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Targeting heme oxygenase-1 in early diabetic
nephropathy in streptozotocin-induced diabetic rats
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Diabetic nephropathy (DN) is one of the most common microvascular diabetic complications. This study was
designed to evaluate the possible protective effect and underlying mechanisms of HO-1 induction in streptozotocin
(STZ)-induced early DN in rats. The diabetic rats were divided into three groups: STZ-diabetic, cobalt protopor-
phyrin (CoPP)-treated diabetic, and zinc protoporphyrin IX (ZnPP)-treated diabetic groups. Compared to the STZ-
diabetic group, CoPP-induced HO-1 upregulation improved the diabetic state and renal functional parameters,
suppressed the renal proinflammatory marker, NF-κB, abrogated the elevated renal hydroxyprolin, and decreased the
enhanced renal nicotinamide adenine dinucleotide phosphate oxidase activity with parallel reduction of urinary
oxidative stress markers. On the contrary, treatment with ZnPP abrogated HO-1 levels, aggravated the diabetic
condition with further increases in renal oxidative stress, fibrotic and inflammatory markers, and exacerbated renal
dysfunction in diabetic animals. These findings suggest that the reduced diabetic renal injury upon HO-1 induction
implicates the role of HO-1 induction as a potential treatment for DN.

Keywords: diabetic nephropathy, heme oxygenase, cobalt protoporphyrin, zinc protoporphyrin IX, renal
hydroxyprolin

Introduction

Diabetes mellitus is a multisystem disorder that affects various organs. Almost 30% of
diabetic patients develop diabetic nephropathy (DN) despite control of blood glucose and/or
blood pressure (47). The underlying molecular mechanisms of DN are not fully established.
DN has been traditionally considered to be caused by metabolic and hemodynamic alterations
but recent studies suggest that inflammatory processes with chronic low grade inflammation
and aberrant immune responses are also involved in the development and progression of the
disease (18).

Increased levels of some proinflammatory factors, such as the intercellular adhesion
molecule (ICAM-1) and monocyte chemoattractant protein (MCP-1) have been found in
diabetic patients with nephropathy. MCP-1 and ICAM-1 have been identified as key players
in monocyte/macrophage infiltrations and leukocyte adhesion in diabetic animal models (52).

A common denominator of diabetes is the enhanced level of tumor necrosis factor-α
(TNF-α), which has been largely implicated in the inflammatory cascade, which in turn
activates the nuclear factor kappa-B (NF-κB) pathway, creating a vicious cycle that
exacerbates diabetes and its renal complications (63).
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Long-standing hyperglycemia, a common cardinal feature in diabetes, is known to
stimulate renal cells to produce several humoral mediators and growth factors (54). These
factors form complex cross-links over time and induce several structural alterations such as
interstitial extracellular matrix expansion that is initially triggered by increased cellular
components, followed by an increase in interstitial fibrillar collagen (55) that appears to be
critical for final progression of DN (21).

Increased oxidative stress has been implicated in the pathogenesis of diabetes. Nicotinamide
adenine dinucleotide phosphate oxidase (NADPH), the major source of superoxide production,
has been shown to be activated in the kidney of diabetic animal models with enhanced
expression in the glomerulus and distal tubules, constituting a fundamental link between
hyperglycemia and oxidative stress that ultimately leads to deterioration of renal function (17).

Heme oxygenase (HO) is a ubiquitous microsomal rate-limiting enzyme involved in the
oxidative degradation of heme to biliverdin (BV), which is rapidly converted into bilirubin
(BR) by BV reductase. During this step, iron is released from the heme ring and carbon
monoxide (CO) is generated (2). To date, three distinct isoforms of HO have been identified:
HO-1, an inducible form; HO-2, a constitutive form; and HO-3, probably a pseudo gene (2).

Among these isoforms, HO-1 has been the most extensively studied HO isoenzyme.
Increased HO-1 expression seems to provide cytoprotection and HO-1 is known to be
upregulated in the kidney under various physical, chemical, and pathophysiological stimuli
including oxidative and inflammatory insults, as well as metabolic and hemodynamic factors
such as high glucose, elevated blood pressure, and lipids (27).

HO-1 induction is considered to be an adaptive cellular response to stress. Therefore,
HO-1 may be considered a sensitive index that is triggered with the onset of pathophysio-
logical changes. The pathophysiological activation of HO-1 may fall below the threshold
necessary to activate important components through which the HO system can restore tissue
homeostasis. Stronger effects can be achieved by some pharmacological agents capable of
inducing some HO, like metalloprotoporphyrins such as cobalt protoporphyrin (CoPP) (39).

The importance of HO-1 in altering the outcome of many diseases is established by
observations that pharmacological induction or overexpression of HO-1, as well as adminis-
tration of the different end-products of heme catabolism all have significant beneficial or
therapeutic effects in a large number of pathologic conditions (27).

Although many therapeutic interventions have been shown to delay the development or
retard the progression of DN, currently no intervention has been able to halt or reverse its
progression (29). Therefore, better therapeutic modalities are urgently needed. The HO may
constitute a novel system that could be explored against diabetes and its related renal and
metabolic complications. This study highlights the potential therapeutic benefit of HO-1
induction by CoPP to protect the kidney from diabetic renal injury.

Materials and Methods

Animals
Forty male albino rats weighing 150–180 g were used after 1 week of proper acclimatization
to the animal house conditions (12 h lighting cycle and 25± 2 °C temperature). The rats were
housed four per cage, had free access to standard rodent chow and water. Procedures
involving animals and their care were conducted in conformity with the protocols of the
Research Advisory Ethical Committee of Faculty of Medicine, Tanta University, Egypt.

414 Abo El Gheit and Emam

Physiology International (Acta Physiologica Hungarica) 103, 2016



Experimental induction of diabetes
Diabetes was induced in overnight fasted rats by a single i.p. injection of freshly prepared
streptozotocin (STZ) (60 mg/kg, dissolved in 0.1 M cold citrate buffer, pH 4.5) (10). STZ
was purchased from Sigma-Aldrich (St. Louis, MO, USA). The STZ-treated animals were
allowed to drink 5% glucose solution instead of drinking water for the first 24 h after STZ
challenge to overcome initial drug-induced hypoglycemic mortality. Three days after
STZ injection, blood samples were collected and blood glucose levels were measured
using a glucometer (OneTouch Horizon, LifeScan, Johnson & Johnson, CA, USA).
Animals with blood glucose level above 250 mg/dl were used. After the maintenance for 4
weeks, the blood and urine samples from these rats were again tested for hyperglycemia
and proteinuria. The urine protein was estimated by Biuret’s method using a commercial
kit (Diamond Diagnostic, Egypt). Rats with hyperglycemia (≥250 mg/dl) and proteinuria
(≥8.0 mg/dl) at the end of 4 weeks post STZ injection were selected for further study.

Experimental procedures
The diabetic rats were left untreated, for 4 weeks after induction of diabetes, to induce early
DN (48, 50) and were assigned to receive treatments with either CoPP or zinc protoporphyrin
IX (ZnPP). The animals were divided into four groups of 10 rats each. The control normal
group received i.p. injections of 0.1 mol/l citrate buffer, pH 4.5 (vehicle for STZ); the diabetic
group was STZ-injected and vehicle-treated, the CoPP-treated diabetic group received CoPP
at 15 mg/kg i.p. (Sigma-Aldrich, UT, USA), and the ZnPP-treated diabetic group was
injected with ZnPP at 4 μmol/kg i.p. (Sigma-Aldrich, UT, USA). Both CoPP and ZnPP were
administered twice weekly for 4 weeks.

At the end of 8 weeks after STZ injection, the rats were placed in metabolic cages
(Nalgene Corp., Rochester, NY, USA) for 24-h urine collection. Blood samples were
collected after overnight fasting and centrifuged at 3,000g for 10 min to obtain clear sera.
Then the kidneys of all rats were immediately excised, decapsulated, and divided longitudi-
nally into two equivalent sections. One section was retained with dissection of the renal
cortices that were snap frozen in liquid nitrogen, stored at −80 °C, and subsequently
homogenized in cold potassium phosphate buffer (0.05 M, pH 7.4) for various biochemical
analyses. The protein content of the renal samples was measured by the method of
Bradford (3), using crystalline bovine serum albumin as standard.

Assessment of STZ-induced diabetic state
Using commercially available colorimetric kits, serum glucose (Diamond Biodiagnostic
Comp., Egypt) was estimated. Serum insulin was estimated using a rat insulin ELISA kit
(American Diagnostica Inc., San Francisco, CA, USA).

Assessment of STZ-induced DN
Serum and urinary creatinine levels were estimated by standard alkaline picrate method using
commercially available creatinine estimation kit (Cayman Chemical, Ann Arbor, MI, USA)
(57, 58). Urinary albumin was measured by ELISA using microalbumin estimation kit
(BioSystems, Spain), and collagen (Exocell, Philadelphia, PA, USA) excretion levels were
determined as indices of renal injury.

Urinary 8-isoprostane and 8-hydroxydeoxyguanosine (8-OHdG) assay
Urinary 8-isoprostane, as a marker of lipid peroxidation, was estimated by ELISA as described
by Milne et al. (31), using kit purchased from Cayman Chemical (Ann Arbor, MI, USA).
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Urinary 8-OHdG, as a marker of oxidative DNA damage, was estimated as described by
Kim et al. (23). The concentration of urinary 8-OHdG was calculated from the standard curve
and divided by the urinary creatinine.

Renal nuclear protein extraction and NF-κB p65 subunit assay
Nuclear protein was isolated from the kidneys as described by Lee et al. (25) and Zhou et al.
(66). The nuclear level of p65 correlates positively with the activation of NF-κB pathway
(64). The NF-κB/p65 ActivELISA (Imgenex, San Diego, CA, USA) kit was used to quantify
NF-κB free p65 in the nuclear fraction of kidney tissue homogenate. The analysis was done
according to the manufacturer’s instructions.

Renal NADPH oxidase activity and TNF-α level
NADPH activity was measured in renal cortical samples as previously described (35).
Average sample counts per minute (cpm) were normalized to μg protein (cpm/μg protein).
Renal TNF-α assay was performed with rat TNF-α ELISA kit (RayBiotech, Inc., GA, USA)
according to the supplier’s instructions.

Renal HO-1 activity and hydroxyproline level assay
HO-1 activity was measured in renal cortical samples using a commercially available ELISA
according to the manufacturer’s instructions (Enzo Life Sciences Inc., Farmingdale, NY,
USA). Hydroxyproline level, as an index of basement membrane collagen, was measured
according to the method described by Woessner (62).

Renal cortical MCP-1 and soluble ICAM-1 assays
Renal cortical MCP-1 levels were assessed using a commercially available ELISA
according to the manufacturer’s instructions (BD Biosciences, Bedford, MA, USA)
(10). Renal soluble ICAM-1 levels were also determined using a commercially
available ELISA according to manufacturer’s instructions (R&D Systems, Minneapolis,
MN, USA) (45).

Statistical analysis
The data are expressed as mean± standard deviation (SD). Statistical analysis was performed
by one-way analysis of variance to test any differences among the mean values of all groups.
If differences were established, the values of two groups were compared with by multiple
t tests followed by Bonferroni correction. Group differences at the level of P< 0.05 were
considered statistically significant. Analyses were performed using GraphPad Prism version
4.0 software (GraphPad Software, San Diego, CA, USA).

Results

Effect of CoPP on serum insulin and glucose levels in STZ-diabetic rats
Induction of diabetes with STZ resulted in marked hyperglycemia associated with significant
reduction in insulin level (Fig. 1). CoPP induced HO upregulation in STZ-diabetic rats
resulted in significant lowering in fasting glucose level that coincided with increased levels of
plasma insulin, while ZnPP therapy exacerbated hyperglycemia, and reduced insulin levels
compared to STZ-diabetic rats.
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Effect of CoPP on renal functions in STZ-diabetic rats
Eight weeks after induction of diabetes with STZ, the diabetic rats exhibited marked
deterioration in renal functions (Fig. 2), as indicated by a significant elevation in serum
creatinine level (1.648 ± 0.262 vs. 0.462± 0.097 mg/dl) associated with increased creatinine
excretion (32.889± 4.149 vs. 8.433± 1.123 mg/day). Marked albuminuria (5.304± 0.578
vs. 0.402± 0.122 mg/day) and marked increase in collagen excretion (46.276± 4.642 vs.
14.939± 0.977 μg/day) was observed in diabetic rats compared to the control group (Fig. 2).
Treatment with the HO inducer, CoPP resulted in marked improvement in renal parameters as
indicated by significant reduction in serum creatinine (0.826± 0.174 mg/dl) and urinary
creatinine (18.919± 0.978 mg/day), albumin (2.202 ± 0.635 mg/day), and collagen excretion
(21.467± 1.898 μg/day) compared to STZ-diabetic animals, while HO inhibitor, ZnPP
further deteriorated the renal parameters.

Effect of CoPP on renal MCP-1, ICAM-1, TNF-α, and NF-κB in STZ-diabetic rats
The STZ-diabetic rats exhibited significant increase in the renal levels of ICAM-1, MCP-1,
and TNF-α (Fig. 3). Interestingly, the administration of CoPP therapy to STZ-diabetic rats
significantly abated the STZ-induced elevated renal ICAM-1, MCP-1, and TNF-α expres-
sion, whereas administration of ZnPP to diabetic rats further aggravated these

Fig. 1. Effects of the
HO inducer, CoPP and
HO inhibitor, ZnPP on
serum insulin (A) and
fasting (overnight
fasting) glucose

(B) levels in STZ-
induced early DN in
rats. Data are mean±

SD of 10 rats.
*P< 0.05 vs. the
control group;

#P< 0.05 vs. the STZ-
diabetic group;

@P< 0.05 vs. the
CoPP-treated diabetic

group
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Fig. 2. Effects of the HO inducer, CoPP and HO inhibitor, ZnPP on serum creatinine (A), urinary creatinine (B),
albuminuria (C), and collagen excretion (D) in STZ-induced early DN in rats. Data are mean± SD of 10 rats.
*P< 0.05 vs. the control group; #P< 0.05 vs. the STZ-diabetic group; @P< 0.05 vs. the CoPP-treated diabetic group

Fig. 3. Effects of the HO inducer, CoPP and HO inhibitor, ZnPP on renal proinflammatory makers, renal TNF-α (A),
NF-κB (B), ICAM-1 (C), and MCP-1 (D) in STZ-induced early DN in rats. Data are mean± SD of 10 rats.

*P< 0.05 vs. the control group; #P< 0.05 vs. the STZ-diabetic group; @P< 0.05 vs. the CoPP-treated diabetic
group. ICAM-1= intercellular adhesion molecule; MCP-1=monocyte chemoattractant protein; TNF-α= tumor

necrosis factor-α; NF-κB= nuclear factor kappa-light-chain enhancer of activated B
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proinflammatory markers. The STZ-induced diabetes was associated with marked increase in
renal NF-кB compared to normal control group. CoPP therapy markedly attenuated the
elevated NF-κB in diabetic rats (27.79± 5.067 vs. 43.17± 6.886 ng/mg protein). On the
other hand, ZnPP administration to diabetic rats exacerbated the elevated NF-κB.

Effect of CoPP on renal NADPH oxidase and oxidative stress biomarkers
Renal cortical NADPH oxidase activity was significantly elevated in STZ-diabetic rats
compared to normal control group (Fig. 4). The increased NADPH oxidase activity was also
associated with elevated urinary oxidative stress markers, 8-isoprostane, and 8-OHdG
excretion levels in STZ-diabetic vs. the control group. Induction of HO-1 with CoPP
significantly inhibited NADPH oxidase activity and reduced urinary excretion levels of
8-isoprostane and 8-OHdG in diabetic rats by 1.4-, 1.5-, and 1.7-fold, respectively, whereas
ZnPP application resulted in further accentuation in renal NADPH oxidase, urinary
8-isoprostane, and 8-OHdG by 1.2-, 1.1-, and 1.2-fold compared to STZ-diabetic animals,
suggesting that induction of HO-1 displayed antioxidant capacity in diabetic kidney.

Effect of CoPP on renal HO-1 activity in STZ-induced diabetic rats
Our results demonstrated that STZ 1.2-fold upregulated HO-1 activity in diabetic kidneys
compared to control normal kidneys. CoPP therapy induced further upregulation of HO-1
activity by 1.6-fold, while ZnPP 1.7-fold reduced HO-1 activity compared to the diabetic
group (Fig. 5).

Effect of CoPP on renal hydroxyproline level in STZ-induced diabetic rats
The renal hydroxyproline level was significantly higher in STZ-induced diabetic rats
compared to the control group (Fig. 6). Induction of HO-1 with CoPP markedly reduced
the elevated renal hydroxyproline content by about 1.6-fold, an effect which was reversed by
ZnPP treatment. These results suggest that HO-1 upregulation could efficiently prevent renal
fibrosis in diabetic rats.

Discussion

HO-1 may be protective against stress-associated physiological disorders on the basis of its
rapid upregulation under various stress conditions and potent physiological regulating
properties (27).

In the present study, we validated the efficacy of HO-1 induction in the treatment of DN
and the blockade of its associated signaling pathways underlying the pathophysiology of DN.

Many studies have underscored the cytoprotective effects of the HO system (7, 9, 10,
27). The mechanisms underlying the renoprotective effect of CoPP in diabetic rats are
complex, challenging, and not fully understood. Substantial evidence indicates that HO-1
provides the provenance of pathways that can interrupt virtually all major mechanisms of
diabetic kidney injury, including reduction of the high blood glucose that represents the
central core of DN (32, 36, 38).

The results obtained in our study strengthened the antidiabetic role of HO-1 induction in
STZ-induced diabetes (Fig. 1), as evidenced by a significant insulinotropic effect that was
associated with lowering of glucose level. Our data are consistent with those previously
published in different diabetic models, including the nonobese Goto-Kakizaki (GK) rats (38),
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Fig. 4. Effects of the HO inducer, CoPP and HO inhibitor, ZnPP on renal oxidative stress markers, renal NADPH
oxidase activity (A), urinary 8-isoprostane (B), and urinary 8-OHdG (C) in STZ-induced early DN in rats. Data are
mean± SD of 10 rats. *P< 0.05 vs. the control group; #P< 0.05 vs. the STZ-diabetic group; @P< 0.05 vs. CoPP-
treated diabetic group. cpm/μg protein= count per minute/microgram protein; 8-OHdG= 8-hydroxydeoxyguanosine
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Zucker diabetic fatty rats (40), a genetically obese leptin receptor-deficient model (24), and
STZ-induced diabetic rats (37).

Several possible mechanisms have been postulated to explain the antidiabetic effect of
HO induction. Dong et al. (8) demonstrated that BR administration improved hyperglycemia
and obesity by increasing insulin sensitivity. It has been widely reported that HO-1
upregulation protected pancreatic islet cells from apoptosis, and improved their functions
in vivo (27). Moreover CoPP-induced HO-1 upregulation increases insulin release, possibly
through CO (33), or through the abating c-jun N-terminal kinase (JNK) activity, which has
been implicated in blocking insulin biosynthesis (19).

Fig. 5. Effects of the HO inducer, CoPP and HO inhibitor, ZnPP on renal HO-1 activity in STZ-induced early DN in
rats. Data are mean± SD of 10 rats. *P< 0.05 vs. the control group; #P< 0.05 vs. the STZ-diabetic group;

@P< 0.05 vs. the CoPP-treated diabetic group

Fig. 6. Effects of the HO inducer, CoPP and HO inhibitor, ZnPP on renal hydroxyprolin level in STZ-induced early
DN in rats. Data are mean± SD of 10 rats. *P< 0.05 vs. the control group; #P< 0.05 vs. the STZ-diabetic group;

@P < 0.05 vs. the CoPP-treated diabetic group
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The reduced hyperglycemia observed in CoPP-treated diabetic rats could be attributed to
the CoPP-mediated increase of insulin secretion (Fig. 1), which would greatly improve
glucose metabolism, through enhanced adenosine monophosphate-activated protein kinase-
dependent glucose transporter 4 (GLUT4) expression and translocation (15). The anti-
diabetic effect observed with CoPP could be due to potentiation of insulin-sensitizing
pathways (22) through HO upregulation similarly to increases in the activity of other factors
which also promote insulin signaling such as adiponectin (22, 37–40), cyclic guanosine
monophosphate (cGMP), cyclic adenosine monophosphate (36), and peroxisome proliferator-
activated receptor α (36).

The concept that DN is essentially a micro-inflammatory disease and the role of
microinflammation-mediated activation of intrinsic immune system has been recently
emerging. The inflammatory cascade is triggered by the interactions between various
chemokines secreted from resident glomerular cells such as MCP-1 and adhesion molecules
such as ICAM-1, leading to the underlying pathological changes in DN (59). This observa-
tion has been confirmed using the ICAM-1 and MCP-1 gene knockout diabetic mice, as both
exhibited markedly reduced kidney monocytes/macrophages accumulation, which was
associated with lowered albuminuria and marked attenuation of renal injury (53).

Our findings indicated that MCP-1and ICAM-1 levels were significantly increased in the
kidneys of diabetic rats compared with the control group, while CoPP therapy markedly
reduced their levels (Fig. 3), which may explain, at least in part, the beneficial effect of CoPP
on DN.

In agreement with our results, Pan et al. (43), observed that ICAM-1 and MCP-1
expressions were increased in experimental diabetic renal injury, which were associated with
inflammatory cell infiltration and adhesion as well as renal fibrosis.

Supporting the role of NF-κB activation and inflammation in DN, we found increased
renal NF-κB and TNF-α levels in diabetic rats. This is consistent with previous reports
indicating that the expression of NF-кB was significantly increased in the renal tissues of
STZ-induced DN rats, and positively correlated with renal interstitial MCP-1 and ICAM-1
protein and mRNA expression and proteinuria (5).

The availability of binding sites for NF-κβ on both the MCP-1 (65) and HO-1 gene
promoters suggests greater interaction between this transcription factor and the HO system
and inflammation (46). Supportive of this notion, our results of reduced NF-κB level in
CoPP-treated animals was increased with blockade of the HO system with subsequently
elevated inflammatory markers. This is consistent with previous reports indicating that
HO-1 induction reduced the NF-κB-induced inflammation in GK and STZ-induced diabetic
rats (37, 38).

The abrogated renal inflammatory markers observed in diabetic rats under CoPP therapy
(Fig. 3) might be mediated by HO-induced inhibition of NF-κB activation. It has been
previously demonstrated that NF-кB blockage could be a major way of preventing diabetic
renal damage by ablating the NF-кB-induced inflammatory and oxidative stress in DN (30).

There were other supporting lines of evidence, in vivo (59) and in vitro (56), suggesting
that the pathological actions of MCP-1 in DN could exceed its role in macrophage
recruitment as MCP-1 could directly damage kidney cells or induce additional responses
such as macrophage activation or the recruitment and activation of T cells.

TNF-α is cytotoxic to glomerular, mesangial and epithelial cells and competent to
induce direct renal injury through the generation of reactive free radicals, through c-Src/
NADPH oxidase, which in turn initiates NF-κB activation (57).
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Recently several potential mechanisms have been described to explain the metabolic
effects of TNF-α. TNF-α initiates the activation of caspase 8 via its binding to the death
receptor TNF-R1 resulting in apoptosis (34).

Moreover TNF-α stimulates serine kinases, such as JNK and p38 mitogen-activated
protein kinase (MAPK) resulting in serine phosphorylation of IRS-1 and IRS-2, which in
turn reduces the downstream insulin signaling (41). Moreover, TNF-α induces insulin
resistance by reducing the expression and translocation of GLUT4 by inhibiting the
phosphatidylinositol 3 kinase/protein kinase B and peroxisome proliferator-activated receptor
γ signaling (36).

It is tempting to speculate that the HO-mediated suppression of TNF-α and NF-кB
constitutes not only an important anti-inflammatory mechanism to limit tissue damage in DN
but also a mechanism that could be explored to improve insulin sensitivity and glucose
metabolism.

The anti-inflammatory effect of HO-1 has also been highlighted in HO-1 deficient
human cases and HO-1 knockout mice, where both exhibited a proinflammatory phenotype,
with overexpression of several proinflammatory mediators, including MCP-1, ICAM-1, and
NF-κB (20).

HO upregulation has been reported to modulate the inflammatory response by inhibiting
the TNF-α-induced monocyte adhesion to endothelia cells (54) or by inhibiting the expres-
sion of adhesion molecules, such as ICAM-1, in vitro and in vivo (60). The anti-inflammatory
effect of HO upregulation could be mediated by depleting heme, which has several
proinflammatory activities (14). The HO-1-based protection against allergic inflammation
can involve HO-1 by-products, such as CO, which has been shown to mimic some protective
actions of HO-1 (42). Rücker et al. (44) have shown that the expression of ICAM-1 was
aggravated by selective inhibition of HO-1 activity and was reversed by HO-1 upregulation.

HO-1 upregulation is capable of modulating the polarization of macrophages toward the
anti-inflammatory M2 phenotype, which effect results in a decrease of proinflammatory
mediator release and an increase in the formation of anti-inflammatory mediators, such as
IL-10. Consequently, the proinflammatory M1 phenotype and its related secretagogues like
TNF-α and MCP-1 decrease, suggesting another anti-inflammatory mechanism of the
HO-system (61).

We observed a significant increase in the levels of renal hydroxyproline content in STZ-
induced diabetic rats. Hydroxyproline increases the severity of the kidney damage and
fibrosis in experimental animals, as it is demonstrated by deteriorated renal functions. Our
data are consistent with those reported by Karihaloo (21).

Although the pathogenesis of tubular damage leading to tubulointerstitial fibrosis is
undoubtedly multifactorial, it is generally accepted that oxidative stress is a principal
mechanism. Activation of transcription factors and release of inflammatory markers leads
to excessive collagen deposition in the diabetic kidney due to disruption of the balance
between synthesis and degradation (4).

CoPP therapy effectively diminished the renal hydroxyproline level, suggesting its anti-
fibrotic efficacy in diabetic conditions. The antifibrogenic properties of HO-1 and its products
have been extensively studied. Increased HO activity in human hepatic myofibroblasts
correlates with decreased proliferation and procollagen I mRNA expression, which was
attributed to BR (26), while HO-1 inhibition in a rat hypoxia model increased collagen (type
I, type III) and transforming growth factor beta-3 (TGF-β3) expression, effects that could be
attributed to decreased CO level (13).
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Our findings have indicated that CoPP-induced HO-1 upregulation not only plays a vital
role in the modulation of the inflammatory process, but it also has an obvious antioxidant
property through decreased renal NADPH oxidase activity, the mammalian enzyme dedi-
cated to reactive oxygen species (ROS) generation (12), alongside with reduced urinary 8-
isoprostane and 8-OHdG levels in diabetic rats.

Hyperglycemia is strongly associated with increased production of ROS, inducing
DNA, protein, and lipid damage and triggering renal cell injury (17). Therefore, HO-1
upregulation, though having both hypoglycemic and antioxidant properties, might be
considered a protective agent against DN.

The antioxidant effect of HO-1 has been confirmed by the phenotypic consequences
of HO-1 deficient mice and a patient with HO-1 deficiency. HO-1 upregulation has been
shown to decrease ROS and NADPH oxidase activity in vitro and in vivo. BR and Co have
been suggested as potential mediators of the antioxidant effect of HO upregulation (32).
Datla et al. (6) proved that upregulation of HO-1 gene expression was shown to decrease
the availability of the heme-containing gp91 subunit necessary for NADPH oxidase
activity.

The decreased podocyte number, mostly due to enhanced renal apoptosis, has been
identified as a leading cause of proteinuria in DN (9).

In the current study, HO-1 decreased albuminuria in CoPP-treated diabetic rats.
Several studies have suggested that one possible pathway by which HO-1 confers
protection in DN is antiapoptotic activity that contributes to protecting diabetic rats
from endothelial cell dysfunction by preventing endothelial cell sloughing (27), which is
largely mediated by augmented iron efflux or CO (51). Indeed, HO induction has been
proved to upregulate the expression of the antiapoptotic proteins p-AKT, BcL-XL, and
p21 (16), and to decrease glomerular caspase 3 expression (7). At the same time, HO
appears to reduce the proapoptotic effects of TNF-α, hyperglycemia, and iron. At the
intracellular level, this may involve expression of MAPK enzymes and possibly the
activation of NF-кB. (49).

Although several studies focused on HO-1 induction as a potential therapeutic target
in DN, other works have directed attention to its product molecules as a protective strategy
against injury. Increased HO-1 activity results in degradation of the heme moiety, a toxic
pro-oxidant (1, 42). Indeed, BV and BR can directly scavenge ROS and inhibit lipid
peroxidation (2, 28). In addition, ferritin is coinduced with HO-1, allowing sequestration
of redox-active iron (11). Moreover, CO has vasodilator, anti-inflammatory and anti-
apoptotic effects (2) mediated via cGMP, and potassium channels (32). These signaling
pathways exert broad-based, far ranging cellular effects that protect against renal damage
in diabetes.

Conclusion

The studies on HO-1 in DN, including the one presented here, have demonstrated that HO-1
upregulation could exert effective protective role against STZ-induced early DN. Such
protective effect was probably carried out by suppressing of the underlying inflammatory,
pro-oxidant, and fibrotic pathways with improved glycemic control. The data support a
therapeutic potential of HO-1 induction in DN that may open the way to translate such
potential into a therapeutic reality.
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