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Abstract. In this paper nearly unstable AR(p) processes (in other words, models with characteristic
roots near the unit circle) are studied. Our main aim is to describe the asymptotic behaviour of the least
squares estimators of the coefficients. A convergence result is presented for the general complex-valued case.
The limit distribution is given by the help of some continuous time AR processes. We apply the results
for real-valued nearly unstable AR(p) models. In this case the limit distribution can be identified with the
maximum likelihood estimator of the coefficients of the corresponding continuous time AR processes.



1. INTRODUCTION

Consider the autoregressive AR(p) model

Xk:ﬁle,1+...+ﬁpXk,p+Ek, k=1,2,... (1)
Xo=X_1=...=X1,=0,
where &5, is the (unobservable) random disturbance (noise) at time k, and f,...,3, are unknown
parameters. The least-squares estimator (LSE) of the parameter
/8 = (ﬁla" '76}))/
based on the observations Xi,...,X, is given by

. n o~ o~ \=lean N
5n=(zk:1Xk—1X;;_1) Zkleka—h (2)

where

),Zk = (Xkanfl, PN 7Xk7p+1),~

The polynomial ¢ defined by
p(z)=1—prz—...— (p2°

is called the characteristic polynomial of the AR(p) model (1).

When all roots of ¢ are outside the unit circle, the model (1) is said to be asymptotically stationary.
Under the assumption that the e’s are i.i.d. with Eey =0, Ee? = 02, the LSE of B is asymptotically
normal:

<Z::1 kalgllcfl)l/Z (Bn —B) L/\/(()’[)’ as n — oo, 3)

where — denotes convergence in distribution and I is the unit matrix (see Mann and Wald [16] and
Anderson [2]). By another normalization

Vi (B, — B8) =5 N(0,57Y), as n— oo,

2 and the covariance matrix of the stationary

where the matrix ¥ can be expressed by the help of o
distribution.

When ¢ has no roots inside the unit circle but has at least one root on the unit circle the model (1) is said
to be unstable. It was shown by White [20] that in the case of the unstable AR(1) model X = X1+,

k>1, with =1, the variables n(8, — ) converge in law to a random variable:

1
n(B, — B) D, M (4)
Jo W2(t)dt
where W(t), t >0, is a standard Wiener process. In case of the unstable AR(p) model Chan and Wei [7]
proved that with suitable normalizing matrices ¢, the sequence &, 1(Bn — B) converges in law and gave
the representation of the limit distribution. This representation involves multiple stochastic integrals with
respect to Wiener processes and has a very complicated form.
The result (4) led to the study of the following so-called nearly nonstationary (better to call it nearly
unstable) AR(1) model:
{Xn,k :ﬁan,k—l +5n,ka k= 1327"'377' (5)
Xn,() =0,

where (3, =1+ h/n. It was shown by Chan and Wei [5], [6] that

SN V2 35N b fy Y (t)dW(t)
n.k—1 ﬁn —Pn) " — 779
(i ) ) (Jo v dt)l/ ’ ©

where Y (t), t €[0,1], is an Ornstein-Uhlenbeck process defined as the solution of the stochastic differential
equation
dY (t) = hY (t) dt +dW(t),  Y(0) = 0. (7)



By another normalization

N fo
1 )
fo ( )dt
see, for example, Phillips [18], Jeganathan [10], Dzhaparidze, Kormos, van der Meer and van Zuijlen [9].
(The above model is called also near integrated and is applied often in economic theory; see Phillips [18].)

Recently, Jeganathan [10] has considered nearly unstable AR(p) models, i. e. AR(p) models near to an
unstable model:

n (B = Bn) —> (8)

Xn,k = /Bl,an,kfl +...+ ﬁp,an,kfp + Enky k= ]-7 2u e, n (9)
Xno=Xn—1=...=Xp1-p =0,

where the vector of parameters

Bn = (ﬂl,ny A aﬁp,’ﬂ)/

is given by
where
B= (B 05p)
is a vector such that the polynomial
pz)=1—pirz—...— Bp2?

corresponds to an unstable AR(p) model, {§,} are the same normalizing matrices obtained in Chan and
Wei [7], and
h, = (hin,. - hpn)

is a sequence of vectors with h,, — h. Jeganathan [10] proved that the sequence &, " (Bn —B,,) converges
in law and gave a very complicated representation for the limiting distribution in terms of multiple stochastic
integrals with respect to Wiener processes.

One of the aims of the present paper is to find a simpler explanation for the asymptotic behaviour of the
least-squares estimators in the nearly unstable AR(p) model (9). The starting point of our investigation is
the following equivalent formulation of (8). We consider h instead of [, as a parameter. Then the LSE
of h is

~

/En :n(ﬂn _ﬁ) :n(Bn _5n) +h,
and we have
~ p [IY()dW(t) [ Y (t)dY(t)
hy, — 22 +h="0 ) (10)
Jo Y2(t)dt Jo Y2(t)dt
where the limit distribution in (10) turns out to be the maximum likelihood estimator (MLE) of the parameter
h in the model (7) (see, for example, Araté [3]). So if we use h as a parameter then we do not have to

normalize the LSE lAzn Remark that h is connected with the rate of convergence in g, — f.

In the nearly unstable AR(p) model (9) we suggest to use again parameters which are connected with
the speed of approximation of roots of ¢ (the characteristic polynomial of the limit unstable model). For
the sake of simplicity we suppose that ¢ has all its roots on the unit circle (purely unstable case). Then ¢
can be written as

4
o) = (1= 21+ 2) T] (L= é2)(1 = e72))™
j=1

where a,b,¢,m;, j=1,...,¢, are non-negative integers, a; € (0,7), j=1,...,0. We suggest to write
¢ in the form
q
H (1—a;z2)",

j=1

where ¢ =2+ 20, a; =% and 64,...,0, € (—m, 7] are all different. We suppose that in the nearly
unstable AR(p) model (9) the characteristic polynomial ¢,, can be written as

ot



where a;in, = ehikn/ntid; hjkn, J=1,...,q, k=1,...,r;, n>1, are complex numbers such that
hjkn — hjr, as n— oo.

The main idea is to introduce another set of parameters, which are in one-to-one linear correspondence
with the coefficients B1p,...,0pn. For j=1,...,¢, k=1,...,r;5, n>1 let cjrn € C be defined
(uniquely) by

q Tj
on(z) Lo I (1 agknz B kn Q5%
- = 1,§J1§ i L zeC. (11)

o(z2) i (1 —az2)" n’“ (1—a;z)F’

In Theorem 5 a simple description of the limit distribution of the LSE ¢, will be given. Under some
natural condition (C) on the &, x’s, we will prove

~ D
Cikn — Cjk, as n — 09,
jointly for j=1,...,q, k=1,...,r;, where ¢; = (Cj1,...,Cjr,;) is given by

1 ri—1 ri—1

¢ =571 : ;
By v,V wyay, V)
where
LY wra o iy ey @
S; = : : 7
LyPoy e wa o 0P
and the processes Yj(k), j=1,...,q, k=1,...,r;, are given by the stochastic differential equation

(rj— _ (r;—1)
{dY (f(cjy () + oo 4 i, Y5(1) dt + dW5 (1), 12)

1 ri—1
Y0 =0 =...= 7" ) =0,
where Yj(l)7 . ,Yj(rj_l) are the derivatives of Y;, and Wj(t), t € [0,1], j=1,...,q, are independent
standard Wiener processes (which are real-valued for § =0 or 6 = m, and complex-valued otherwise), and
the characteristic polynomial of the model (12) is given by

Tj

l—cjiz—...—¢jp,2"7 = H(l—hjykz). (13)
k=1

(For information on continuous time autoregressive processes cf. Araté [3].) Roughly speaking, the model

(12) can be written as
Ty

1@ hn)Y; (@) dt = aw;(2), (14)
k=1
where d is the differential operator, and for the LSE of the parameters hj ., of the discrete time model
(9) we prove the joint convergence for j=1,...,q, k=1,...,r;

Rjkn — hjr as n— oo,

where ﬁj7k is the MLE of the parameter h,j; in the continuous time model (14).

In the present paper we clarify the relationship between general complex-valued discrete and continuous
time AR(p) models. As a consequence we are able to understand and to simplify the complicated expressions
of Jeganathan [10] for the limit distribution of the least squares estimators in real-valued discrete settings.
One of the advantages of our approach of studying complex-valued models is that we avoid complicated
formulas with sines and cosines. In Section 7 we show how to use our results for real-valued AR(p) models.
Section 8 contains some examples demonstrating how to derive limit theorems for the least squares estimators
of the coefficients of the discrete time models.



2. PRELIMINARIES, NOTATIONS

We shall use the notations
Xn - (Xn,la---aXn,n)l7 En = (En,17~-~7€n,n)/~
Let B denote the n x n backshift matrix, i. e. B = (b;x), where

1 if j=k+1
b = )
gk {O else.

The model (9) can be written in the short form
on(B)X,, = ep.

For § € (—m,m| let Tp be the n x n rotation matrix with angle —0, i.e. Tp = (t;5), where

tao=Jde if j=k,
a { 0 else.

We have the simple commutation relation
TyB = e " BTy. (15)

For n x n matrices A; and A, with AlAgl = A;lAl we shall write sometimes A;/As instead of
A AT or AJ'A;L

For a complex number z € C we denote by R(z) and $(z) the real and the imaginary part, respectively.
We shall use the complex d-dimensional space C? endowed with the inner product

<z,w> = 2zZ1W1 + ...+ zqWq

and with the norm
Izl = (|22 + ... + |2al*)"/?

for z=(z1,...,24) € C% w= (wi,...,wg) € C%. We denote by C([0,1] — R?%) and C([0,1] — C%) the
spaces of continuous functions with values in R? and C¢, respectively, endowed with the supremum norm.
The supremum norm and the Skorokhod metric on the space D([0,1] — C%) will be denoted by || - ||s
and p, respectively.

For measurable mappings ®, ®,, : D([0,1] — C*) — D([0,1] — C%), n=1,2,... we shall write ®,~®
if || ®n(zn) — ®(2)]|oe — 0 for all z, € D([0,1] — C*), z € C([0,1] — C*) with ||z, — z||ec — O.
We shall need the following simple lemma, which is based on the continuous mapping theorem and the
Skorokhod-construction.

LEMMA 1. Let ®,®, : D([0,1] — C*) — D([0,1] — C%), n=1,2,... be measurable mappings such
that ®,~~®. Let Z,Z,, n=1,2,... be stochastic processes with values in D([0,1] — Ck) such that

Zn 25 7 in D([0,1] — C*) and almost all trajectories of Z are continuous. Then ®,(Zy,) 2, d(2)

in D([0,1] — CY).

PROOF. Due to the Skorokhod-construction we can find processes Zn and a process A , such that
Zn2 7y, Z2 7 and o
p(Zn,Z) — 0 a.s.

Using the fact that Z has continuous trajectories a. s., we conclude that
| Zy — Z||lso — 0 a.s.

Thus we have N ~
[®1(Zn) = @(Z)||oo — 0 aus.

and hence B B
®,(Z,) = ®(Z) in D([0,1] — C).

The last relation implies the desired result. [ |



3. PARAMETRIZATIONS OF THE AR(p) MODEL

In addition to the parameters Bin,...,0pn and hjrn, 7 =1,...,9, k=1,...,r; of the model (9)
we introduce another two other systems of parameters, which both tend to the limit ¢;, j =1,...,q,
k=1,...,7; (given in (13)) as n — oo, and will be useful for the investigation of the LSE.

For j=1,...,q, n>1 let djon,...,djr,n €C be defined (uniquely) by

T
il —ajenz) djkn
(1 —ajz)rj = Qj,0,n Zk:l nk(l 7(13‘2)]6’ z € C. (16)

LEMMA 2. For j=1,...,q, k=1,...,7; we have
hmn—>oo dj,k,n = Cjk>
where ¢ 1s defined by (13).

Proor. Let u € C, uw#0. Then substituting

: ( 1 )
r=—(1-—
a; nu
into (16) we obtain

T
i aj,k, aj.k,
dion — d-knuk = LER o 22 1w
3,05 § 3.k, Il
h=1 aj @

k=1
Tj
— H(l—hj’ku> = 1_cj71u_"'_cj7rjurja
k=1
since ajkn = ehj,k,n/n'f'i@j — 67'9J =a; and
[ )
b <Jn ) 1) = n(ernl =1) = by .
a;
J

For j=1,...,q, k=1,...,7;, n>1 let ¢jrn € C be defined (uniquely) by

q Tj
on(2) j=1 Hk 1( ag ) a;z
= _1_ a4z . X
o(2) 3:1(1 —a;z)" Z] 1 Z nk T —a;2)F zeC (17)

LEMMA 3. For j=1,...,q, k=1,...,7;, n>1 we have

- ri—k ¢ ( ) Cjk+1,n
Cjk,n = ZK_O ng( )gﬂ ] k+4,n + n 5

where ¢j .41, =0 and

wn,] H ﬁ(lliw;jn2> z e C.

1<m<q k=1
m#j

For j=1,...,q, k=1,...,r;, and sufficiently large n >1 we have

ri—k (2n) (0] )
djkn = Zz:o m%,kw,m

where th, j(2) = 1/ (2), z€C.

Proor. For j=1,...,q let T'; be a closed curve around the point a;l, not containing a[l, 0 3.

Applying Cauchy’s Integral Theorem we obtain for k=1,2,...,r;

1 n
—_— ' (Z)nk—l(l _ajz)k—ldz
2mi Jp, ¢(2)




Tm  Cmln amz k—1 k—1
i [, (17300 3 S 0

_ 1 Cikn 4% | Ciktim 457 ds
2 Jr n 1—ajz n?  (1—a;z)?

1 (Cj,k,n B Cj,k+1,n)
b

a; n n2
consequently
a; k k—1¢n(2) Cjkt+1,n
ik = i o, TG BT
On the other hand
1 n
T nk(l o ajz)kfl 1% (Z) dz
m Jr,; <p(z)
1 k oot I (L= aj0.n2)
= —-— 1 J— . f— tad) n . d
ari . n*(1—a;z) (L—a,2) W, j(2)dz
1 k k—1 i dj,ﬁ,n
= % r n (1 — CLjZ) dj,O,n - 2521 m 7,/1n7j(z)dz

- n
Ze k di. 2mi Jp, n=k(1 — azz)t=R 1

L —
_ ZTJ'*]C 7/}51,)] (aj 1)

(=0 Pl{—ay)Prig G-

The second statement can be proved similarly. [ |
REMARK 1. For j=1,...,q we obtain
lim ¢y, ;(a; ") =1, (18)
n—oo
since for m # j we have lim7Hoo(1—a7,hk7naj71)/(1—amaj_l) = 1. Moreover, for j=1,...,q, £=1,2,...
lim,, oo z/JT(f’z.(aj_l) exists. Similarly, for j=1,...,¢ we obtain
lim wn,]( J_l) =1, (19)
n—oo

and for j=1,...,q, £=1,2,... lim, (2t ;) (a; a; 1) exists. Consequently we have the following easy
corollary.

COROLLARY 1. For j=1,...,q, k=1,...,7; we have
hmnﬂoo Cjkn = Cjk,

where ¢ is defined by (13).

4. COMPLEX-VALUED AR(1) PROCESSES

In this section we collect some convergence results for nearly ubstable complex-valued AR(1) processes which
will be used in the next sections.

For every n =1,2,... consider the complex-valued AR(1) model
Xn,k :ﬂan,kfl"_En,ka k= 1727"'177’
{ X0 =0, (20)

hyp /n+16
)

where {e,} is an array of complex random variables and 3, =e where {h,} is a sequence of

complex numbers such that h, — h, and 6 € (—m,n]. Then B, — 3 ="



For 0, € (—m, 7] the random step functions

T 1
Yn,91 (t) = %6 [ tle’m[nt] = T(Tﬁxn)[nt]’ te [Oa 1]

[nt] [nt]
My, (t) = e g Enk (To,en)r, te€]0,1
) = Ly g, - Ly o1

can be considered as random elements in the complex Skorokhod space D(][0,1] — C).
First we investigate convergence of the sequence Y, 9, n>1, in D([0,1] — C).

THEOREM 1. Suppose that My ¢ 2o M in D([0,1] — C), where M(t), t €[0,1], is a complez-valued
continuous semimartingale.

Then there exist measurable mappings ®,®,, : D([0,1] — C) — D([0,1] — C?), n=1,2,..., such that
(My,0,Yn,0) = ®n(My) and ®,~~P, where ®(M) = (M,Y), and Y (t), t €[0,1], is the complez-valued
Ornstein- Uhlenbeck process defined as the solution of the stochastic differential equation

dY (t) = hY (t) dt + dM(¢), Y (0) = 0. (21)
Particularly, Yy LYy in D([0,1] — C).

REMARK 2. The converse statement is also true and can be proved similarly. We also remark that

convergence M, g, L. M for some 01 # 6 does not imply convergence of the sequence Y, g,, rotated by
a ‘wrong’ angle.

PROOF. The model (20) can be written as
(I —eM/"PB)X, =&y,

consequently the commutation relation (15) implies that the rotated observations Z, = TpX,, form again
a nearly unstable complex AR(1) model

(I —e"/"B)Z, = ¢, (22)
where (,, = The, contains the rotated random disturbances.
It is known that the process Y (t), t € [0,1], can be expressed as
t
Y(t) = / ") dM (s), te0,1].
0
It0’s formula gives also the representation
t
Y(t) = M(t)+ h / =)0 (s)ds, te[0,1].
0
A similar formula holds for the random step functions Y, ¢(t), ¢ € [0,1]:
[nt]/n
Yoo(t) = My o(t) + hn / ehntl/n=s) pp () ds, (23)
0

since (22) implies
[nt]
n9 t f E hn(nt] k)/n( ks

and the discrete analogue of the partial integration yields

[nt]/n [nt] J/n
B, / e " Myg(s)ds = hny Mg ((G—1)/n) / e e ds
0 =1 G-1)/n
(1]

C Mg (G = 1)/m) (&7 00/ i)

- LSS G (et

10



[nt]

_ \[ Z[nt] 1 Z] . Cok (efhn(jfl)/n
[nt]— 1
- \F Z

B [nt] —hnk/n —hp[nt]/n
B fz ( /n _ g=hal }/)
= ehaltlin(y, o(t) — My ().

( —hnk/n _ e—hn[nt]/n)

Hence the processes (M,Y) and (M,e,Y, ) can be expressed as

(M,)Y)=®(M), (Myo,Yno) =P0(Mpp), n=12,...,

where the measurable mappings ®, ®,, : D([0,1] — C) — D([0,1] — C?), n=1,2,...

d(z)(t) = (m(t), z(t) + h /Oteh(t_s)x(s)ds>,

[nt]/n

D, (x)(t) = (J;(t), x(t) + hn eh"(["t]/”_s)x(s)ds> .

0

Applying Lemma 1 we obtain the last statement.

Consider now the random step functions

[nt

1 I i
Un,91 (t) = n3/2 Zk:l € (k l)aan,kfla

where 60y € (—m, 7).

— €

7hnj/n)

are defined as follows

THEOREM 2. Let 6y € (—m,7w]. Let us suppose that (M0, M,.9,) 2, (M, M) in D([0,1] — C?),

where (M(t), My(t)), t€[0,1], is a continuous semimartingale with values in C2.

Then there exist measurable mappings ®,®, : D([0,1] — C?) — D([0,1] — C?),

that (My0, My o,,Un0,) = ®n(Mp.o, Mpo,) and ®,~~P, where

_ ( t dS if 01 =20,
DM, M)(E) = { (M(t) M >f3) 7 0040

and Y (t), t€[0,1], is defined by (21). Particularly,

LU D [ [TY(s)ds, if 6,=0
1X 0 ) 1 )
an ’“H{o, if 01#6

in D([0,1] - C).

Proor. If 6; =6 then

Uno(t) = ns/zz

and Theorem 1 gives the result.
If 6, # 60 then using

[nt] [nt]

k ke
Xn,k = Z /Bn En,j
j=1
we obtain
Z[”t] iDL Z[m] o—ilk=1)01 Zk lﬁk i-1g
k=1 = k=1 j=1 .

_ (nt]— (4] o~ i(k=1)01 gh—j—1
S D S B
[nt]—1 % [nt]61 ﬂ[”t] -3 _ e~ 01

n
= > — En,
i=1 e=01p, —1

11

En,j

VR

n=12

g Ly

1 [nt]
i(k—1)6 _ _ —
K= 3 Va1 = [ Yaas) ds

*0

such



consequently

1 . )
Un,91 (t) = ) (ﬁnei([nt]_l)(9—91)y’n’9 (t _ n—l) _ 6191 ]\'4’”‘)(91 (t _ n—l)) ,

n(ﬂn - ei01
and Theorem 1 gives the result. ]
For every n=1,2,... consider the complex ARMA(1,1) process defined by

Enk — 6n5~n,k—1 =Enk — ﬁsn,k_l, k=1,2,...,n
En,0 = 07

and the random step functions

where 6, € (—m, 7).

COROLLARY 2. Let 601 € (—m,m|. Let us suppose that (M0, M,.0,) 2, (M, My) in D(]0,1] — C?),
where (M(t), My(t)), t € [0,1], is a continuous semimartingale with values in CZ.
Then there exist measurable mappings ®,®,, : D([0,1] — C?) — D([0,1] — C?), n =1,2,..., such

that (M, g, My ., Mg ) = ®,(My, 0, My o) and ®,~®, where
I} »U1 »U1 ) yU1

(M,M,Y), Zf 91:07
(MleaMl)v Zf 91 #9:

and Y (t), t€]0,1], is defined by (21). Particularly,

1 Z[nt] —ik0; ~ D Y(t), Zf 91 = 9,
c Mi(t), if 0, #0

(M, M) = {

in D([0,1] — C).

REMARK 3. Using the notation

Ep = (gn,la . 7§n,n)/
we can write the ARMA(1,1) model (24) in the form

(I — B,B)&, = (I — fB)e,,

that is,
I-03B
En=———¢€,= (- pB)X
&n I- ﬁnB " ( ﬂ )
Corollary 2 can be interpreted in the following way: the above ARMA(1,1) process after a ‘wrong’ rotation
have similar property as the original {e, 1}, k=1,...,n, sequence, while after the ‘appropriate’ rotation

it is the solution of a stochastic differential equation governed by the process M.

PrROOF. If #; =6 then using the commutation relation (15) we obtain
—~ [nt] nt] 0
Mnyg(t) = Tg n — e’ B)Xn)k
B R
[nt] 1
= IZ (= BYTXu)k = —=ToXn ) = Yuo (),

and Theorem 1 gives the result.
If 61 # 60 then using

gk = (I = BB)Xn)k = Xn g — eiQXn,k—l =Enk + ew(eh"/n —1)X k-1

we get
7 L n [nt] _;
My, (t) = Mpg, (t)+ Vn© e m =)y e Xk
= My, (t) +n(e" /" = 1)U, 4, (1),
Consequently, Theorem 1, Corollary 2 and Lemma 1 imply the statements. [ |

12



5. COMPLEX-VALUED AR(p) PROCESSES

For every n=1,2,... consider the complex-valued AR(p) model

Xn,k = /Bl,an,kfl +...+ Bp,an,kfp + En,k;, k= ]-7 23 s (25)
Xno=Xp_1=...=Xp1-p=0,
where {e, 1} isan array of complex random variables and (1., ...,0p, are complex numbers. We suppose
that the characteristic polynomial of the model has the form
cpn(z):17ﬂ17n2*~-~*6p,nzp_HH agknz
where ajpn = el ko /ntit; hjen€C, j=1,...,q, k=1,...,75, n>1, such that hj;r., — hjr, as
n— oo, and 6q,...,0, € (—m, 7] are different numbers. Clearly
q
on(2) = (2) = [T = a;2)7,
j=1
where a; =€, j=1,...,q. Obviously p= POIREY
For j=1,...,q, k=0,1,...,7; — 1 consider the random step functions
Y(k)() _ (T (I —a;B)*"ip(B)X ) t€10,1]
gn W= e TRz \1h aj ¥ ) (nt] * 2
THEOREM 3. Suppose that (Mpyg,,..., Myg,) 2, (Myq,...,M,) in D([0,1] — C?), where
(Mi(t),...,My(t), t€][0,1], is a continuous semimartingale with values in C?.
Then
D (26)

jointly for j=1,...,q, k=0,1,...,7; —1, in D([0,1] — CP), where
Y055 =1, o q, k=01, — 1), te[0,1],

is the Ornstein-Uhlenbeck process with values in CP  defined as the solution of the system of stochastic
differential equations

7‘7’—1 7“]‘—1
av;" )(t):(chYj( >(t)+...+cj,rjyj<°>(t)) dt + dM;(t),

k k+1
dx(/(j)ﬁ))(t):)(f]lﬂ) )(t) dt, (k :1)(),1,...,rj—2 (27)
v @) =y V() = ... = v/" Do) =0,
for j=1,...,q, where the complex numbers cj1,...,¢jr., j=1,...,q are given by
l—cj1z—...—¢jp2"7 = H(l—hj7kz), z € C.
k=1
Proor. For j=1,...,q, k=0,1,...,7;, n>1 consider the random step functions

0~ 3 (0 11 (7225 T (525

m=1 1<u<q p=1
u#j
where
19[ I-aB \ _,
I—ajmaB)

m=1
Repeatedly using Corollary 2 we conclude that there exist measurable mappings
®,®, : D([0,1] — C%) — D([0,1] — C*7*P), n=1,2,..., such that

(Mygys- s Mg, ,Uioms s Utrins o+ s Ugoms -3 Ugirgn) = @n(My gy, My g.)
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and ®,~~®, where
<I)n(]\417...,]\/.l'q):(Ml,...,]Wq,ULO,...7U1}T1,...,Uq70,...7Uq,Tq)7
and Uj,(t), t€0,1], j=1,...,¢q, k=0,1,...,7; is given by

{dUM(t) =hjpUjeQ)dt +dUj -1(t), j=1,....,q, k=1,...,7;
Ujo(t) = M;(t), i=1,....q.

Particularly,

D
Ujkn — Uji, as n — oo,

jointly for j=1,...,q, k=0,1,...,7r;, in D([0,1] — C?™P). Using

t
Ujk-1(t) = Uji(t) — hj,k/ Ujk(s)ds
0

for y=1,...,q, k=1,...,r;, t€]0,1], we obtain

t
de,Tj (t) = (CjJU',Tj (t) + Cj.2 / Ju7j ( ) d8+

t S1 ST]._Q
+...+ Cj,rj/ / / Uj)rj(srjl)dsl...dsrjl) dt-i—de(t).
0 JO 0

On the other hand, by the help of the commutation relation (15) we obtain for j=1,...,q

Y@ = Uy a(t),  te(o,1],

J,n

since

Y,(Tj -1) (t)

J,n

(Tg]. (I - a]B)_lgp(B)Xn) [nt]

1
f
_ f Z " Ty, (I — a;B) " o(B)X,.),
nt]
_ f o

Moreover, we have for j=1,...,q, k=0,1,...,7; —2

Xn)y = Usryn()-

since by induction

(k) _ b
im (B = m (To, (I = a;B)* "1 0(B)X) 1y
[nt] .
n'f'j—k ri—k—1/2 Z I B) T9 (I_a'jB)k JQD(B)Xn)g
"t] k—rj+1 el (k+1)
nr]—k nri—k—1/2 Z (I —a;B)" " p(B)X,), = | Y, (s)ds.
The convergence (28) implies
Urnms s Ugrgn) —> Uty o Ugn))y 8 1— oo,

from which together with (29) and (30) we conclude (26).
For j,te{l,...,q}, j#¢ k=1,...,r; —1 consider the random step functions

To,(I — agB)~ (I — a;B)* "1 p(B)X,) t € [0,1].

T k12 ( [nt]

THEOREM 4. Suppose that (My,,...,Mype,) 2, (M, ...,M,) in D([0,1] — C?), where
(Mi(t),...,My(t)), t€[0,1], is a continuous semimartingale with values in C?.

14
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Then
D

y® D, 0, as n — oo, 31
7lm

jointly for j Le{l,...,q}, j#4 k=1,...,r;—1.

Proor. For k=r; —1 we have

’rjfl 1 . _
Yj(fn ) = n3/2 (To, (I — aeB) (I - a;B) 1@(B)X")[nt]
[nt] _ B
= WZ (I = B)Ty,(I - a:B)" (I — a;B) ' o(B)X,),,

[nt] _
LT e ),
and we can apply Theorem 2 (using ¢(B)X,, instead of &), since Theorem 3 implies

1 Z[nt] (Te]gD(B)Xn) — Y{(Tj—l) (t) 3) Y'(T]—l)

Vvn m=1 m Jn j
and X ”
n - n .
T Dy T (B)X),, =YV () 2 v,
For k=r;—27;=3,...,1 we have
k 1 ) B
Viant) = W(TMI—W) Y= 0B e(B)X)

[nt] _ s

- nrg—k+1/zz I B)Ty,(I — arB) 1(I*ajB)k ]Sﬁ(B)Xn)m
] T .

= S (BT - B (T - g B (B)X,)

m’

and we can apply again Theorem 2 (using n*~"+1(I —a;B)*"it1p(B)X,, instead of €,), since

[nt] . .
Z= S (Tt = 0y B) o B)X,)

- nl S (@, (1 - 4By eBIX,),,
- nrri 172 Z[nt (I = B)Ty,(I — a;B)* 7 o(B)Xy),,
= m (To,(I = a;B)* "1 0(B)Xn) 1y = Yot By k)
and
% Z:il (Tgenk_rj+l(.[ _ ajB)k—Tj-&-le(B)Xn)m
B ﬁ Z[m] (To,(I = a;B)* "7 p(B)X,),,
- nrrk — Z["t (I = B)Ty, (I — arB) (I — a; B)* "1 o(B)X,)
_ ﬁ (To (I — aeB) ™M (I — a;B)* "+ p(B)X,) o = YViHY,
hence we can use induction for k=7; —2,7; —3,...,1. ]

6. CONVERGENCE OF LEAST-SQUARES ESTIMATORS

The least-squares estimator of the parameter B, = (f1,n,...,0pn) of the model (25) can be obtained by
minimizing the sum of squares

Z |Xnk - ﬁl,an,kfl e T 6p,an,k7p|2 = ”Xn - Bl,nBXn e T ﬁp,anXn||2-
k=1
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It is known that the LSE Bn = (3\1’n7 ... ,Bp,n)’ is the unique solution of the Yule-Walker equations
(X = BinBXy — ... = BpuB"X,,, B'X,) =0,  (=1,....,p, (32)
and En can be written in the form (2).

LEMMA 4. The least-squares estimators Cjpn, j=1,...,9, k=1,...,r; are the unique solutions of
the system of linear equations

q T . /C\j,k,n - Cj,k,n o i
D i Do (G (B X, G (B) X ) B = (e o (B) o),

for u=1,...,q, v=1,...,71y, where

k

qj.k(2) = ajz(1 — a;2) " "p(2), zeC.

PRrROOF. The existence of the unique LSE ¢, follows from the one-to-one correspondence between
the parameters c¢jrn, j=1,...,¢, k=1,...,7; and Bhe, {=1,...,p.
Introduce the notation

@n(z)zl—ﬁl,nz—...—ﬁp,nzz’, ze€C, n>1.

The model (25) can be written as ¢, (B)X,, = €,, while the Yule-Walker equations (32) has the form
(Pn(B)X,,BX,,) =0, ¢ =1,...,p. Consequently, the LSE 3, can be obtained from the system of

equations
<(9071(B) - @n(B))Xnv BZXn> = <€n7 BZXn>7 0=1,... » Ps

which is equivalent to
<(<pn(B) - @n(B))Xna Qu,v(B)Xn> = <5n7 Qu,v(B)Xn>7

u=1,...,q, v=1,...,1y,
since the polynomials ¢, .,, v =1,...,¢, v=1,...,7,, are linearly independent. From the definition of
the parameters c¢jrn, 7=1,...,9, k=1,...,r; it follows
() =paz) =30 D Fhigu(),  zec (33)
(2 ®n - =1 ke1 ’I’Lk q],k 3 .

Obviously we have

. q Ti  Cikn
p@) = Pul2) =D D Tu(),  ze€C (34)

nk
Consequently we conclude the statement. ]
From now on we shall put the following condition on the random disturbances {e, x}.

(C) enk, k=1,...,n, n>1 is a triangular array of real square integrable martingale differences with
respect to the filtrations (Fpk)k=0,1,.. nm>1 such that for all ¢ € [0, 1]

[nt]

1 P
H ZE(E?’L]C|‘FH,’C71) — 1, as n — oo
k=1
and
1 [nt] p
Ve>0  — > B2 X(lens>aviy [ Fak-1) — 0, as n — oo
k=1

We shall say that W(¢t), t € [0,1], is a standard complex-valued Wiener process, if W (t) = Wi(t) +
iWa(t), where (vV2Wi(t),vV2Ws(t)), t € [0,1], is a standard Wiener process with values in R

LEMMA 5. Suppose that the array enk, k=1,...,n, n>1, satisfies the condition (C). Then

(Mn,917 .- -7Mn,9q) 1) (Wl, ey Wq)

16



in D([0,1] — C7), where W;(t), t€[0,1], j=1,...,q, are standard Wiener processes, real-valued for
0; =0 or 0;=m, and complez-valued otherwise. Moreover, W; and Wy, are independent if 0; # —0y,
and Wj =Wy Zf 9j = —Qk.

PrROOF. The statement follows from a version of the functional central limit theorem on the space
D([0,1] — RP) (Theorem 7.11 in Liptser and Shiryayev (1989)), remarking the facts that for 0 #0, 6 # =«

I R P | I P |
7L1LIEO£I;COS kb = > T}Lrgoggsm k:0—§, nlLHOlCEZsmkHCOSk‘H—O

and for 0,a € (— 7T7T] 0 # +a
1 1 n
lim choskﬁcoska— lim stlnkHslnka— lim stlnk‘Qcosk‘a—O [ |

n—oo N n—oo n—oo
LEMMA 6. Suppose that the array enr, k=1,...,n, n>1, satisfies the condition (C). Then

1 (rj—k) o (ry—0) o
e (B Xgun(BX) 2o [T =
e 0 g4

1 gy prn
et BX) 2 [T awe,
nv 0

jointly for j=1,...,q, k=1,...,r5, u=1,...,q, v=1,...,74.

ProoOF. If j=wu then

1 1 _ v
W<Qj,k(B)Xnan,v(B)Xn> = m@jB(I*ajB) "o(B) Xy, a;B(I — a;B) " p(B)X,)

—k i —
= S Y- ymy e /)
- [ren o

0

and the convergence follows from Theorem 3.
If j # u then using the decomposition

Qu,v(z) =(1—auz)"p(z) = (1 - auz)iwl@(z)

we obtain
#(quk(B)quu,v(B)XW =
e e G )zw - ) %)
- <BT9j nk—l/iﬁB—)ajB)’fX”’Te" an/Q( " UXn>
_ % <BT9,. nk_l/;éB_) o5 X T 1/2(‘P(_ B xn>
_ < BT, /2%3_) X = BT _ig T=al B)vXn>

1 o(B) ¢(B)
<BT9 k=172(] — ajB)kX"’ (I — B)Ty, no=1/2(I — a; B)(I — auB)”1Xn>

rjfk (ruf'u) T]*k W
= [ oal 0 - L [y eal o

and the convergence follows from Theorems 3 and 4 combined with Proposition 6 in Jeganathan (1991).
Finally,
1 1 n

ﬁ<5n7Qu,v(B)Xn> = ﬁ =1 Ene(auB(I - auB)_v‘p(B)Xn)e
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= ZZ:I n*l/Q(Tgusn)gn*v+1/2 (BTy, (I — auB)ﬂ)‘P(B)Xn)g
Doy (M) = M= 1)/m)) Vi ((E = 1))

R —
N /Yiyﬁfv)(t)dMﬁe“)(t),
0

and the convergence follows again from Theorem 3 combined with Proposition 6 in Jeganathan (1991). =

THEOREM 5. Suppose that the array enk, k=1,...,n, n>1, satisfies the condition (C). Then

~ D
Cikn — Cj ks as m — oo,
jointly for j=1,...,q, k=1,...,r;, where ¢; = (Cj1,...,Cjr,) is given by

1 ri—1 ri—1
fO Yj( j )(t) de( j )(t)

¢ =51 : , (35)
15,00 ri—1
S Y0 @ av V)
where
1 =1 1 1 0
RIYEwRd o [y oy @ de
Sj = : - : ,
1 0 ri—1 1 0
Loy Omy oV war o YO @R
and the processes Yj(k), j=1,...,q, k=1,...,r;, are given by (27).
Proor. Using [t6’s formula we can write
1 r;j—1
Jo ¥R awy ()
¢j=c;+8;" : ;
13,00
Jo Y (&) aw(t)
where C; = (Cj71, N 7Cj,7"j)/-
From Lemma 4, Corollary 1 and Lemma 6 we can derive
~ D
Cikn — Cjks as n — 0o,
jointly for j=1,...,q, k=1,...,7;. [ |
REMARK 5. It is known that €; is the MLE of c; = (¢j1,...,¢j,,)" in the complex-valued continuous

time 7;-order autoregressive model

4y ) = (YT e, VO (0) d 4 AW (1),
dY'J(k)<t) :Y‘;(k+1)(t) dt, k:071,.-~77"j -2
Yj(o)(()) _ Yj(l)(()) I Yj(rj—l)(o) =0,

where W;(t), t €[0,1], is a standard complex-valued Wiener process (see, for example, Araté [3]).

7. APPLICATIONS FOR REAL-VALUED AR(p) PROCESSES

Consider now for every n =1,2,... the real-valued AR(p) model

Xn,k = ﬁl,anJc—l +...+ ﬁp,an,k:—p + En,k> k= 1a 27 ey
Xn,O = Xn,—l = .. = Xn,l—p = 07

18



where {e,x} is an array of real random variables and (1.,,...,0p, are real numbers. For the sake of
simplicity we suppose that the characteristic polynomial of the limit unstable model has all roots on the unit
circle. Then the characteristic polynomial has the form

1 T2 L T _
on(z) = H(l _ ehl,k,n/nz) H(l + eh2,k,n/nz) H H ((1 _ ehj,k,n/n+i9jz)(1 _ ehj,k’n/nflejz)) ’
k=1 k=1 j=3k=1
where 7q,...,r¢ are non-negative integers, 1 + 712+ 2(rs+ ...+ 7)) =p, hjrn € C, j=1,...,¢,
kE=1,...,r;, n>1, suchthat hj, — hjr, as n— oo, and
T1 T2
[[a-emenima), [l ehannmz
k=1 k=1
are polynomials with real coefficients, and 6; € (0,7), j = 3,...,¢, are pairwise different. We remark
that for the complex conjugate pairs of roots we had to put complex conjugate pairs of parameters h;x n
and hjgn, j=3,...,¢, k=1,...,r;, in order to assure that the polynomial ¢ has real coeflicients.

Obviously it implies that in the other two parametrizations we have again complex conjugate pairs d; k n,
djkn and ¢jgn, Cikm, J=3,...,¢ k=1,...,r;. Weshall write ¢4 =0, 0 = 7. Lemma 5 has the
following obvious corollary.

COROLLARY 3.  Suppose that the array enk, k=1,...,n, n>1, satisfies the condition (C). Then

(Myg,,.. . Mng,) = (Wi,..., W)

in D([0,1] — (Cl), where W;(t), t € [0,1], j=1,...,¢, are independent standard Wiener processes,
real-valued for j=1,2, and complex-valued for j=3,... L.

Theorem 5 has the following corollary.

COROLLARY 4. Suppose that the array epk, k=1,...,n, n>1, satisfies the condition (C). Then
~ D
Cjken — Cj ks as n — 0o,

jointly for j=1,...,4, k=1,...,7;, and for all z€ C

T

[T =Pjknz) 21 =Gz — ... =Gaz™,  as n— oo,

k=1
jointly for j=1,...,¢, where ¢; = (Cj1,...,Cjr;) is given by (35). In other words, Cjr, j=1,...,¢,
kE=1,...,7; are the MLE of the parameters c;r, j=1,...,¢, k=1,...,7;, in the continuous time

model (27). Loosely speaking, ngn 2, ﬁjk

REMARK 5. From Corollary 4 we can derive convergence theorem for the LSE of the coefficients
Bims---y0pn (see Theorem 1 in Jeganathan [10]; the stable case, i. e. when hjr, =0, j=1,...,¢,
k=1,...,r;, is treated in Chan and Wei [7]).

From (33) we have

(ﬁl,n - 51)2 +...+ (/Bp,n - ﬂp)zp

B Zrl cL’“”L(Z)_ZM C2km 29(2)

k=1 nk (1-—2)k k=1 nF (14 2)F
¢ o Ckm €zp(2) Cikn € i20(z)
+Zj=3 Zk=1 ( nk (1 —eiz)k + nk (1 —e Wiz)k )’
for z € C. Obviously for all n > 1 there is an invertible real p x p matrix A, such that

ﬁn - ﬁ = ATLCTM

where
— / / /
Cn - (Cl,nv ce 7c€,n) )
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and

o _ (Cjams-- .,cjyrjyn)’ for 7=1,2
Jm (%(Cj,l,n)v %(Cj,l,n)a ey %(Cj,rj,n); %(Cj,rj,n))/ fOf ] = 3, e ,g.

Clearly we have also R R
Bn —B=A4,C,,

where én contains the LSE. Using Corollary 1 and 4 we conclude
Agl(ﬁn_ﬂn) :én _Cn 3’ (AJ_C: (6/1 —('3/1,...,/(3\2—('32)/7

where
o — (CjaseesCim,) for j=1,2
T (%(cj,l)7(‘}(cj,1)7'"7%(Cj,Tj)7%(cj,Tj))l for .] = 3""767

c; contains the MLE, which is given by (35). Corollary 3 implies that now the processes

(O, v ... Y 0), te 0,1}, j=1,....0

are mutually independent, and real-valued for j = 1,2, complex-valued for j = 3,...,¢. Furthermore,
¢k, j=1,...,¢, k=1,...,r; are the MLE of the parameters c¢;x, j=1,...,¢, k=1,...,r;, in the
continuous time model (27). We remark that Jeganathan (1991) and Chan and Wei (1988b) used a slightly
different normalization of ,@n — B,,, but the results are obviously equivalent.

8. EXAMPLES

For illustration first we shall study real-valued AR(2) models near to an unstable model given by

{ Xn,k = 61,an,k—1 + /82,an,1@'—2 + En,k; k= 17 23 s

Xpo=Xn_1=0, (36)

where {e, ;} is an array of real random variables satisfying the condition (C) and f,,, B2,, are real
numbers.

First consider the case when the limit unstable model has complex roots, i.e., its characteristic polynomial
is

o(z) = (1—e?2)(1—e®2) =1—2zcos6 + 2°.
Then we have (1 =2cosf and [y = —1. The characteristic polynomial of the model (36) has the form
pulz) = (L= e /MH02)(1 = Fn/nmi0),
where h, € C such that h, — h, as n — oo and 6 € (0,7). Remark, that (13) implies ¢ = h. From
(33) we have
1 . , . .
(Bin — 1)z + (Bom — P2)2% = - (cne®z(1 —e72) +Ere2(1 — €'2))

2

for z € C. Comparing the coefficients of z and z° we obtain

n(Bin—051) = 2(R(cn)cosd —S(cp)sind)
n(Bo,n —B2) = —2%(cn).

Applying Theorem 5 we conclude

(B, — B) = n(@n - B1) D, 2(R(€) cos —A%(E) sin 6) |
n(B2,n — B2) —2R(¢)
where )
_ fy@are

Jo Y (0)2de
and Y(t), t €][0,1], is the continuous time complex-valued AR(1) process given by

dY (t) = hY ()dt +dW (),  Y(0) =0,
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where W(t), t €0,1], is a standard complex-valued Wiener process. Moreover, ¢ can be interpreted as
the MLE of the parameter h. We have also

(BB = n@n ~Bin) | o [ 2ARE-0) 0050: S(¢— ¢)sinb) |
n(B2,n — B2,n) —2R(c—¢)

where by Itd’s formula we can derive
P
B Jo Y () dw (t)
=0 - -
Jo V()] dt

The above convergence statement can be reformulated as

n(Bin—Bin) \ » 2 [ rywcosd —ryy sing
~ e

2
n(B2,n — B2,n) 5y —ryw

where

52 / (V2(t) + Y2(1)) di

i / (Y2 (8) AW (1) + Ya(t) dWa(1))

1
= /0<Y1<t>dwz<t>7Y2<t>dwl<t>>,

Wi (t), Wa(t), t € [0,1], are independent real-valued standard Wiener processes, and the process (Y (¢), Ya(¢)),
t € [0,1], is given by
dY1 (t) A —w Y1 (t) dt n dW1 (t)
dYs(t) w A Ya(t) dt dWs(t)
with initial values Y7(0) = Y3(0) =0, where A =R(h) and w = J(h). We remark that Corollary 3.3.8
in Chan and Wei (1988b) contains convergence of n(32, + 1) in the stable case, i.e., when h, =0.
Now consider the case when the limit unstable model has double roots equal to 1, i.e., its characteristic

polynomial is
() =1 -2 =1-22422

and we have 5y =2 and 3 = —1. The characteristic polynomial of the model (36) has the form
pul2) = (1= eMn/n)(1 = chan/nz),

where hy, € C such that hg, — hi, as n — oo for £ = 1,2, and the polynomial ¢, has real
coefficients. This implies that h;, and hg, are real numbers or conjugated complex numbers. The same
is valid for hy and hg. Remark, that (13) now has the form

1—c1z—c2? = (1 — hi2)(1 — h2), zeC,

hence ¢y = hy +hy and ¢y = —hihe. From (33) we have

1 1
(ﬂl,n - 51)2 + (ﬂ2,n - /6)2)752 = Ecl,nz(l - Z) + ECZ,nZ

2

for z € C. Comparing the coefficients of z and 2° we obtain

can = —n(B2n— P2)
Con = nz(/Bl,n —6) + n2(ﬁ2,n — B2).

Applying Corollary 4 as in Remark 4 we conclude

0 -n Bin — P Cin D 31
~ = — )
’I’LQ TL2 62,n - 52 Ca.n C2
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where

a ) g [ hYO0 o[ Borwra [yeyvea
e Joymave | Y@y de [ (Y(t)*dt

and (Y (t),Y(t)), t€[0,1], is the continuous time real-valued AR(2) process

dY (t) = ((h1 + ha)Y (t) — hihoY () dt + dW (1),
dY (t) = Y (t) dt, (37)
Y(0) =Y (0) =0,

where W(t), t €[0,1], is a standard real-valued Wiener process. Moreover, ¢j, ¢» can be interpreted as
the MLE of ¢y = h; + hy and ¢o = —hihs. By Ité’s formula we can also derive

—~ 1.
0 —n Bin — Bin D, g1 fO Y(t) dW (t)
TL2 n2 ﬂQ,n - ﬁQ,n fol Y(t) dW(t)
The case when the limit unstable model has double roots equal to —1, i.e., its characteristic polynomial
is
o(2) =142 =1+22422

can be handled similarly, and we obtain

0 -n Brn=bin | o g1 Jo Y (t)dw (t)
-n? n? BQ,n - ﬁZ,n fol Y(t) dW(t)

)

where (Y (t),Y (), t€[0,1], is the continuous time real-valued AR(2) process given by (37).
Now consider the case when the limit unstable model has the roots 1 and —1, i.e., its characteristic
polynomial is
p(z)=(1—2)(14+2)=1-22

and we have (51 =0 and (2 = 1. The characteristic polynomial of the model (36) has the form
pu(2) = (1= ePrn/n2) (1 4 an/nz),

where hy, € R such that hy, — hg, as n — oo for k=1,2. Remark, that (13) implies ¢, = hg,
k=1,2. From (33) we have

(Bun = )2 + (Ban = 52)2" = ~(e1na(1 4 2) = ea,02(1 — 2))

2

for z € C. Comparing the coefficients of z and z° we obtain

2cl,n = n((ﬂl,n - 51) + (/BQ,n - 52))
202,n = n(_(ﬂl,n - ﬂl) + (ﬁ2,n - 62))

Applying Corollary 4 as in Remark 4 we conclude

n o n Bl,n -5 2¢1, D 2¢
—~ = — )
-n n Ban — Po 2¢yp 2¢,
where
1
o Ya(t) dYi(t)
[y Y2(tydt

and Yi(t), t €[0,1], k=1,2 are the (independent) continuous time real-valued AR(1) processes given by

dYk(t) = thk(t)dt + de(t), Yk(O) =0, k=12,
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where Wy(t), t €0,1], k=1,2, are independent standard real-valued Wiener processes. Moreover, ¢,
k =1,2 can be interpreted as the MLE of the parameters hp, k=1,2. We have also

non Brn—Bin \ o [ 2[o Vi@ dWa(0)/ fy Y2 (0) de
—n n Ban — Bon 2 [ Ya(t) dWalt)/ fi V(1) dt

Next we investigate complex-valued AR(2) models near to an unstable model given by

(38)

Xn,k: = ﬁl,an,k—l + ﬂ?,an,k—Q + En,ks k= 1, 2a sy
Xn,O = Xn,—l =0,

where (1, B2, are complex numbers and {e,,} is an array of real-valued random variables satisfying
the condition (C).
First consider the case where the limit unstable model has different (complex) roots, i.e., its characteristic
polynomial is
p(z) = (1— e 2)(1 - e7i%22),

where 01,05 € (—m,m], 61 # 02. The characteristic polynomial of the model (38) has the form

Sﬁn(z) _ (1 - ehl,n/n+i012)(1 + ehzyn/nJriGQZ)’

where hg, € C such that hy, — hg, as n — oo for k = 1,2. Remark, that (13) implies ¢ = hg,
k=1,2. From (33) we have

1 . . . .
(Bin —B1)z+ (Ban — ﬂg)zz = E(clmewlz(l - 61922) + 027,161922(1 - elelz))

2

for z € C. Comparing the coefficients of z and z° we obtain

(e — e, = n((Bin— B1) + (Bon — Ba)e™ 1)
(e — )y, = n(—(Bin— B1) — (Bon — Bo)e02).

Applying Theorem 5 we conclude

—i6y 2 ~ o~
n.one _ gl,n b = (&0 _ ¢if) €n | D, (i1 — ¢i%2) ! )
—n  —ne Ba.n — B2 Com Co

)

where )
o Jo Ya(t) dYi(t)
k=T,
Jo We(®)2 dt

and Yi(t), t€[0,1], k=1,2 are continuous time AR(1) processes given by

dYk(t) = thk(t)dt + de(t), Yk(O) =0, k=12

Y )

where Wi (t), t € [0,1], k& = 1,2, are standard Wiener processes, real-valued if 6, = 0 or O = m,
and complex-valued otherwise. Further, W; and W, are independent if 6 # —f3, and W; = Wy if
01 = —0s.

Moreover, ¢, k=1,2 can be interpreted as the MLE of the parameters hg, k= 1,2. We also have

om0 N B =Bun ) o ey [ DM/ fy (0 dt
—n —ne== |\ Byp—fon Jo Yal) dWs (1) / [y |Ya(0)? dt

Now consider the case when the limit unstable model has double (complex) roots equal to e

characteristic polynomial is

, i.e., its
p(z) = (1 - e?2)?,
where 0 € (—m,w]. The characteristic polynomial of the model (38) has the form

gﬁn(z) = (1 _ ehl,n/nJriOZ)(l . 6h2,n/n+i92)

)
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where hy, € C such that hy, — hg, as n— oo for k=1,2. Remark, that (13) implies ¢; = hy + ho
and c¢o = —hihs. From (33) we have

1 } . 1 ,
(Bin — B1)z + (B — Po)7* = ﬁcl,ne’edl —e2) + ﬁcmel‘)z

for z € C. Comparing the coefficients of z and z? we obtain
cin = —n(Bon — Ba)e "
com = n*(Bin— Br)e " + n*(Bon — Ba)e 2.
Applying Theorem 5 we conclude
0 —ne~ 2% Bl,n -6 Cin D c1
. ) ~ = - )
ne p2e=2 Ban — Po Cam Ca
where
~ 1 . . 1 . 1 .
a ) _ga Jo Y () dy (t) o Lo Y (@)Pdt [ Y ()Y (t)dt
~ B L7 v ’ B LAy 1
Ca Jo Y (t)dy (t) L Y@Y@)yde  [5 1Y (t)*dt

and (Y (t),Y(t)), t€[0,1], is the continuous time AR(2) process

aY (t) = ((h1 + ha)Y (t) — hihoY (t)) dt + dW (),
dY (t) = Y (t) dt,

Y (0) = Y (0) =0,

where W(t), t€[0,1], is a standard Wiener process, real-valued if # =0 or 6 =, and complex-valued
otherwise.

Moreover, ¢1, ¢» can be interpreted as the MLE of ¢; = hy + hy and c¢o = —hihs. By Itd’s formula
we can also have

0 —ne 20 Bl,n = Bin D, g1 fol Y(t) dW (1)
nQe_iG n26_2i9 32,n - 62,71 f()l Y(t) dW(t)

Comparing the complex-valued AR(2) models with the real-valued AR(2) models we observe that con-
vergence of least squares estimators in the real-valued models can be deived from the complex-valued case
by taking into account of the extra requirement, that the coefficients should be real numbers. However, the
formulations in the context of complex-valued models are remarkably simpler.

As we have seen, a multiple root in the model implies a higher order autoregressive component in the
corresponding continuous time model. Different but not conjugated roots imply components driven by
independent Wiener processes in the continuous time model. In case the roots are conjugated pairs, then
the components are driven by conjugated complex-valued Wiener processes. A real root is connected to a
real-valued Wiener process, and a complex root is connected to a complex-valued Wiener process, even if
the model has real coefficients!

We finally note that convergence of least squares estimators in models with complex-valued disturbances
{enk} can be handled similarly, see the AR(1) case in Kormos, van der Meer, Pap and van Zuijlen [12].
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