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Mantle peridotites are interpreted as either residues after partial melting and melt extraction or products
of igneous refertilization of refractory peridotites. The simple distinction between these models is difficult to
assess because in chemical variation diagrams, both processes lead essentially to the same results. The only
exception is the Ti-in-Cpx versus Ti-in-whole-rock plots, which can successfully discriminate between these
models. In this study, a modified version of Ti-in-Cpx versus Mg#-in-olivine plots was applied to ∼1,500
spinel peridotite xenoliths from worldwide localities. The results showed that the vast majority of shallow
mantle samples are consistent with the partial melting model; however, a minority of samples may indicate
refertilization of formerly refractory mantle domains.
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Introduction

Four-phase spinel peridotite xenoliths occurring in alkaline basaltic rocks provide
direct information about the conditions prevailing in the shallow subcontinental and
oceanic lithospheric mantles. Peridotite xenoliths exhibit a considerable range of
chemical composition that was attributed to partial melting and subsequent melt
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depletion of the upper mantle, resulting in decreased FeO, CaO, Al2O3, and alkalis,
and enrichment of MgO in the residue, which becomes the lithospheric mantle (Carter
1970; Kuno and Aoki 1970; Frey and Green 1974; Maaløe and Aoki 1977; Varne
1977). Mg-value [100 Mg/(Mg + Fe2+)] is a widely used index to demonstrate the
degree of depletion in melt component. It varies between 89 and 93, such that the
undepleted or fertile samples, i.e., those containing maximum concentrations of melt-
loving elements, have the lowest Mg-value, whereas severely depleted refractory
xenoliths have the highest Mg-value. Chemical composition of the undepleted
peridotites has also been used to estimate the chemical composition of Earth’s
primitive mantle (Jagoutz et al. 1979; McDonough and Sun 1995). Mineralogically,
undepleted lherzolites are rich in clinopyroxene and spinel, whereas depleted residual
harzburgites have less than 5% clinopyroxene and small quantities of spinel, which are
compensated by higher amounts of olivine. This is because melting reactions at low
P (<2.5 GPa) along the peridotite solidus produce olivine and liquid at the expense of
pyroxenes and spinel.

Although the major element variation had unanimously been interpreted as being
due to progressive extraction of basaltic melt, the advance of highly sophisticated
analytical techniques to obtain precise trace element and isotope ratios resulted in a
more complicated picture for the chemical evolution of mantle rocks. Thus, it became
evident that the majority of spinel peridotite xenoliths are light rare earth elements
(LREE) enriched together with other incompatible elements, such as K, Rb, Cs, Sr, Ba,
Th, and U, which reside within the diopside phase (Menzies and Murthy 1980; Stosch
and Seck 1980; Dawson 1984; Hawkesworth et al. 1990). However, incompatible
element-depleted and -enriched xenoliths are petrographically often indistinguishable
from each other. Moreover, it occurs that xenoliths severely depleted in FeO, CaO,
Al2O3, and alkalis are highly enriched in LREE, e.g., some of the Ray Pic mantle
xenoliths in the Massif Central, France (Zangana et al. 1997) or those of Szentbékkálla,
western Pannonian Basin, Hungary (Embey-Isztin et al. 1989). This clearly indicates a
decoupling of the processes governing the major element and the incompatible trace
element variations. Two major processes must have affected the lithospheric mantle:
first, a depletion due to partial melting, which strongly affected the major oxides
as well as all the trace elements, either compatible or incompatible, and second,
subsequent metasomatism by small amounts of liquids issued from the asthenosphere
that is reflected in variable enrichment in incompatible elements. Incompatible
elements are both easily removed from the mantle by partial melting and also easily
re-enriched by metasomatism. In some cases, mantle enrichment is accompanied by a
visible transformation of the original mineralogy, e.g., amphibole may form at the
expense of clinopyroxene + spinel (modal or hydrous metasomatism). However,
precipitation of the amphibole is not necessarily linked with enrichment. Kurat
et al. (1980) described such a case from Kapfenstein (Austria), where the formation
of amphibole in a xenolith was entirely caused by pure water metasomatism. The time
intervals separating these processes can be considerable. For example, mantle source
regions of mid-ocean ridge basalt (MORB) have isotopic signatures that indicate a loss
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of melt fraction at least 2 Ga ago (e.g., Stosch et al. 1980), whereas subsequent
enrichment by fluids or melts rich in trace elements may be much younger (<0.5 Ga)
and modal metasomatism (e.g., amphibole replacing diopside) only <0.2 Ga
(e.g., Menzies 1983).

Until recently, the interpretation of the processes affecting the geochemical
evolution of peridotite xenoliths from the lithospheric mantle and those of tectonically
emplaced mantle bodies has been essentially the same. Fertile lherzolite massifs such
as that of the Étang de Lherz in the French Pyrenees (type locality of lherzolite;
Lacroix 1917) were generally regarded as pristine mantle, only weakly affected by
partial melting and depleted harzburgites as residues, left after melt extraction.
However, this interpretation seems to be changing at great pace. Several workers
think that some tectonically emplaced mantle rocks are actually the result of igneous
refertilization of refractory peridotites rather than partial melting (e.g., Carlson et al.
2004; Müntener et al. 2004; Beyer et al. 2006; Bodinier et al. 2008; Zhang et al. 2009).
Using meticulously detailed structural evidence as well as major, minor, and trace
elements in minerals and whole rocks, Le Roux et al. (2007) convincingly demon-
strated that the Lherz Massif, considered as pristine, is actually secondary and formed
at the expense of a depleted harzburgitic protolith. Variations of major, minor, and trace
elements in minerals and whole-rock peridotites show that the lherzolites result from
the igneous refertilization reaction between depleted lithospheric mantle and percolat-
ing MORB-type partial melts. Local evidence of igneous refertilization has been
previously reported in orogenic peridotites; however, at Lherz, structural arguments
show that the entire lherzolite body is secondary and refertilized (Le Roux et al. 2007,
2009). Thus, in the case of Lherz, the partial melting model does not work in the light of
structural observations that show that the harzburgite is older than the lherzolites.

Refertilization may also be considered as a form of mantle metasomatism; however,
the term “metasomatism” is more widely used to define mantle processes involving
strong chemical disequilibrium between melt and fluids, marked by a selective
enrichment in certain major or trace elements, such as Fe, Ti, LILE, and LREE, or
in accessory minerals, such as amphibole, mica, or rutile (“cryptic” versus “modal” or
“patent” metasomatism; Harte 1983; Dawson 1984).

Although cryptic metasomatism is a frequent phenomenon in mantle-derived
xenoliths as detailed earlier, and modal metasomatism is occasionally observed as
well, peridotite xenoliths are still widely considered to be more or less depleted mantle
residues left after extraction of a basaltic component. In this respect, they seem to
contrast with the new findings obtained from the tectonically emplaced peridotite
massifs that are increasingly interpreted as representing a refertilization rather than a
depletion trend. Many workers now think that the fundamental characteristics of most
orogenic lherzolites are their refertilized nature (Godard et al. 1995; Takazawa et al.
1996; Rampone et al. 1997, 2004; Lenoir et al. 2000; Hellebrand et al. 2002; Santos
et al. 2002; Bodinier et al. 2004; Beyer et al. 2006; Piccardo et al. 2007).

This has far reaching implications because, together with mantle xenoliths and
chondrites, the fertile Lherz massif has been used to infer the composition of the
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Earth’s primitive upper mantle, in particular for the highly siderophile elements.
However, if the formation of the Lherz lherzolites occurred by igneous refertilization,
the validity and significance of the primitive mantle values based on this type of fertile
mantle rock compositions become questionable (Le Roux et al. 2007). It follows that
carefully selected xenoliths may prove to be a better choice, even if refertilization
processes have also been reported on mantle xenoliths in a few cases (e.g., Carlson
et al. 2004; Tang et al. 2008).

The aim of this study

The scientific community working with peridotite xenoliths widely believes that
they represent primarily residues after partial melting of a compositionally homoge-
neous source, frequently followed by enrichment processes involving incompatible
element-rich components. In contrast, some specialists of orogenic peridotite massifs
think that this may not be the case, favoring a refertilization model instead
(J.L. Bodinier, personal communication). Accidental mantle xenoliths have a major
drawback over orogenic peridotites, notably the lack of the virtually unlimited
possibility of sampling. Massifs provide the opportunity to study spatial and temporal
relationships between different metasomatic facies (e.g., modal versus cryptic meta-
somatism) as well as between metasomatic rocks and their protoliths. In contrast,
mantle xenoliths have the advantage over orogenic peridotites that they represent
mineralogical and chemical conditions of the ambient mantle, due to their rapid rise to
the surface. In addition, over 3,500 mantle xenolith localities are currently known
worldwide, whereas the number of orogenic peridotite massifs is much more limited.

During this work, a worldwide survey of major element data published on spinel
peridotite xenoliths from all the continents has been carried out to assess which of the
two models (i.e., partial melting or refertilization) played the decisive role in shaping
the chemistry and mineralogy of the shallow continental lithospheric mantle. Obvi-
ously, this is not an easy task because mafic melt extraction from a primitive mantle
source progressively depleted in basaltic components, such as Al2O3, CaO, TiO2, and
Na2O, and refertilization of an originally depleted source by melts rich in basaltic
components (including Al, Ca, and Fe) produce essentially the same trends. None-
theless, Le Roux et al. (2007) seem to have found a way to circumvent the problem by
plotting the concentrations of TiO2 in clinopyroxene versus whole rocks for the
primary harzburgites and secondary (refertilized) lherzolites of the Lherz Massif
(Fig. 1A). The diagram clearly shows a trend of constant Ti concentration in
clinopyroxene of refertilized peridotites and a rapidly decreasing Ti in the more
refractory harzburgites. Their calculated partial melting trend, shown for comparison,
is clearly distinctive with its evenly rising slope.

Thus, such a diagram may be a useful tool in differentiating between partial melting
and refertilization processes. However, in the vast xenolith literature, one can find a
great number of papers publishing whole-rock analyses and many others publishing
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(A)

(B)

Fig. 1
A: TiO2 concentrations in clinopyroxene versus whole rocks for the Lherz harzburgites (empty squares) and
lherzolites (filled circles). Gray symbols represent Cpx compositions recalculated for near-solidus
temperature (1,250 °C). Numerical models of TiO2 variations during partial melting and magmatic
refertilization are shown for comparison (after Le Roux et al. 2007). B: Mg-value in olivine versus
TiO2 in the coexisting clinopyroxene from the same rocks, plotted on the basis of microprobe analyses of Le
Roux (2008). Empty squares: harzburgites, filled circles: lherzolites
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microprobe analyses for the constituent mineral phases, but relatively rarely both sets
of data. Therefore, in this survey, a modified version of the original diagram has been
used. The vertical axis showing the diagnostically important Ti in clinopyroxene
remained the same, whereas the horizontal axis indicates the Mg-value [100 Mg/
(Mg + Fe2

+)] of the coexisting olivine. Olivine is the dominant phase in peridotites,
and as such, its Mg-value must be close to the Mg-value of the whole-rock samples. Ti
is an incompatible element, and consequently, it is negatively correlated with the
Mg-value. To demonstrate that the modified diagram can reproduce essentially the
same trends as the original one, microprobe analyses of mineral phases from
harzburgites and lherzolites of the Lherz Massif (published in Le Roux 2008)
have been plotted in Fig. 1B. In the following diagrams, some 1,500 coexisting
clinopyroxene and olivine pairs from worldwide localities (Fig. 2) have been plotted.
In the case of multiple analyses, core compositions of mineral grains were preferably
chosen and rim compositions were avoided.

Peridotite xenoliths in Western and Central European Tertiary–Quaternary
alkali basalts

Members of this extended post-orogenic volcanic province, from southwest France
to the Carpathian Basin, share a number of features in common. They all represent a
typical alkali basaltic extension-related volcanism and show similar asthenospheric

Fig. 2
World map showing the main peridotite xenolith localities involved in this study. 1: Massif Central;
2: Rhenish Massif, Rhine Graben; 3: Eger (Ohre) Graben; 4: Carpathian (Pannonian) Basin; 5: Catalonia;
6: Spitsbergen; 7: Hoggar; 8: Cameroon Line; 9: Nosy Be archipelago; 10: East African Rift; 11: Baikal Rift,
Mongolia, Inner Mongolia; 12: East China Craton; 13: Jeju Island, Korea; 14: Ichinomegata; 15: eastern
Australia; 16: New Zealand; 17: Antarctica; 18: western USA; 19: northern Mexico; 20: Knippa, Texas;
21: northeast Brazil; 22: northern Patagonia
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Fig. 3
Mg-value in olivine versus TiO2 in coexisting clinopyroxene on the basis of published analyses. A: Coisy
(1977), Brown et al. (1980), Werling and Altherr (1997), Xu et al. (1998a). B: Schütz (1967), Witt-
Eickschen (1993), Witt-Eickschen and Kramm (1997), Franz et al. (1997). C: Ackerman et al. (2007, 2013,
2015). D: Embey-Isztin et al. (1989), Downes et al. (1992), Embey-Isztin et al. (2001, 2014); filled symbols:
poikilitic peridotite xenoliths. E: Szabó and Taylor (1994). F: Vaselli et al. (1995)
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isotopic signatures (Blusztajn and Hart 1989; Wilson and Downes 1991; Embey-Isztin
and Dobosi 1995; Hoernle et al. 1995). Alkali basalts in the Massif Central, the
Rhenish Massif, near the Rhine Graben, and in the Eger (Ohre) Graben, situated in the
Moldanubikum, erupted on Variscan suspect terranes, whereas those of the Carpathian
Basin lie on Alpine Orogen terranes. Peridotite xenoliths are abundant in all regions,
especially in the Massif Central, where hundreds of localities are known. Plotted in
Mg-value-in-olivine (Mg# in Ol) versus TiO2-in-Cpx diagrams (Fig. 3A–F), all of the
regions seem to lack evidence for refertilization as defined previously, i.e., no constant
high-Ti-clinopyroxene trends in more fertile xenoliths and abruptly dropping Ti in
depleted samples can be observed.

It follows that the classical partial melting model still holds good for the Western
and Central European shallow subcontinental mantle. However, Persányi Mts.
xenoliths from the eastern Transylvanian Basin (Fig. 3F) may perhaps be a possible
exception with their constant trend of Ti-in-Cpx for the most fertile samples.
Nonetheless, these xenoliths were described by Vaselli et al. (1995) as being modally
metasomatized; thus, they are richer in amphibole, compared with the mantle xenoliths
from the alkali basalts of the neighboring Pannonian Basin. The latter (Fig. 3D) carries
two distinctive series of peridotite xenoliths, one with well-known usual texture types
(empty circles) and another with poikilitic textures (filled diamonds). The two series
differ from each other in every geochemical respect (major, minor elements, and
isotope ratios), and the poikilitic xenoliths were interpreted as the result of reactions
between magmatic liquids issued from the uprising asthenosphere and the solid
lithospheric mantle rocks (Embey-Isztin et al. 2014).

Other European xenolith localities

In Fig. 4A, xenolith data from the quaternary anorogenic volcanic district of Olot
(Catalonia, northeastern Spain) have been plotted. This region is located at the
southern edge of the Pyrenean collisional orogenic belt, and it experienced a highly
complex tectonic evolution that ended with the opening of the Liguro–Provencal and
Valencia Trough inter-arc basins (e.g., Martí et al. 1992). This last tectono-magmatic
event gave birth to the anorogenic alkali basalt volcanism.

Plio–Pleistocene alkaline basic lavas (basanites, hawaiites, alkali basalts, and
trachybasalts) containing peridotite inclusions (Fig. 4B) are widespread on the island
of Sardinia (e.g., Lustrino et al. 1999). The tectono-magmatic evolution resembles that
of the Pannonian Basin. In both regions, the younger Plio–Pleistocene alkali basaltic
volcanics erupted in connection with intra-continental plate tensional tectonics that
was preceded by an older Oligo–Miocene orogenic calc-alkali volcanic cycle. In
Sardinia, the pre-Mesozoic basement comprises metamorphic rocks and Hercynian
granitoids (Tommasini et al. 1995).

In west Spitsbergen (the largest island of the Svalbard archipelago north of
Norway), quaternary alkali basaltic volcanoes contain abundant ultramafic xenoliths,
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Fig. 4
Mg-value in olivine versus TiO2 in coexisting clinopyroxene on the basis of published analyses.
A: Bianchini et al. (2007), Galán et al. (2011). B: Beccaluva et al. (1989, 2001). C: Furnes et al. (1986),
Ionov et al. (2002). D: Beccaluva et al. (2007). E: Lee et al. (1996), Caldeira and Munhá (2002), Nkouandou
and Temdjim (2011), Temdjim (2012), Pintér et al. (2015); filled symbols: continental Cameroon Line;
empty symbols: oceanic Cameroon Line. F: Rocco et al. (2013)
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mostly spinel peridotites (Fig. 4C; Furnes et al. 1986; Ionov et al. 2002). Originally,
Spitsbergen was an integral part of Greenland, and it was separated during the opening
of the North Atlantic Ocean in the Late Cretaceous (Blythe and Kleinspehn 1998).
Mineral analyses from further European xenolith localities were also examined during
this work (not shown in separate diagrams). These include the Cenozoic Calatrava
volcanic field (central Spain), the Lessinian basalts (northern Italy), the Mt. Vulture
volcano (southern Italy), and the eastern Serbian xenoliths. In general, we can
conclude that peridotite xenoliths originating from diverse European localities may
indicate partial melting trends in Mg# versus Ti-in-Cpx diagrams. The Ti-rich
clinopyroxenes of the Catalonian xenoliths (Fig. 4A) may be seen as a possible
exception; however, the scattering of data in this diagram does not permit drawing any
certain conclusions.

African xenoliths

The Cenozoic volcanism of the Hoggar region (Algeria) represents one of the most
important magmatic districts of the North African belt. It covers more than 10,000 km2

and is associated with a regional crustal swell of Pan-African terranes, approximately
1,000 km in diameter (Beccaluva et al. 2007). The latest volcanic episodes are strongly
alkaline (basanites and nephelinites), sometimes entraining mantle xenoliths (Fig. 4D).

The ∼1,600-km-long intraplate volcanic West African Cameroon Line is a unique
geologic feature because it straddles a continental margin (Norry and Fitton 1983;
Fitton and Dunlop, 1985). Half of the line lies in the Atlantic Ocean and the other half
erupted onto continental crust. The line has been volcanically active, mostly erupting
alkali basaltic rocks, for the last 65 million years. Basaltic rocks with MgO > 4% both
the oceanic and continental sectors of the Cameroon Line have similar compositions;
however, the more evolved rocks are quite distinct. The similarity in more basaltic
rocks may indicate that they share the same type of source material. As the lithospheric
mantle below the continental Africa must be different in chemical and isotopic
composition from the younger oceanic lithosphere below the Atlantic, the reasonable
explanation is that the source should be in the asthenosphere rather than in the
metasomatized lithosphere (Fitton 1987). Figure 4E depicts peridotite xenoliths from
both the oceanic and continental sectors of the Cameroon Line. In the latter, the crust
was affected by the Pan-African event, which is estimated to be at least 600 million
years old (e.g., Black and Liegeois 1993). In contrast to the host basalts, peridotite
xenoliths originate in the lithospheric mantle and indeed, those in the oceanic sector
are extremely depleted, whereas the continental ones show a partial melting trend
(Fig. 4E).

The northwestern region of Madagascar is covered by basanitic volcanics of late
Cenozoic age and the Nosy Be archipelago is the northwestern most part of this
igneous activity, where peridotite xenoliths are common (Rocco et al. 2013; Fig. 4F).
The peculiarity of Nosy Be lithosphere is that it was involved in several orogenic
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Fig. 5
Mg-value in olivine versus TiO2 in coexisting clinopyroxene on the basis of published analyses. A: Ferrando
et al. (2008), Alemayehu et al. (2016). B: Kaeser et al. (2006). C: Song and Frey (1989), Xu et al. (1997,
1998b), Rudnick et al. (2004), Zheng et al. (2004), Ying et al. (2006), Tang et al. (2007, 2008), Xiao et al.
(2010), Liu et al. (2012a, 2012b, 2013), Huang et al. (2013), Lu et al. (2015), Pan et al. (2015). D: Choi et al.
(2001), Kil et al. (2008), Yang et al. (2010), Woo et al. (2014). E: Preβ et al. (1986), Wiechert et al. (1997),
Kononova et al. (2002), Ionov (2004), Egorova et al. (2006), Konc et al. (2012), Zou et al. (2014).
F: Takahashi (1986), Satsukawa and Michibayashi (2014); filled symbols: Tarim peridotite xenoliths; empty
symbols: other Central Asian xenoliths
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cycles and rifting periods during the Madagascar–Somali and Madagascar–India
separation (e.g., De Wit 2003).

Figure 5A and B shows peridotite inclusions originating from the Ethiopian and
Kenyan sectors of the East African Rift System. This is another unique geologic area
of the African continent where rifting, extension, and intensive volcanic activity
continue to occur, which may lead to the formation of a new ocean. The distribution of
the titanium data for these xenoliths accords with the partial melting trend and the
same can be said for the xenoliths of the Hoggar and the Cameroon Line. The Nosy Be
xenoliths (Fig. 4F) are clearly different, with a vertical rise of Ti in clinopyroxene in
the range of 90–91 Mg# that may perhaps indicate refertilization.

Eastern Asian xenoliths

A map showing the worldwide distribution of mantle xenolith localities published
by Menzies (1983) did not display a single one for the whole of China. Since then, a
plethora of xenolith occurrences, most of them in eastern China, has been detected and
studied. Proceeding from north to south, east China is composed of the North China
Craton, the South China Craton, and the Cathaysia Block. The North China Craton
(Sino-Korean Craton) is one of the oldest cratons on Earth (3.8 Ga; Liu et al. 1992).
Cratons have the reputation of being virtually indestructible as they have the ability to
survive for a very long period of time. However, East China Cratons are unusual
because locally they were strongly affected by lithospheric thinning that began in the
Mesozoic, which is known to have reduced the thickness of the lithosphere from
200 km to 80 km. Xenoliths in Paleozoic kimberlites show that a thick (∼200 km),
cold (∼40 mW/m2), and highly refractory lithospheric mantle existed until the mid-
Ordovician (e.g., Zheng et al. 2006), indicating that Archean crust is underlain by a
thick, cold, and refractory Archean lithospheric mantle (e.g., Griffin et al. 1998; Zhang
et al. 2009). However, peridotite xenoliths from the Cenozoic basalts suggest a hot
(60–80 mW/m2), thin (80–60 km), and fertile younger lithospheric mantle beneath
eastern China (Griffin et al. 1998; Rudnick et al. 2004; Zhang et al. 2009). These
observations suggest that the lithospheric mantle of the East China Craton has not been
only considerably thinned, but also compositionally changed from highly refractory to
more fertile mantle during Phanerozoic times.

Figure 5C illustrates the titanium content of clinopyroxenes versus olivine
Mg-value in xenoliths from diverse East China localities. All the xenoliths involved
originate from Cenozoic basaltic volcanic rocks of alkaline affinity. As the eruptions
are young, theoretically the xenoliths have the potential to reflect the refertilization and
the renewal of the lower lithospheric mantle as explained above. However, Fig. 5C
cannot be interpreted in a unique way; rather, it seems to show a mixture of partial
melting and refertilization trends. Indeed, plotting xenoliths of individual localities
separately (not shown), both trends are clearly present. For example, Ningyuan
(southeast China) and Great Xing’an Range (northeast China) peridotite xenoliths
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exhibit a refertilization trend, whereas Maguan, Xinchang (southeast China), and
Hannuoba (northeast China) inclusions show typical partial melting trends. Again, the
trend of Jeju Island xenoliths in South Korea (Fig. 5D) can be interpreted by the partial
melting model.

Central Asian xenoliths

Cenozoic alkali basalts containing peridotite inclusions occur in a large area in
central and eastern Asia encompassing southern Siberia, central and eastern Mongolia,
northwest China (Tarim Basin, Hexigten, and Inner Mongolia), and even the Russian
Far East. Among the most studied localities, the Vitim volcanic province east of Lake
Baikal, Siberia, lies just outside the Baikal rift zone, carrying samples of the off-craton
lithospheric mantle (Ionov 2004). The Tariat volcanic field in central Mongolia is
located approximately 500 km southwest of Lake Baikal. The Dariganga lava plateau
is the largest Cenozoic lava field in Mongolia and arguably the largest one in central
and eastern Asia. Xenoliths of the Cenozoic Atsagin-Dush volcanic center on the
Dariganga Plateau (southeast Mongolia) were also intensively studied (e.g., Wiechert
et al. 1997). Finally, peridotite xenoliths from the Sanglien Plateau (southern Siberia)
differ from the preceding ones in that they originate from old (447–441 Ma) alkaline
lamprophyre dikes (e.g., Egorova et al. 2006). In Fig. 5E, Tarim peridotite xenoliths
plotted in filled symbols may perhaps suggest refertilization, whereas for all the other
localities (empty symbols), no clear-cut conclusion can be drawn in this direction.
Although few data exist for the Ichinomegata (Japan) xenoliths that were erupted in an
island arc setting, these data suggest a partial melting trend (Fig. 5F).

American xenoliths

Ultramafic inclusions are widespread in alkaline basalts and kimberlites of the
western USA between the coast of California and west-central Texas (Knippa), and
south of the Mexican border. These occurrences are found in widely varied geologic
settings. The most conspicuous tectonic feature here is the Basin and Range Province
that has been subjected to extension that thinned and cracked the crust as it was pulled
apart. Cenozoic alkaline volcanism erupting peridotite xenoliths is widespread in the
region. Figure 6A shows data from all parts of the western USA; in contrast Fig. 6B
only that from a single locality (Dish Hill in the Mojave Desert, California). Whereas
the former displays a rather diffuse picture, the Dish Hill xenoliths indicate a typical
partial melting trend.

In south-central Texas, mantle xenoliths have been described from ∼83 Ma
basanites (Raye et al. 2011) providing the opportunity to examine the lithospheric
mantle beneath southern Laurentia. These peridotites represent the lithosphere at the
boundary between Mesoproterozoic continental lithosphere and the transitional
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Fig. 6
Mg-value in olivine versus TiO2 in coexisting clinopyroxene on the basis of published analyses. A: Carter
(1965), Wilshire et al. (1988), Titus et al. (2007), Perkins and Anthony (2011). B: Luffi et al. (2009). C: Raye
et al. (2011). D: Heinrich and Besch (1992), Luhr and Aranda-Gómez (1997). E: Rivalenti et al. (2000),
Fodor et al. (2002). F: Dantas et al. (2009)
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Gulf of Mexico passive margin. Again, the plot of Knippa peridotites attests a trend
that corresponds to the partial melting model (Fig. 6C). The same can also be said of
Mexican xenoliths (Fig. 6D).

In northeastern Brazil, near the edge of the Amazonian Craton, tertiary alkalic
(3–13Ma) basalts and spinel lherzolite inclusions therein provide valuable information
about the conditions of the subcontinental lithosphere. The host basalts had origins with
the Fernando deNoronha plume togetherwith the older tholeiiticflood basalts emplaced
during the beginning of continental rifting some 200 Ma ago (e.g., Fodor et al. 2002).
In Fig. 6E, Brazilian xenolith data form a rather diffuse array, so it is difficult to see
whether refertilization has played a role or not in their genesis. In contrast, a suite of
anhydrous spinel-bearing lherzolites hosted in Cenozoic alkali basalts and pyroclastic
rocks associated with a back-arc tectonic environment occurring at Cerro de los
Chenques and Cerro Clark localities, north Patagonia (Dantas et al. 2009; Fig. 6F) is
consistent with an origin by partial melting of varying degrees of a fertile mantle source.

Xenoliths of Eastern Australia, New Zealand, and Antarctica

Ultramafic and mafic xenoliths derived from the lower crust and upper mantle are
common in the predominantly tertiary basaltic rocks that extend the length of eastern
Australia (e.g., Griffin et al. 1984). Figure 7A depicts spinel peridotite xenoliths from
Victoria, the southernmost part of eastern Australia. This region is situated in the
Paleozoic Tasman Fold Belt of eastern Australia, which borders the older cratonic
areas to the west.

Tertiary (24–9 Ma) intraplate volcanics in southern New Zealand contain peridotite
spinel-facies dunite, harzburgite, lherzolite, and wehrlite mantle xenoliths (Fig. 7B).
These xenoliths have repeatedly sampled the mantle lithosphere of southern Zealandia
since it broke away from Gondwana at ∼85 Ma (Laird and Bradshaw 2004).

In Victoria Land (west Antarctica), alkaline magmas have erupted since Cenozoic
times, connected with the Ross Sea rift system. The West Antarctic rift system is an
example of continental rifting comparable in scale with the southwestern Basin and
Range province in western North America or the East African Rift System. Peridotite
and pyroxenite xenoliths allow the study of the shallow Antarctic lithospheric mantle
(Fig. 7C). Spinel peridotite xenoliths plotted in Fig. 7 seem to be in agreement with
the partial melting model, but the conspicuously low content of Ti in clinopyroxenes in
the New Zealand samples (Fig. 7B) indicates a subsequent interaction between
peridotite and a metasomatizing carbonatitic melt (Scott et al. 2014).

Besides the xenoliths shown in Figs 3–7, an important number of xenoliths from
additional localities have been involved in this work that cannot be shown in separate
plots due to lack of space. However, they have been included in a single diagram
containing all the 1,520 xenoliths considered in this study (Fig. 8). Names of the
additional localities and references are given in the figure caption. As expected, Fig. 8
corroborates the fact that the vast majority of shallow lithospheric mantle peridotite
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Fig. 7
Mg-value in olivine versus TiO2 in coexisting clinopyroxene on the basis of published analyses. A: Frey and
Green (1974), Griffin et al. (1984), Chen et al. (1989), Norman (1998). B: Scott et al. (2014). C: Zipfel and
Wörner (1992), Foley et al. (2006)
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xenoliths seem to be consistent with evolution by partial melting rather than a
refertilization process. However, a minority of them, especially those with more or
less constant high TiO2 clinopyroxenes in the range of 90–88 Mg# in olivine, may
reflect refertilization.

Discussion

In the last decades, the refertilization model has gained an ever wider acceptance
among earth scientists working with tectonically emplaced orogenic ultramafic bodies.
Some of these scientists think that the same model may or should be applicable to
peridotite xenoliths found in alkaline basaltic rocks as well, in spite of the general
belief that these samples indicate a depletion trend due to progressive extraction of
basaltic melt from a fertile mantle source. Compared with orogenic peridotite massifs,
the much smaller size and the accidental nature of xenoliths minimize the chances of

Fig. 8
Mg-value in olivine versus TiO2 in coexisting clinopyroxene on the basis of published analyses. In addition
to the data plotted in Figs 3–7, similar values from the following localities have been added: Calatrava
volcanic field, Spain (Villaseca et al. 2010); Lessinian basalts, northern Italy (Siena and Coltorti 1989);
Mt. Vulture volcano, southern Italy (Jones et al. 2000); eastern Serbia (Cvetković et al. 2004, 2007);
northwest Turkey (Aldanmaz et al. 2005); Kola Peninsula (Beard et al. 2007); Bir Ali, Yemen (Ali and Arai
2007; Sgualdo et al. 2015); Damara Belt, northwest Namibia (Baumgartner et al. 2000; Le Roex and Class
2014); Lorena Butte, Simcoe Mts., southern Washington, USA (Draper 1992); southern British Columbia
(Greenfield et al. 2013); Canadian Cordillera (Shi et al. 1998); east Oman (Grégoire et al. 2009); Malaita,
Solomon Islands (Ishikawa et al. 2004); Grenada, Lesser Antilles (Parkinson et al. 2003); Bo Ploi, Thailand
(Srithai 2005); northeast Iran (Su et al. 2014); Tasmania (Varne 1977)
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tracing textural and chemical variations in the source mantle. This makes it difficult to
tell the two types of model apart in any given region, all the more so in that partial
melting and refertilization produce the same trend on variation diagrams. Hence, a
modified version of Le Roux’s titanium diagram has been used here as a tool to
differentiate between the models for a large number of spinel lherzolite and harz-
burgite xenoliths around the world.

In general, the results indicated depletion trends, somewhat surprisingly even in
eastern China, where barren old lithospheric mantle had been replaced by a more
fertile asthenospheric mantle. However, some of the Chinese xenoliths did imply
refertilization, which is in agreement with the view that current lithospheric mantle
below this region is hybridized with an old lithosphere in the shallowest part and
newly created “oceanic” type lithosphere in the deeper part (e.g., Griffin et al. 1998;
Fan et al. 2000; Xu 2001). The majority of spinel lherzolite xenoliths entrained in the
Cenozoic basalts of eastern China show that these lherzolite xenoliths have an
“oceanic” affinity and thus may represent newly accreted lithospheric mantle formed
by low-degree partial melting characterized by low-Mg# (Fo≤ 91). In contrast, strongly
depleted high-Mg# (Fo ≥ 91) inclusions may come from the shallower old cratonic
lithospheric mantle. Since the pioneering work of Boyd (1973, 1984, 1989), we know
that the Archean cratonic mantle most likely formed as residue after about 30%melting
of ambient mantle at potential temperatures of 1,500–1,600 °C, producing severely
depleted high Mg# peridotites. Younger lithospheric mantle became progressively
more fertile, reflecting the secular cooling of the mantle since the Archean.

Presently, the modern MORB indicates ∼7% melting at a potential temperature of
1,350 °C. Most of the peridotite xenoliths considered in this study were found in
Cenozoic basaltic rocks and originated from the shallow subcontinental mantle. Their
TiO2-in-Cpx versus Mg#-in-olivine diagrams are consistent with “oceanic” affinity
and with the idea that the main process that controls the geochemistry of the shallow
subcontinental mantle is depletion by the removal of basaltic melt (e.g., Downes
2001). An important question is how subcontinental mantle becomes “oceanic.”
Oceanic residues may have formed in a variety of tectonic environments but are
believed to be of relatively shallow origin. They may have derived from oceanic
lithosphere that has been accreted to older continental nuclei. Others may have
originated in subcontinental magmatic events at relatively shallow depths, comparable
to those at which lithosphere has formed beneath the oceans. In terms of chemical
composition, there is no difference between the upper part of the asthenosphere and the
lower part of the lithosphere. In fact, if the upper part of the asthenosphere cools down,
it becomes a part of the lithosphere.

Acknowledgement

The author would like to thank two anonymous reviewers for their critical
comments on improving this manuscript.

The role of melt depletion versus refertilization 77

Central European Geology 59, 2016



References

Ackerman, L., N. Mahlen, E. JelÍnek, G. Medaris, J. Ulrych, L. Strnad, M. Mihaljević 2007: Evidence
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