis of published data on the 

role of OATPs in ADME and in drug–drug interactions, especially focusing on OATP1A2, 

1B1, 1B3 and 2B1.   

Expert opinion: Four members of the OATP family, 1A2, 1B1, 1B3 and 2B1, have been 

characterized in detail. As biochemical and pharmacological knowledge on the other OATPs 

is lacking, it seems timely to direct research efforts towards developing the experimental 

framework needed to investigate the transport mechanism and substrate specificity of the 

poorly described OATPs. In addition, elucidating the role of OATPs in tumor development 

and therapy response are critical avenues for further research. 

Keywords: Drug-drug interaction, hepatic clearance, intestinal absorption, organic 

anion transporting polypeptides, pharmacokinetics, pharmacogenetics, ADME, GWAS 

 
Article highlights box 

• OATPs 1A2, 1B1, 1B3 and 2B1 are multi-specific transporters involved in the 

absorption, distribution and elimination of widely used drugs 

• The function of these OATPs can be altered by genetic variations and drug 

interactions that result in altered pharmacokinetics (PK) and toxicity 
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• Based on their expression in barrier tissues (blood-brain barrier, placenta) and in 

detoxifying organs, lesser known members of the OATP family may also influence PK  

• Research efforts should be directed at the development of the experimental toolkit 

needed to elucidate the role of the less described OATPs in ADME  

• Increased expression of selected OATPs in cancer may be exploited by novel anti-

cancer therapy 

 
Abbreviations 

ABC: ATP-binding cassette, ADME-Tox: absorption, distribution, metabolism, excretion and 
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cholecystokinin, CD: Crohn’s Disease, CKD: chronic kidney disease, COX: cyclooxygenase, 

CML: Chronic Myeloid Leukemia, CsA: cyclosporin A, DBF: 4′,5′-dibromofluorescein, 

DCF: 2′,7′- dichlorofluorescein, DCF-AG: diclofenac acyl glucuronide, DDI: drug-drug 

interaction, DHEAS-dehydroepiandrosterone sulfate, DPDPE: [D-
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E17βG: estradiol-17-β-glucuronide, FDA: the US Food and Drug Administration Fl-MTX: 

fluorescein-methotrexate, GWAS: genome-wide association study, ITS: International 

Transporter Consortium  LTC4: leukotriene C4, MSS: Mesomelia-syntoses syndrome, MTX: 
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TKI: tyrosine kinase inhibitors, T3: 3,3’,5-triiodothyronine, T4: thyroxine, VIP: vasoactive 

intestinal peptide 

 

 

 

 
1. Introduction 

According to a 2012 survey, one in four Americans over the age of 40 is taking statins [1]. 

Prescribed to reduce the risk of heart disease, statins lower the serum levels of low density 

lipoproteins by inhibiting the activity of HMG-CoA reductase, the rate-limiting enzyme of 

cholesterol synthesis [2]. As is the case with every drug, the efficacy of the treatment largely 

depends on the fate of the statins in the body. Studies on large patient populations have found 

significant inter-individual differences in the pharmacokinetics (PK) of statins, and suggested 

the relevance of drug-drug interactions. Since many statins are substrates of uptake 

transporters of the Organic Anion Transporting Polypeptide (OATP) family, it is not 

surprising that co-administration of cholesterol-lowering drugs with other OATP substrates 

has been associated with serious side effects, including potentially fatal rhabdomyolysis 

[3][4]. Expressed in barrier tissues and detoxifying organs, OATPs transport a wide variety of 

endogenous and exogenous compounds into the cell. OATPs are members of the solute carrier 

superfamily (SLC), a large group of transporters that facilitate the cellular mobility of various 

compounds. Similar to the efflux pumps of the ATP-binding cassette (ABC) family, uptake 

transporters of the SLC superfamily are now recognized as major determinants of the 

absorption, distribution, excretion and toxicity (ADME-Tox) properties of clinically important 

drugs (Figure 1) [5].  
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Acknowledging the importance of transporters to the PK of drugs, the International 

Transporter Consortium (ITS), the US Food and Drug Administration (FDA) and the 

European Medicines Agency (EMA) have recommended investigating the interaction of new 

molecular entities with several ABC (ABCB1, ABCG2) and SLC transporters (OATP1B1, 

OATP1B3, OCT2, OAT1, OAT3) [6–8]. 

The dramatic rise in the number of reviews on the role of OATPs in drug absorption, 

distribution and drug-drug interactions is reflective of the increasing recognition of these 

transporters as determinants of PK. Compared to these reviews, we give an additional 

overview of other members of the OATP family that are potentially involved in ADME and 

drug-drug interaction (DDI). We also provide a critical overview of the in vitro and in vivo 

methods that are used to identify clinically relevant molecules as potential OATP substrates or 

inhibitors. We discuss disease association of OATPs and single nucleotide polymorphisms 

(SNPs) that are relevant in PK. Finally, we review the in vitro and in vivo models that are 

currently available to interrogate OATP-drug interactions. 

 

2. The human OATP family 

2.1. OATP-mediated transport  

The 11 human OATPs, encoded by the SLCO genes, are membrane proteins that mediate 

the sodium and ATP-independent uptake of large (usually >300 Da) organic molecules. It is 

generally accepted that OATPs act as electroneutral exchangers, coupling substrate uptake to 

the efflux of a counter ion, such as glutathione, conjugated glutathione, bicarbonate or 

glutamate [9,10]. Other lines of evidence suggest that OATP-mediated uptake may be driven 

by a proton gradient [11], although, the pH sensitivity of transport appears to be OATP- and 
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substrate-dependent [12,13]. It is unclear whether OATPs are obligate uptake transporters or 

whether they have additional functions as efflux transporters [14]. 

2.2. Substrate recognition by OATPs  

The substrates of these transporters are primarily organic anions, though OATPs are 

also capable of transporting uncharged (e.g. digoxin (4C1); oubain (1B3)), zwitterionic (e.g. 

fexofenadine (1A2, 1B3, 2B1)) and positively charged molecules (e.g. doxorubicin (1A/1B) 

and triptans (1A2)) [11,15–18]. Among the endogenous substrates of OATPs are bile acids, 

bilirubin, eicosanoids, prostaglandins, hormones and their sulfated and glucuronated 

conjugates (summarized in Table 1). Hence, under physiological conditions, OATPs are 

important in bile acid homeostasis (1A2, 1B, 1C1, 2B1, 4A1, 4C1), bilirubin elimination 

(1A2, 1B), inflammatory processes (4C1) and the regulation of hormonal levels (1A2, 1B, 

1C1, 2A1, 2B1, 3A1, 4A1, 4C1) [11,15]. Many OATPs also recognize exogenous compounds 

such as statins, cardiac glycosides, antidiabetic agents, immune suppressants, antibiotics, 

antivirals (e.g. HIV protease inhibitors) and anticancer medications. The extensive body of 

literature on the OATP-mediated transport of chemotherapy drugs has been recently reviewed 

by Sprowl and Sparreboom [19].  

Based on their substrate recognition pattern, OATPs can be divided into two groups. The first 

group includes OATP1A2, 1B1, 1B3 and 2B1, which have partially overlapping substrate 

specificities, similar to ABC efflux transporters (e.g. ABCB1, ABCG2 and ABCC2/3) [6]. 

The other members of the family (1C1, 2A1, 3A1, 4A1, 4C1, 5A1 and 6A1) recognize a much 

smaller set of compounds. This latter set of transporters has been less characterized; therefore, 

our current knowledge about their substrates may be incomplete. Nevertheless, the increasing 

number of genome-wide association studies (GWAS) and expanding repertoire of in vitro and 

in vivo assays are rapidly enhancing our knowledge on potential substrates. OATP substrates 

with the greatest clinical relevance are summarized in Tables 1 and 2. For a more exhaustive 



 
 

7

list of substrates, the reader is referred to excellent reviews in the literature [11,15].  Because 

most of the OATP-interacting compounds have been identified in vitro, often using 

concentrations that exceed those occurring in vivo, substrate recognition data should be 

carefully interpreted. Additionally, interacting compounds identified by indirect in vitro 

studies do not necessarily distinguish between a transported substrate and an inhibitor. 

2.3. Tissue distribution and localization  

OATPs are present in the cell membrane of epithelial and endothelial cells and display 

distinct expression patterns; some OATPs are broadly expressed while others are expressed in 

specific organs. The characterization of the tissue distribution of OATPs relies heavily on 

mRNA data. For example, mRNAs for OATP2A1, 3A1 and 4A1 have been detected in a 

broad number of tissues, while OATP1B1 and 1B3 are restricted to the liver and OATP6A1 is 

expressed in the testes [11]. A number of recent immunofluorescence analyses suggest 

unexpected localization patterns for some OATPs, such as the prostaglandin transporter 

OATP2A1, which was detected within the lysosomes of normal macrophages [20], and 

OATP2B1, 3A1 and the poorly characterized OATP5A1,  which localized to the intracellular 

spaces within tumorous breast tissues [21]. As OATP expression has been thoroughly 

discussed in recent reviews [11,15] we discuss this information only in the context of ADME 

properties.  

2.3.1. OATPs in hepatic clearance:  

OATP1A2 was the first human OATP isolated. Expressed in cholangiocytes, OATP1A2 is 

involved in bile acid, unconjugated bilirubin and xenobiotic reabsorption [11]. The key role of 

OATP1B1 in hepatic drug uptake was recognized when it was realized that plasma statin 

levels increase in the presence of OATP1B1 inhibitors, such as cyclosporin A or gemfibrozil  

[3,22,23]. Several in vitro and in vivo experiments confirmed the relevance of OATP1B 

transporters in hepatic clearance [24,25]. OATP1B1 and 1B3 are almost exclusively 
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expressed in the sinusoidal membranes of hepatocytes and are involved in the uptake of 

bilirubin, bile acids and various drugs from the blood into hepatocytes. OATP2B1, which is 

ubiquitously expressed, may also be important in hepatic clearance [11]. It is difficult to 

estimate the relative contribution of OATP1B1, 1B3 and 2B1 to drug uptake in vivo due to 

their overlapping substrate/inhibitor specificity. However, based on mRNA and protein 

expression data, OATP1B1 is the most abundant and most relevant OATP in the liver [26].  

2.3.2. OATPs in the kidney: 

 In addition to the liver, the kidney is a relevant site of drug elimination. OATP4C1 is a 

kidney-specific transporter localized to the basolateral membranes of proximal tubules. 

OATP4C1 is involved in uremic toxin elimination [27,28] and mediates the uptake of certain 

heart medications (digoxin, ouabain), and anticancer drugs (methotrexate; MTX), from the 

blood [29,30]. Kidney-specific expression of the human OATP4C1 provided protection 

against hypertension and inflammation in a rat renal failure model, demonstrating the role of 

OATP4C1 in renal toxin elimination [27,28]. In a recent study, bupropion (an anti-depressant) 

decreased the area under the plasma concentration-time curve (AUC, a measure of drug 

exposure) of digoxin via the activation of OATP4C1-mediated renal clearance [29]. 

OATP1A2 is also expressed in the kidney, though it localizes to the distal tubules of the 

nephrons. OATP1A2 may play a role in the active tubular reabsorption of MTX and in MTX-

induced toxicities [31]. Knauer et al. demonstrated that mRNA expression levels of 

OATP2B1 in the kidney were comparable to expression levels in the small intestine [32]. 

However, OATP2B1 protein expression in the kidney has not yet been confirmed.  

2.3.3. OATPs in the intestine: 

Several ubiquitously expressed OATPs (1A2, 2B1, 3A1 and 4A1) have been detected in the 

intestine. Based on quantitative mRNA data, OATP2B1 is the most abundantly expressed 

OATP in the intestine [33] and the expression of this transporter on the apical side of 
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enterocytes has also been confirmed by immunofluorescent labeling [34]. Based on these 

data, OATP2B1 is the dominant OATP involved in first line drug absorption and a significant 

determinant of the oral availability of drugs. 

2.3.4. Other blood-tissue barriers: 

The blood-brain barrier (BBB) provides a tight control of the cerebral entry of molecules. 

Due to many medications aimed at targeting the brain, the BBB is the most extensively 

investigated blood-tissue barrier. OATP1A2 and 2B1 are expressed on the apical surface of 

brain capillary endothelial cells [35] with similar mRNA expression levels. A recent study 

demonstrated that both 1A2 and 2B1 are present in the retina, mediating neurotransmitter 

and neurosteroid uptake in this tissue [35]. OATP1A2 is also expressed in neurons and may 

influence neuronal statin and MTX levels [36]. In the choroid plexus, OATP1C1 and 

OATP3A1 protein expression has been detected [37,38]. 

OATPs may also be involved in drug transport across the blood-testes (1A2, 1C1, 3A1, 

6A1) [39][11,15], blood-ocular (1A2, 1C1, 2B1, 1A2, 3A1, 4A1) [40,41] and maternal-fetal 

barriers (1A2, 1B1, 1B3, 2B1, 2A1, 4A1) [15,42]. OATPs that are present in the placenta 

are important for steroid sulfate (2B1) [43] and thyroid hormone (4A1) [44] transport but  

the role of placental OATPs in fetal exposure to drugs is poorly understood. OATP 

expression may be significantly altered in tumor tissues compared to healthy cells (see 

chapter 2.4.); however, the functional consequences of this phenomenon are not yet well 

understood.  

2.4. The role of OATPs in disease 

To date, few diseases have been associated with mutations in OATP genes. Rotor 

syndrome (RS) is a rare, benign disorder marked by elevated levels of bilirubin in the blood 

and coproporphyrin in the urine [45]. The role of OATP1B1/1B3 in bilirubin transport has 

been indicated in a number of GWAS, including families with RS whose GWAS results 
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revealed simultaneous mutations in OATP1B1 and 1B3 that rendered both transporters 

nonfunctional [45,46]. These data were further confirmed in mice harboring mutations in 

genes for the 1A/1B family of OATPs, which resulted in hyperbilirubinemia [47].   

Mesomelia-syntoses syndrome (MSS) is a rare, autosomal-dominant disease characterized by 

limb shortening and various congenital malformations. A study of five patients in four 

families identified an interstitial deletion in chromosome 8q13 spanning two genes: SULF1 

(heparan sulfate 6-O-sulfatase 1) and SLCO5A1 (OATP5A1) [48]. OATP5A1 is expressed in 

the adult heart and in fetal brain but its function is currently unknown. The contribution of 

OATP5A1 to MSS requires further investigation, as a partial deletion of SLCO5A1 was 

reported in a healthy individual.  

Primary hypertrophic osteoarthropathy (PHO) is a rare genetic disease affecting skin and bone 

formation. A study of three individuals with PHO indicated that inactivating mutations in 

SLCO2A1 cause PHO by impairing prostaglandin E2 (PGE2) transport [49]. Loss of 

SLCO2A1 function has also been implicated in a form of hereditary enteropathy that is 

characterized by chronic ulcers in the small intestine [50]. Furthermore, a study using a mouse 

model of pulmonary fibrosis suggested that SLCO2A1 may also be critical to lung tissue 

restoration [51]. Given the multiple roles of PGE2 in the body, prostaglandin transport-

inactivating SLCO2A1 mutations will likely remain intensely investigated. 

A GWA study of over 1100 patients with progressive supranuclear palsy (PSP), a rare 

neurodegenerative movement disorder similar to Parkinson’s disease, revealed a putative 

association with SLCO1A2 [52]. OATP1A2 is located in the brain, eyes, kidney, liver and 

intestine. Bile acids, bilirubin and dehydroepiandrosterone sulfate (DHEAS), a precursor of 

steroid hormones, are among the physiological substrates of OATP1A2 [11]. The possible 

role of this OATP in PSP has not been investigated. Another GWA study of Crohn’s disease 

within an Ashkenazi Jewish population found a variant of SLCO6A1 [53].  
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OATPs have become the focus of considerable attention because of the altered expression of 

these transporters in various types of cancer (Table 3). The liver-specific transporters 1B1 and 

1B3 were found to be down-regulated in liver cancers and significantly upregulated in tumors 

of the ovaries (1B1, 1B3), colon (1B1, 1B3), breast (1B3), prostate (1B3) and lung (1B3) 

[54]. Similarly, OATP6A1 expression, normally limited to the testes, was detected in tumors 

of the brain, bladder and lung [54]. Many of the widely distributed OATPs have also been 

reported to be upregulated in certain malignant cells.  

Because OATPs are able to transport a wide variety of substrates, including hormones, one 

would hypothesize that an upregulated or atypical OATP expression could lead to the 

proliferation of estrogen- and androgen-dependent tumors. Indeed, OATP expression levels 

correlate with tumor growth. Estrone-3-sulfate uptake by OATPs 1A2 [55], 1B3 [56], 3A1 

and 4A1 has been implicated in the survival of hormone-dependent breast cancer cells [57]. 

These data suggest that targeting these transporters in the treatment of hormone-responsive 

breast cancer may have beneficial effects and improved survival [55,57].  

OATPs also influence disease progression in androgen-dependent prostate cancers (PC). 

OATP1B3 transports testosterone and the 334T allelic variant of 1B3, which efficiently 

transports testosterone, is associated with decreased patient survival [58]. In another study of 

prostate cancer patients, presence of a testosterone transport-deficient variant of OATP1B3 

(haplotype 334GG/699AA) was associated with better survival over 10 years [59]. Similarly, 

an OATP2B1 variant, with increased DHEAS transport, was correlated with increased patient 

mortality [58]. 

In summary, changes in OATP expression have been demonstrated in numerous cancers. 

However, conflicting reports on the tumor-specific expression of OATP1A2 and 2B1 suggest 

that the therapeutic or prognostic value of expression changes should be cautiously 
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interpreted. Nevertheless, mounting evidence supports the hypothesis that OATPs are 

upregulated in tumors, potentially to meet the increased nutritional demand of cancer cells.  

2.5. Methods and models to investigate OATP-drug interactions  

2.5.1. Test substrates of OATPs 

OATP function is commonly investigated in whole cell-based systems by measuring 

the uptake of radioactively labeled substrates. Estrone-3-sulfate, bromosulfophthalein and 

estradiol 17 β-D-glucuronide are among the most extensively used tritiated substrates and 

have been used to investigate the function of multiple OATPs [15]. However, due to the cost 

and limited availability of radiolabeled substrates, their utility in large-scale substrate-

screening experiments is impeded and recent efforts have focused on fluorescent substrates as 

safe, simple and cost-effective alternatives. A multitude of fluorescent probes (Na-fluorescein, 

fluorescein-methotrexate, fluorescein-cAMP, various fluorescent bile acids [60–63]) have 

been used to uncover interacting compounds of OATP1B transporters; however, until recently 

no fluorescent assay has been available for other OATPs. Recently, expression of the 11 

human OATPs in insect cells revealed that, under acidic conditions, Na-fluorescein is a 

general OATP substrate, suitable for the characterization of the entire human OATP family 

[13]. A pan-OATP substrate is of particular importance for the characterization of the poorly 

characterized members of the OATP family, 5A1 and 6A1. The advantage of fluorescein 

derivatives in developing substrate inhibition assays for OATP1B and 2B1 transporters was 

also demonstrated in mammalian cells [64]. Typical and newly developed test substrates of 

OATPs are listed in Table 1. 

Because indirect transport assays cannot reveal the nature of the interaction between molecule 

and OATP, the transport of candidate substrates should be confirmed by direct transport 

measurements, such as mass spectrometry or direct labeling. 

2.5.2. In vitro models 
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2.5.2.1. Engineered cell lines: The preferred model systems for the investigation of 

OATPs are mammalian cell lines with exogenous OATP expression, although transiently 

transfected Xenopus oocytes and insect cells have also been used [6,13]. While many stable 

OATP-expressing cell lines have been generated to date, evidence suggests that the 

overexpression of certain OATPs in standard mammalian laboratory cell lines is not 

straightforward (our own unpublished results). This may be due to metabolic perturbation of 

the cells, although the exact mechanism behind this phenomenon is still unclear.  

2.5.2.2. Pharmacological models: The individual role of a transporter in the 

transmembrane movement of drugs is most easily assessed in cell lines engineered to express 

a single OATP. Additionally, co-transfected cell lines with simultaneous OATP and ABC 

expression have also been established [65]. However, because the transport of drugs occurs in 

an elaborate network of uptake and efflux transporters as well as drug metabolizing enzymes, 

a closer approximation of the in vivo environment requires more complex in vitro model 

systems. Caco-2 cells, which form monolayers resembling the intestinal epithelium, are 

currently considered the “gold standard” in studying intestinal absorption. Nonetheless, Caco-

2 cells do not fully reflect the transporter profile of the natural intestinal environment and are 

unable to recapitulate in vivo organization at a tissue level [66]. These limitations led to the 

proposal of stem cell-derived organoids [67] and precision cut intestinal slices[68] as ADME 

models; however, the application of these methods to the investigation of drug transport is 

limited [68]. Polarized cells (e.g. MDCKII or LLCPK) have been successfully used to model 

renal processes. However, establishing in vitro models that recapitulate the complexity of the 

liver has proved challenging. Several hepatic models exist, ranging from immortalized cell 

lines (HepG2, HepaRG), liver slices and stem cell-derived hepatocytes to 3D cell cultures and 

bioreactors [69,70]. These models vary in maintenance costs, accessibility and transporter 
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expression pattern [71]; therefore, the appropriate models should be selected based on these 

considerations and the pharmacological goal. 

2.5.3. OATP-mediated ADME in vivo  

To predict DDI during the preclinical phase is of major importance, however the 

extrapolation of in vitro data to more relevant in vivo processes is a difficult task [25]. 

Therefore, in vivo data gained from pharmacogenetic/pharmacogenomic studies, clinical trials 

involving volunteers and animal models are crucial in modeling the in vivo fate of a drug. 

2.5.3.1. Animal studies:  

Recognizing the importance of liver-specific transporters in drug disposition, 

Oatp1a/1b knockout (KO) mice have been widely used to study the pharmacokinetics of 

clinically applied drugs [72] as well as natural OATP substrates [72,73]. For example, 

Oatp1b2 (a homolog of OATP1B1/1B3) single knockout mice have been used to study the 

liver and plasma distribution of toxins (phalloidin, microcystin-LR), cholesterol-lowering 

drugs (cerivastatin, lovastatin acid, pravastatin, and simvastatin acid) and antibiotics 

(rifampicin and rifamycin SV) [72,74,75]. Mice with a deletion of the 1a/1b locus (missing all 

established mouse 1a/1b transporters) were used to elucidate the hepatic clearance of 

bilirubin, bile acids and drugs from the blood [47]. In addition, 1a/1b KO mice have been 

used to establish coproporphyrin (CP) I and III as endogenous biomarkers for the assessment 

of transporter activity during early drug development [73]. The applicability of CPs as 

endogenous probes for liver transport was also confirmed in cynomologous monkeys by 

administering oatp1a/1b inhibitors [73].  

There are significant species differences that hinder the interpretation of data from 

mouse models. OATP1Bs and 1A2 have no rodent orthologs and the homology between 

OATP2B1 and its mouse ortholog is only 77% [76]. As exemplified by the rat Oatp4c1, 

which localizes to the apical, instead of the basolateral, membrane of the proximal tubules of 
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the kidney, the localization of some rodent OATP orthologs may also differ [77]. To address 

these issues, van de Steeg et al. generated humanized mice with liver-specific expression of 

human OATP1B1, 1B3 and 1A2 in a mouse oatp1a/1b knockout background [78,79]. 

OATP1A2-humanized mice do not mimic normal conditions in the liver as OATP1A2 is 

expressed in hepatocytes [79], not cholangiocytes. Further limiting the in vivo assessment of 

hepatic clearance, a knockout mouse model for OATP2B1 has not been established. 

Nevertheless, humanized mice are an invaluable tool for studying the in vivo 

disposition of drugs and have been used to study the pharmacokinetics of anticancer 

medications (e.g. methotrexate, paclitaxel and docetaxel [79,80]) and to detect drug-drug 

interactions (e.g. between methotrexate and the antibiotic rifampicin, or the antihypertensive 

drug, telmisartan [81]). 

2.5.3.2. Human studies: 

The majority of in vivo data on the role of OATPs in drug PK arose from unexpected 

toxicity due to either co-administration of OATP substrates/inhibitors or altered OATP 

function/expression caused by SNPs.  

2.5.3.2.1. Drug interaction studies:  

A striking example of OATP-mediated DDIs is the potentially lethal interaction between 

cerivastatin and gemfibrozil (used to treat hypercholesterolemia and hypertriglyceridemia, 

respectively), which led to the withdrawal of cerivastatin from the market [24]. Retrospective 

in vitro analyses revealed that the major mechanism of cerivastatin-mediated toxicity was the 

inhibition of both OATP1B1 and the metabolizing enzyme CYP2C8 by gemfibrozil 

glucuronide [22]. Many additional clinical data indicated statin-mediated toxicity upon the 

simultaneous administration of OATP substrates/inhibitors (cyclosporin A, rifampicin, 

lopinavir) and statins [3,24,25]. The role of OATP2B1 in muscular toxicity of statins was 

proposed due to its expression in skeletal muscle [82]. In addition to statins, the AUC of 
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bosentan, an endothelin receptor antagonist, is influenced by the OATP1B inhibitors 

rifampicin, cyclosporin A and sildenafil [83].  

Considering the physiological role of OATPs, drugs inhibiting the transport of endogenous 

substrates may disrupt bile acid or hormone homeostasis. Indeed, it has been documented that 

the administration of tyrosine kinase inhibitors or high-doses of cyclosporine A result in 

hyperbilirubinemia, probably due to the inhibition of bilirubin uptake by OATP1B1/3 [84,85]. 

2.5.3.2.2. GWA and genotype panel studies: 

Pharmacogenetic studies have made an enormous contribution to our understanding of the 

role of OATPs in PK and revealed various SNPs in OATP genes (SLCO) that cause inter-

individual differences in drug efficacy and safety. While GWAS and genotype panels 

highlighted the importance of certain SLCO polymorphisms, detailed functional analyses 

required in vitro follow-up studies. 

The most clinically relevant SLCO SNPs are summarized in Table 4. 

SLCO1B1: Given its recognized role in hepatic transport, the pharmacological consequences 

of SLCO1B1 SNPs have been extensively investigated. The two most common 

polymorphisms of SLCO1B1 are c.521T>C (p.174V>A, rs4149056), and c.388A>G 

(p.130N>D, rs2306283), though more than 14 SNPs in SLCO1B1 have been analyzed.  

The c.521T>C variant (allele *5) results in decreased OATP1B1 activity [86], leading to 

increased plasma levels of various OATP1B1 substrates including  drugs used in the treatment 

of high cholesterol (statins), high blood pressure (olmesartan), diabetes (atrasentan), heart 

disease (torsemide), HIV (lopenavir), cancer (SN-38), allergy (fexofenadine) and immune 

diseases (tacrolimus)  [5,87,88]. Accordingly, elevated plasma levels of these medications 

may increase the risk of toxicity. Indeed, a GWA study of 85 patients with myopathy and 90 

matched controls indicated that an SLCO variant in near complete linkage disequilibrium with 
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the SLCO1B1*5 allele is the most important predictor of myopathy in patients taking high 

doses of simvastatin [88]. The association between the SLCO1B1*5 allele and adverse drug 

reactions upon statin treatment (simvastatin, pravastatin, lovastatin) was confirmed in 

multiple GWA studies [89,90] and genotype panels revealed that the SLCO1B1*5 allele may 

markedly affect the PK of various statins (simvastatin, atorvastatin, rosuvastatin, pravastatin) 

[23,90,91]. However, the c.521T>C variant did not influence in vivo fluvastatin clearance, 

indicating a substrate-specific transport alteration by this variant [90]. Alternatively, minor 

effects of the c.521T>C variant on fluvastatin clearance were not detected due to study power 

limitations. 

While in vitro and in vivo data on the c.388A>G polymorphism are controversial (haplotype 

*b), this SNP was associated with decreased AUC of several drugs including the non-statin 

cholesterol-lowering medication ezetimibe, the antidiabetic repaglinide [92,93] and lovastatin 

acid (the active metabolite of lovastatin) [5,94,95]. Contrastingly, the c.388A>G 

polymorphism did not alter response to statin therapy in a study of 386 adults of Greek origin 

[96]. The, c.388A>G polymorphism is often linked to c.521T>C, resulting in the *15 

haplotype (the most frequent of the 18 documented haplotypes). Similarly to the effect of 

haplotype *5, *15 is associated with increased plasma levels of pravastatin and lovastatin 

[5,6,95,97]. In addition, lower methotrexate clearance has been associated with variations in 

non-coding regions of SLCO1B1.  

In summary, based on the extensive clinical data available for SLCO1B1, haplotype 

information can be a good predictive marker in personalized medication. 

SLCO1B3: The two most common mutations of SLCO1B3 are c.334T>G (p.112S>A, 

rs4149117) and c.699G>A (p.233M>I, rs7311358). Allele frequency data indicate that 334G 

and 699A are the most frequent variants in the Caucasian and Asian populations. Because the 

334G and 699A polymorphisms are in near complete linkage disequilibrium, with an allele 
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frequency above 70% (Table 4), the haplotype encoding 112A and 233I should be regarded as 

dominant in these populations [98]. In vitro studies show that the single variants have no 

effect on transporter function, while the 112A/233I variant has reduced activity compared to 

the reference sequence [59,98]. 

Likely due to the compensatory effect of other OATPs, clinical data about the effect of 

SLCO1B3 SNPs are scarce and controversial (summarized in [25]). While the c.699G>A 

variant was associated with decreased docetaxel clearance in Chinese nasopharyngeal cancer 

patients [99], the c.334T>G polymorphism increased the clearance of imatinib in chronic 

myeloid leukemia patients in a Japanese population [100]. As described in the disease section, 

prostate cancer patients harboring the 334GG/699AA haplotype showed longer median 

survival than patients carrying the TT/AA and TG/GA haplotypes [59]. Interestingly, an 

intronic variant, harboring an extra intron, was found to be associated with increased AUC of 

telmisartan and docetaxel [99]. 

SLCO2B1: The expression pattern and pH sensitivity of OATP2B1 suggest that it contributes 

to intestinal drug absorption although, current data are insufficient to firmly support this 

hypothesis. The c.1457C>T variant (p.S486F), which has a 31% frequency in the Japanese 

population, decreases in vitro transport activity [101] and results in a decreased AUC of the 

beta-blocker celiprolol [5,102]. These data indicate that OATP2B1 contributes to intestinal 

absorption, rather than hepatic uptake. OATP2B1 variants also influence the progression of 

androgen-dependent prostate cancer as a function of DHEAS transport activity [58,103].  

Accordingly, time to progression was increased in patients with the androgen transport 

deficient variant c.935G>A (rs12422149) [103].  

SLCO1A2: Although several SLCO1A2 SNPs have been characterized in vitro, allele 

frequency data suggest that the clinical significance of these polymorphisms may be limited. 

The only allele with potential in vivo significance is c.38T>C (p.13I>T). Based on in vitro 
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analyses, the c.38T>C variant exhibits normal transporter function [31,104]. However, a two-

fold increase in methotrexate uptake was documented in vivo, supporting increased transport 

by this variant [36]. Additionally, a mutation in the promoter region of SLCO1A2 

(c.361G>A) resulted in increased imatinib clearance in chronic myeloid leukemia patients 

[105].  

 

3. Conclusions 

The role of OATPs in pharmacokinetics is increasingly recognized. OATPs transport 

large, primarily anionic, compounds into cells and are known to influence the absorption and 

elimination of common medications, such as statins, antivirals, anti-diabetic and anti-cancer 

molecules. The four OATPs that are proven to have a major impact on the in vivo fate of 

drugs are 1A2, 1B1, 1B3 and 2B1. Hepatic OATPs 1B3 and, the more abundant, 1B1 have a 

key role in the hepatic clearance of drugs, bile acids and bilirubin. OATP2B1 is also 

expressed in the liver. However, the exact contribution of this transporter to hepatic clearance 

is not yet elucidated. Increasing evidence suggests that OATP2B1 is involved in the intestinal 

absorption of orally administered drugs. In addition, cerebral and muscular drug levels may be 

determined by OATP1A2 and OATP2B1, respectively. Recently, the digoxin transporter, 

OATP4C1, has emerged as a determinant of the renal elimination of drugs, although the 

substrate recognition pattern of this transporter is not fully mapped.  

Until now, OATP research has focused on OATP1A2, 1B1, 1B3 and 2B1 because of the 

profound pharmacological significance of these transporters. The rest of the OATP family, 

however, received less attention, despite emerging evidence that OATPs in the blood-testes 

(1A2, 1C1, 3A1, 6A1 [11,15,39] and maternal-fetal barrier (2A1, 4A1) are also involved in 

hormone transport and drug absorption [15,42–44]. The hiatus in our knowledge about the 

other members of the OATP family arises from the following: 1) the lack of established 
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expression systems and suitable functional assays and, 2) the scarcity of in vivo data. 

Therefore, to uncover the substrate recognition pattern of the poorly investigated OATPs, 

research efforts should focus on developing novel in vitro methods that allow for high-

throughput substrate screening and the further collection of in vivo data.  

Finally, as many OATPs show de novo expression in tumors, they may be important in 

influencing local, intra-tumor concentrations of therapeutic compounds. Thus, the mapping of 

drug-OATP interactions would be critical to tumor-specific drug delivery. 

  

4. Expert opinion  

OATPs 1A2, 1B1, 1B3 and 2B1 participate in the absorption and distribution of 

various medications and are sites of DDI leading to altered drug efficacy or unexpected 

toxicity. Altered transporter function, as a result of inter-individual variations in OATP-

encoding genes (i.e. polymorphisms), may lead to altered drug exposure over time. Food 

components and solubilizing agents, such as polysorbate 80 [19], may also affect transporter 

function. Finally, drugs may alter the OATP-mediated transport of endogenous compounds 

(bilirubin, bile salts or hormones). Therefore, the International Transporter Consortium (ITS) 

recognizes OATP1A2, 1B1, 1B3 and 2B1 as major determinants of drug pharmacokinetics 

and recommends the investigation of these transporters during drug development.  

To investigate OATP-drug interactions, various in vitro methods have been 

established. OATP function is commonly investigated using radioactively labeled test 

substrates, although the use of fluorescently labeled compounds would be simpler, safer and 

more cost-effective. Indeed, several fluorescence-based OATP1B assays have been 

established. For OATP1A2 and 2B1, however, fluorescent assays have been described only 

recently, and there are no established assays for the large-scale measurement of drug 

interactions with the other members of the OATP family. A potential solution would be to 
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screen the available library of fluorescent molecules for OATP substrates with low passive 

cell permeability. Alternatively, known OATP substrates could be conjugated to fluorescent 

molecules. Appropriate and well-characterized in vitro assays would aid the characterization 

of the entire OATP family by allowing for the reproducible comparison of OATP variants and 

the further mapping of OATP-mediated DDIs.  

When designing in vitro assays to determine OATP-mediated DDIs, the following should be 

considered: 1) because of the complexity of the substrate binding site of the transporter, the 

function of each OATP should be tested using multiple substrates 2) due to the promiscuous 

nature of OATPs, it is almost impossible to measure all potential OATP-mediated DDIs, 3) 

substrates/inhibitors should be used at physiologically relevant concentrations. 

In the body, OATPs are part of a complex system of influx and efflux transporters as well 

as metabolizing enzymes; therefore, the effect of these transporters on PK should be 

interpreted in the context of the entire organism. Attempts at mimicking the in vivo 

environment varied from the development of pharmacological models to the use of 

humanized mice. While these models have been profoundly useful in studying the function of 

OATPs, they still suffer from major limitations. Pharmacological models, however complex, 

cannot fully recapitulate the in vivo environment and data acquired from Oatp K.O. mice are 

limited by species differences. One solution to these problems would be to rely on 

pharmacogenetic/pharmacogenomic data to evaluate the relevance of OATPs, however, with 

the exception of OATP1B1, these studies are scarce. In addition, although results obtained 

from pharmacogenetic studies do faithfully represent the in vivo environment, these data 

should be interpreted by considering inter-individual genetic differences and the potential 

compensatory effect of other transporters.  

Because OATPs also influence local drug concentrations, the differential expression of 

OATPs may be exploited in several ways. Liver-specific OATPs may be exploited in hepatic 
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drug targeting or in non-invasive diagnostic techniques (e.g. positron emission tomography) 

[106]. In addition, OATPs that show cancer-specific expression could be used for tumor-

selective drug delivery. However, tumor-selective drug delivery would require the use of 

selective substrates to minimize systemic toxicity. In addition, tumors could also be targeted 

using a different approach: as the physiological function of OATPs is hormone and nutrient 

transport, cancer-cells could be deprived of these factors using OATP-specific inhibitors.  

OATPs 1A2, 1B1, 1B3 and 2B1 are relatively well-characterized; however, less is known 

about the other members of the OATP family including a liver-specific OATP2B1 variant 

[32], and a cancer-specific 1B3 isoform [107]. An increasing number of GWAS is likely to 

elucidate which members of the OATP family are most critical to ADME. However, 

discovering OATP-specific substrates for targeted drug delivery requires the establishment of 

in vitro assays suitable for large-scale substrate screening experiments.  
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Tables 

Table 1: List of major endogenous and OATP test substrates* 

OATP Physiological substrates 
Fluorescent or radioactive 
substrates 

1A2 

• atROL [40] 
•bile salts (taurocholate, cholate, 
ursodeoxycholic acid) [15,108] 
•bilirubin [15]  
•hormones (T4, DHEAS, ES)[15] 
•PGE2 [15] 
•neuropeptides: SP, VIP [35] 

• [3H] atROL [40] 
• [3H] BSP [109] 
• [35S] BSP [108] 
• [tyrosyl-3,5-3H] deltrophin II [110] 
• [3H] digoxin [111] 
• [3H] docetaxel [80] 
• [tyrosyl-2,6-3H(N)] DPDPE [110] 
• [3H] ES [111] 
• Fl-MTX [13] 
• [3H] MTX [31] 
• [3H] nadolol [109] 
• Na-Fluo [13] 
• [3H] PGE2 [111] 
• [3H] quercetin [112] 
• [3H] quinidine [113] 
• Rhodamine 123 [114] 
• [3H] N- methyl-quinine [111] 
• [14C] SQV [115] 
• [3H] TCL [116] 
 

1B1 

•bile salts (taurocholate, 
tauroursodeoxycholate) [15] 
• bilirubin [15] 
•eicosanoids (LTC4, LTE4, PGE2, 
thromboxane B2) [76] 
•hormones (ES, E17βG, T3, T4, DHEAS [15] 
 

• [3H] BSP [117] 
• [3H] BPS [118] 
• DCF and DBF [64] 
• [3H] docetaxel [119] 
• [3H] E17βG [120] 
• [3H] ES [117] 
• Fl-MTX [63] 
• Fluo-3 [121] 
• Flutax-2 (Oregon Green 488-
Paclitaxel) [15] 
• Na-Fluo [62] 
• Oregon green [64] 
• [3H] TC [120] 
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1B3 

•bile salts (cholate, glycocholate, taurocholate, 
taurochenodeoxycholate, taurodeoxycholate, 
tauroursodeoxycholate) [15] 
• bilirubin [15] 
•CCK-8 [122] 
•hormones (T3, T4, ES, DHEAS, testosterone) 
[15] 
•LTC4 [15] 
•steroid conjugates [54] 

• [3H] BSP [123] 
• [3H] BPS [118] 
• [3H] CCK-8 [122] 
• DBF [64] 
• [3H] docetaxel [119] 
• [3H] E17βG [123] 
• [3H] ES [111] 
• Fl-MTX [63] 
• Fluo-3 [64] 
• Na-Fluo [62] 
• Oregon green [64] 
• [3H] TC [120] 
• [125I]-T3 [111] 
• [125I]-T4 [111] 

1C1 
•hormones (ES, E17βG, thyroid hormones) 
[15,54] 

• [3H] BSP [37] 
• [3H] docetaxel [119] 
• [3H] E17βG [37] 
• [3H] ES [37] 
• Na-Fluo [13] 
• SR101 [124] 

2A1 •PGs (PGE1, PGE2, PGD2 ,PGF2α) [125] 

• Na-Fluo [13] 
• [3H] PGE2 [125] 
• [3H] PGE1 [125] 
• [3H] quercetin [112] 

2B1 

•DHEAS [126] 
•ES [15] 
•LTC4 [126] 
•neuropeptides: SP, VIP [35] 
•PGE2 [15] 
•taurocholate [126,127] 
•thromboxane B2 [125] 

• [3H] BSP [111] 
• DCF and DBF [64] 
• [3H]-ES [128] 
• Fl-MTX [13] 
• Na-Fluo [13] 
• Oregon green [64] 
• [3H] quercetin [112] 
• [3H] PGE2 [128] 
• [3H]TC [127] 

3A1 

•ES [11] 
•PGE1, PGE2 [11] 
•T4 [126] 
•vasopressin [11] 

• [prolyl-3,4(N)-3H]-BQ-123 [38] 
• [3H]-ES [128] 
• Na-Fluo [13] 
• [3H] PGE2 [38] 
• [3H] PGE1 [38] 
• [tyrosyl-3,5(N)-3H]-vasopressin 
[38] 

4A1 

•E17βG [15] 
•ES [15] 
•PGE2 [128] 
•thyroid hormones (T4, rT3(weak), T3, 
Taurocholate [129]) 

•[3H] ES [128] 
•[3H] PGE2 [128] 
• Na-Fluo [13] 
•[3H] taurocholate [129] 
•[125I] T4 [129] 

4C1 
•cAMP [30] 
•ES [130] 
•thyroid hormones [30] 

• [3H] digoxin [30] 
• [3H] ES [12,130] 
• Na-Fluo [13] 
• [14C] and [3H] sitagliptin [131] 

5A1   
• Na-Fluo [13] 
• [3H] quercetin [112] 

6A1   • Na-Fluo [13] 
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* See footnotes for a list of abbreviations. 

Table 2: OATP-drug interactions 

OATP 
(human) 

Substrates and inhibitors in vitro Drug interactions in vivo * 

1A2 

Antibiotics 
•direct TBPM-PI (β -lactam antibiotic) 
uptake [132] 
Anaesthetics and analgesics 
•direct deltrophin II and DPDPE transport 
[110] 
•direct rocuronium transport inhibited by 
APM, taurocholate, K-strophantoside, QD, 
and NMQD [113] 
Anticancer drugs 
•ES uptake inhibited by MTX [31] 
• imatinib transport inhibited by naringin 
[105] 
Antihypertensive drugs 
•direct nadolol uptake inhibited by green 
tea, naringin, verapamil [109] 
•direct talinolol uptake [133] 
Antihistaminic drugs 
•direct fexofenadine uptake [134] 
•direct fexofenadine uptake  inhibited by 
naringin and hesperidin [135] 
Antiretroviral drugs 
•direct SQV uptake [115] 
Statins 
•direct pravastatin uptake [136] 
Toxins 
•direct microcystin transport [137] 
Others 
•direct ES uptake inhibited by atROL, 
direct atROL transport [40] 
•direct TCL uptake [116] 
•direct uptake measurements with triptans 
[17] 
 
 
For further list of interacting molecules see 
[5,15,138] 

•reduced fexofenadine AUC by citrus 
juices [134,139]  
•imatinib pharmacokinetics affected by 
SLCO1A2 SNPs in CML patients [105] 
•green tea ingestion decreases plasma 
concentrations of nadolol in humans, 
presumably in part by inhibition of 
OATP1A2-mediated intestinal absorption 
of nadolol [109] 
•docetaxel transport in humanized mice 
[80]  

1B1 

Antibiotics 
•ES uptake inhibited by several anti-TB 
drugs [140] 
•E17βG uptake inhibited by novobiocin 
[141] 
Anticancer  
•direct docetaxel uptake [119] 
•direct flavopiridol uptake and increased 
toxicity [142] 
•involved in toxicity and disposition of 
platinum anticancer drugs [143] 
•TKIs as 1B substrates (eg. direct 
sorafenib transport)[144] 
Antihypertensive drugs 
•direct bosentan uptake inhibited by CsA 

•rifampicin as an inhibitor of OATP1B1 
and OATP1B3 
•Oral or intravenous dose of rifampicin 
increases exposure of rosuvastatin and 
pitavastatin [149] 
•docetaxel transport (humanized mice) 
[80]  
•role for OATP1Bs in the elimination of 
sorafenib (humanized mice)[144] 
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and rifampicin [83] 
•direct valsartan uptake [145] 
Anti-inflammatory drugs 
•direct mesalazine transport inhibited by 
budesonide, cyclosporine A, rifampin 
[146] 
Statins 
•transport inhibitors: lovastatin acid, 
pravastatin acid, and simvastatin acid [141] 
•direct cerivastatin uptake inhibited by 
CsA [3] 
•cerivastatin mediated toxicity caused by 
1B1 inhibition with gemfibrozil [22] 
Toxins 
•direct microcystin transport and 
cytotoxicity[137,147] 
 
For further interacting molecules, see: 
[5,15,126,138,141,148] 

1B3 

Antibiotics 
•ES uptake inhibited by several anti-TB 
drugs [140]  
•direct E17βG uptake inhibited by 
novobiocin [141] 
Anticancer drugs 
•direct paclitaxel transport [150] 
•transport inhibitors: mitoxantrone and 
vincristine 27 [141] 
•direct docetaxel transport [119] 
•direct flavopiridol uptake and increased 
toxicity [142] 
•1B3 linked toxicity and disposition of 
cisplatin, carboplatin, and oxaliplatin [143] 
•TKIs as 1B substrates (eg. direct 
sorafenib transport)[144] 
Anti-inflammatory drugs 
•direct mesalazine transport inhibited by 
budesonide, cyclosporine, rifampin [146] 
Antihypertensive drugs 
•direct bosentan uptake inhibited by CsA 
and rifampicin [83] 
•direct valsartan uptake [145] 
Toxins 
•direct microcystin transport and 
cytotoxicity [137,147] 
 
For an exhaustive list of interacting 
molecules see:[5,15,126,138,141] 

•imatinib pharmacokinetics affected by 
SNPs in CML patients [151] 
•paclitaxel pharmacokinetics affected by 
SNPs [150] 
•docetaxel transport (humanized mice) 
[80] 
•role for OATP1Bs in the elimination of 
sorafenib (humanized mice) [144]  
•rifampicin as an inhibitor of OATP1B1 
and OATP1B3 [149] 
•rifampicin as an inhibitor of OATP1B1 
and OATP1B3 
•Oral or intravenous dose of rifampicin 
increases exposure of rosuvastatin and 
pitavastatin [149] 
 

1C1 •direct docetaxel transport [119]   

2A1 

Anti-inflammatory drugs 
•direct PGE2 uptake inhibited by 
diclofenac and lumiracoxib [152] 
•direct PGE2 uptake induced by 
indomethacin, ketoprofen, and naproxen 
[152] 
Flavonoids 
•direct quercetin transport [112] 
Prostaglandin analogs 
•direct latanoprost acid uptake [153]  
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2B1 

Antibiotics 
•direct ES uptake inhibited by several anti-
TB drugs [140] 
•direct TBPM-PI (β -lactam antibiotic) 
uptake [132] 
•direct ES uptake inhibited by novobiocin 
[141] 
Anticancer drugs 
•transport inhibitor: erlotinib [141] 
•direct flavopiridol uptake and increased 
toxicity [142] 
Anti-inflammatory drugs 
•direct mesalazine transport inhibited by 
budesonide, cyclosporine, rifampin [146] 
•direct DCF-AG transport and toxicity 
[154] 
Antihypertensive drugs 
•direct talinolol uptake [133]  
Prostaglandin analogs 
•direct latanoprost acid uptake [153] 
Statins 
•transported by 2B1 [5] 
•involved in increased cytotoxicity of 
statins [82] 
 
For further interacting molecules see: 
[5,15,126,138,141] 

 

3A1 

Antibiotics 
•direct benzylpenicillin transport [128] 
Antihypertensive drugs 
•direct BQ-123 transport [38] 

•3A1 as a novel CD-associated gene, 
results higher incidence of bowel 
perforation in CD patients [155] 

4A1 
Antibiotics 
•direct benzylpenicillin transport [128]  

4C1 

Antidiabetics 
•direct sitagliptin transport [131] 
Cardiac glycosides 
•direct digoxin transport [30,131] 
•direct digoxin transport increased by 
bupropion [29] 
Statins 
•statins increase the expression and 
function of OATP4C1[28] 

•SLCO4C1 overexpression reduced 
hypertension, cardiomegaly, and 
inflammation in a rat renal failure model 
[28] 

5A1 

Anticancer drugs 
•5A1 expressing cells showed higher 
resistance to satraplatin [156] 
Flavonoids 
•direct quercetin uptake [112] 
 

 

6A1     

 

* Human OATP transporter activity and OATP-related disposition of drugs measured in vivo 

(human clinical or rodent data) 
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Table 3: OATP expression in normal and cancerous tissues. 

 Most data are based on mRNA expression. Protein data are indicated by bold letters. 

OATP 
normal expression cancer 

  localization downregulated upregulated 

1A2 

ubiquitous:  
BBB [104,157] 
eye (retina) [35,40] 
intestine [33] 
kidney (distal tubule) 
[104]  
liver (cholangiocytes) 
[104] neurons [35]  

apical 
breast* [158] 
colon [159] 
gliomas [157] 

bone [160] 
breast*[54,55] 
prostate [161] 

1B1 liver (hepatocytes) [128] 
basolateral 
(sinusoidal) 

liver cancer [54]  
colon [54,162] 
ovaries [162] 

1B3 
liver (hepatocytes) [123] 
pancreas (Langerhans 
islets) [163] 

basolateral 
(sinusoidal) 

liver cancer [54] 

breast [162] 
colon [54,162] 
lung [54,162] 
pancreas 
[54,162] 
prostate 
[54,162] 
ovaries 
[107,162]  

1C1 
brain (choroid plexus) 
testis (Leydig cells) [11,37] 

basolateral    
malignant bone 
cysts [160] 

2A1 

ubiquitous:  
eye (retina, ciliary 
epithelium) [153] 
endometrium [164] 
neurons [165] 

    

bile duct [166] 
bone [160] 
breast [158] 
liver [166] 

2B1 

ubiquitous:  
BBB [157] 
intestine [34] 
liver (hepatocytes) [111] 
skeletal muscle [82] 

apical 
(enterocytes) 
basolateral 
(hepatocytes) 

breast* [158] 

colon [128] 
bone [160] 
breast* [167] 
gliomas [157] 

3A1 
brain (choroid plexus, 
neurons) [38] 
testis [38] 

apical 
(3A1_v2) 
basolateral 
(3A1_v1) 

  

colon [167] 
bone [160] 
breast (altered 
localization) 
[21,57,168,169] 
liver [166] 
lung [167] 
pancreas [167] 
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4A1 

ubiquitous:  
eye (ciliary body) [41] 
kidney [129]  
pancreas [129] 
placenta [170] 

apical   

lung [171] 
liver [166] 
colon [128] 
pancreas [128] 
breast [57,168] 
bone [160] 

4C1 
kidney (human OATP4C1 
expressed in rats localizes to 
proximal tubule cells) [28] 

basolateral   

breast (altered 
localization) 
[21,158] 
lung [171] 

5A1 
heart[172] 
fetal brain [172] 
breast [21] 

    

breast (altered 
localization) 
[21] 
liver [166] 
lung [171] 

6A1 testis (Sertoli cells) [173]     

bladder, brain 
and esophagus 
[173] 
lung [54,171] 

*: controversial reports 
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Table 4: List of the most relevant SLCO SNPs altering in vivo PK 

 

Gene dbSNP ID allele 

mutant allele frequency (%) 

nucleotide 
change aa change 

functional consequences 

Caucasian
Afro-

American Asian in vitro in vivo 

SLCO1A2 
rs10841795 *2 13-16 2-4 <1 c.38T>C I13T 

increased 3H-MTX and 
3H-E1S uptake[31] 
unaltered 3H-E1S 
transport [104] 

increased AUC of methotrexate 
[36] 

rs3764043   2 9 17 c.361G>A 
promoter 

region 
  increased imatinib clearance [105] 

SLCO1B1 

rs2306283 *1b 30-45 72-83 59-86 c.388A>G N130D 
unaltered transport 
function [174] 

decreased AUC of repaglinide, 
ezetimibe and simvastatin acid 
[92,93] 
no alteration in statin response [96] 

rs4149056 *5 8-20 1-8 8-16 c.521T>C  V174A 
decreased function 
[86] 

increased AUC of statins, sartans, 
torsemide, lopinavir, 
fexofenadine and tacrolimus 
[5,87,88] 

  *15 16-25 2-16 12 
c.388A>G, 
c.521T>C  

N130D + 
V174A 

decreased function 
[174] 

increased plasma levels of 
pravastatin and simvastatin 
[95,97] and increased risk of 
rifampin-induced liver injury 
[175] 

SLCO1B3 

rs4149117   65-80 <50% 75-86 c.334T>G S112A 
unaltered transport 
function [59,98] 

increased the clearance of imatinib 
[100] 

rs7311358   81-84 <50% 64-81 c.699G>A M233I 
unaltered transport 
function [59,98] decreased docetaxel clearance [99] 

  *1 >70%   >70% 
c.334G, 
c.699A 

S112A + 
M233I 

decreased function 
[59,98]  

better survival in prostate cancer 
[59] 

rs11045585   14 22 18 
IVS12-

5676A>G 
intronic   

increased AUC of docetaxel and 
telmisartan [99] 
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SLCO2B1 

rs12422149   8-14 13 37 c.935G>A R312Q   

increased survival in prostate 
cancer [103] 
decreased AUC of montelukast 
[176] 

rs2306168 *3 3 19 31 c.1457C>T  S486F 
decreased transport of 
3H-ES [101] 

increased AUC of a beta blocker 
celiprolol [5] 
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Figure 1. OATPs involved in drug uptake. Members of the OATP/SLCO (OATP1A2, 1B1, 

1B3 and 2B1) and SLC22 (OCT and OAT1 and OAT3) transporter families are key 

determinants of drug uptake. Within the cell, drugs may undergo modifications by CYP 

(cytochrome P450), UDP (uridine diphospho-glucuronosyltransferase), GST (glutathione S-

transferase) and SULT (sulphotransferase) enzymes. The most relevant transporters involved 

in the efflux of drugs and toxins are the ATP Binding Cassette proteins (ABCB1, ABCG2, 

ABCC2 and 3) and member of the SLC47 family (MATE1 and MATE2-K).  

 

 

 

 

 

 




