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Abstract. In this paper nearly unstable AR(p) processes (in other words, models with characteristic
roots near the unit circle) are studied. Our main aim is to describe the asymptotic behaviour of the least
squares estimators of the coefficients. A convergence result is presented for the general complex-valued case.
The limit distribution is given by the help of some continuous time AR processes. We apply the results
for real-valued nearly unstable AR(p) models. In this case the limit distribution can be identified with the
maximum likelihood estimator of the coefficients of the corresponding continuous time AR processes.
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1. INTRODUCTION

Consider the autoregressive AR(p) model{
Xk = β1Xk−1 + . . .+ βpXk−p + εk, k = 1, 2, . . .
X0 = X−1 = . . . = X1−p = 0, (1)

where εk is the (unobservable) random disturbance (noise) at time k, and β1, . . . , βp are unknown
parameters. The least-squares estimator (LSE) of the parameter

β = (β1, . . . , βp)′

based on the observations X1, . . . , Xn is given by

β̂n =
(∑n

k=1
X̃k−1X̃

′
k−1

)−1∑n

k=1
XkX̃k−1, (2)

where
X̃k = (Xk, Xk−1, . . . , Xk−p+1)′.

The polynomial ϕ defined by
ϕ(z) = 1− β1z − . . .− βpz

p

is called the characteristic polynomial of the AR(p) model (1).
When all roots of ϕ are outside the unit circle, the model (1) is said to be asymptotically stationary .

Under the assumption that the εk’s are i.i.d. with Eεk = 0, Eε2k = σ2, the LSE of β is asymptotically
normal: (∑n

k=1
X̃k−1X̃

′
k−1

)1/2

(β̂n − β) D−→ N (0, I), as n→∞, (3)

where D−→ denotes convergence in distribution and I is the unit matrix (see Mann and Wald [16] and
Anderson [2]). By another normalization

√
n (β̂n − β) D−→ N (0,Σ−1), as n→∞,

where the matrix Σ can be expressed by the help of σ2 and the covariance matrix of the stationary
distribution.

When ϕ has no roots inside the unit circle but has at least one root on the unit circle the model (1) is said
to be unstable. It was shown by White [20] that in the case of the unstable AR(1) model Xk = βXk−1 + εk,
k ≥ 1, with β = 1, the variables n(β̂n − β) converge in law to a random variable:

n(β̂n − β) D−→
∫ 1

0
W (t) dW (t)∫ 1

0
W 2(t) dt

, (4)

where W (t), t ≥ 0, is a standard Wiener process. In case of the unstable AR(p) model Chan and Wei [7]
proved that with suitable normalizing matrices δn the sequence δ−1

n (β̂n − β) converges in law and gave
the representation of the limit distribution. This representation involves multiple stochastic integrals with
respect to Wiener processes and has a very complicated form.

The result (4) led to the study of the following so-called nearly nonstationary (better to call it nearly
unstable) AR(1) model: {

Xn,k = βnXn,k−1 + εn,k, k = 1, 2, . . . , n
Xn,0 = 0, (5)

where βn = 1 + h/n. It was shown by Chan and Wei [5], [6] that

(∑n

k=1
X2

n,k−1

)1/2

(β̂n − βn) D−→
∫ 1

0
Y (t) dW (t)(∫ 1

0
Y 2(t) dt

)1/2
, (6)

where Y (t), t ∈ [0, 1], is an Ornstein-Uhlenbeck process defined as the solution of the stochastic differential
equation

dY (t) = hY (t) dt+ dW (t), Y (0) = 0. (7)
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By another normalization

n (β̂n − βn) D−→
∫ 1

0
Y (t) dW (t)∫ 1

0
Y 2(t) dt

, (8)

see, for example, Phillips [18], Jeganathan [10], Dzhaparidze, Kormos, van der Meer and van Zuijlen [9].
(The above model is called also near integrated and is applied often in economic theory; see Phillips [18].)

Recently, Jeganathan [10] has considered nearly unstable AR(p) models, i. e. AR(p) models near to an
unstable model: {

Xn,k = β1,nXn,k−1 + . . .+ βp,nXn,k−p + εn,k, k = 1, 2, . . . , n
Xn,0 = Xn,−1 = . . . = Xn,1−p = 0, (9)

where the vector of parameters
βn = (β1,n, . . . , βp,n)′

is given by
βn = β + δnhn,

where
β = (β1, . . . , βp)′

is a vector such that the polynomial

ϕ(z) = 1− β1z − . . .− βpz
p

corresponds to an unstable AR(p) model, {δn} are the same normalizing matrices obtained in Chan and
Wei [7], and

hn = (h1,n, . . . , hp,n)′

is a sequence of vectors with hn → h. Jeganathan [10] proved that the sequence δ−1
n (β̂n −βn) converges

in law and gave a very complicated representation for the limiting distribution in terms of multiple stochastic
integrals with respect to Wiener processes.

One of the aims of the present paper is to find a simpler explanation for the asymptotic behaviour of the
least-squares estimators in the nearly unstable AR(p) model (9). The starting point of our investigation is
the following equivalent formulation of (8). We consider h instead of βn as a parameter. Then the LSE
of h is

ĥn = n (β̂n − β) = n (β̂n − βn) + h,

and we have

ĥn
D−→
∫ 1

0
Y (t) dW (t)∫ 1

0
Y 2(t) dt

+ h =

∫ 1

0
Y (t) dY (t)∫ 1

0
Y 2(t) dt

, (10)

where the limit distribution in (10) turns out to be the maximum likelihood estimator (MLE) of the parameter
h in the model (7) (see, for example, Arató [3]). So if we use h as a parameter then we do not have to
normalize the LSE ĥn. Remark that h is connected with the rate of convergence in βn → β.

In the nearly unstable AR(p) model (9) we suggest to use again parameters which are connected with
the speed of approximation of roots of ϕ (the characteristic polynomial of the limit unstable model). For
the sake of simplicity we suppose that ϕ has all its roots on the unit circle (purely unstable case). Then ϕ
can be written as

ϕ(z) = (1− z)a(1 + z)b
∏̀
j=1

(
(1− eiαjz)(1− e−iαjz)

)mj
,

where a, b, `,mj , j = 1, . . . , `, are non-negative integers, αj ∈ (0, π), j = 1, . . . , `. We suggest to write
ϕ in the form

ϕ(z) =
q∏

j=1

(1− ajz)rj ,

where q = 2 + 2`, aj = eiθj and θ1, . . . , θq ∈ (−π, π] are all different. We suppose that in the nearly
unstable AR(p) model (9) the characteristic polynomial ϕn can be written as

ϕn(z) =
q∏

j=1

rj∏
k=1

(1− aj,k,nz),
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where aj,k,n = ehj,k,n/n+iθj , hj,k,n, j = 1, . . . , q, k = 1, . . . , rj , n ≥ 1, are complex numbers such that
hj,k,n → hj,k, as n→∞.

The main idea is to introduce another set of parameters, which are in one-to-one linear correspondence
with the coefficients β1,n, . . . , βp,n. For j = 1, . . . , q, k = 1, . . . , rj , n ≥ 1 let cj,k,n ∈ C be defined
(uniquely) by

ϕn(z)
ϕ(z)

=

∏q
j=1

∏rj

k=1(1− aj,k,nz)∏q
j=1(1− ajz)rj

= 1−
∑q

j=1

∑rj

k=1

cj,k,n

nk

ajz

(1− ajz)k
, z ∈ C. (11)

In Theorem 5 a simple description of the limit distribution of the LSE ĉj,k,n will be given. Under some
natural condition (C) on the εn,k’s, we will prove

ĉj,k,n
D−→ ĉj,k, as n→∞,

jointly for j = 1, . . . , q, k = 1, . . . , rj , where ĉj = (ĉj,1, . . . , ĉj,rj )
′ is given by

ĉj = S−1
j


∫ 1

0
Y

(rj−1)
j (t) dY (rj−1)

j (t)
...∫ 1

0
Y

(0)
j (t) dY (rj−1)

j (t)

 ,

where

Sj =


∫ 1

0
|Y (rj−1)

j (t)|2 dt . . .
∫ 1

0
Y

(rj−1)
j (t)Y (0)

j (t) dt
...

. . .
...∫ 1

0
Y

(0)
j (t)Y (rj−1)

j (t) dt . . .
∫ 1

0
|Y (0)

j (t)|2 dt

 ,

and the processes Y
(k)
j , j = 1, . . . , q, k = 1, . . . , rj , are given by the stochastic differential equation{

dY
(rj−1)
j (t) =

(
cj,1Y

(rj−1)
j (t) + . . .+ cj,rjYj(t)

)
dt+ dWj(t),

Yj(0) = Y
(1)
j (0) = . . . = Y

(rj−1)
j (0) = 0,

(12)

where Y
(1)
j , . . . , Y

(rj−1)
j are the derivatives of Yj , and Wj(t), t ∈ [0, 1], j = 1, . . . , q, are independent

standard Wiener processes (which are real-valued for θ = 0 or θ = π, and complex-valued otherwise), and
the characteristic polynomial of the model (12) is given by

1− cj,1z − . . .− cj,rjz
rj =

rj∏
k=1

(1− hj,kz). (13)

(For information on continuous time autoregressive processes cf. Arató [3].) Roughly speaking, the model
(12) can be written as

rj∏
k=1

(d− hj,k)Yj(t) dt = dWj(t), (14)

where d is the differential operator, and for the LSE of the parameters hj,k,n of the discrete time model
(9) we prove the joint convergence for j = 1, . . . , q, k = 1, . . . , rj

ĥj,k,n → ĥj,k as n→∞,

where ĥj,k is the MLE of the parameter hj,k in the continuous time model (14).
In the present paper we clarify the relationship between general complex-valued discrete and continuous

time AR(p) models. As a consequence we are able to understand and to simplify the complicated expressions
of Jeganathan [10] for the limit distribution of the least squares estimators in real-valued discrete settings.
One of the advantages of our approach of studying complex-valued models is that we avoid complicated
formulas with sines and cosines. In Section 7 we show how to use our results for real-valued AR(p) models.
Section 8 contains some examples demonstrating how to derive limit theorems for the least squares estimators
of the coefficients of the discrete time models.
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2. PRELIMINARIES, NOTATIONS

We shall use the notations

Xn = (Xn,1, . . . , Xn,n)′, εn = (εn,1, . . . , εn,n)′.

Let B denote the n× n backshift matrix, i. e. B = (bjk), where

bjk =
{ 1 if j = k + 1,

0 else.

The model (9) can be written in the short form

ϕn(B)Xn = εn.

For θ ∈ (−π, π] let Tθ be the n× n rotation matrix with angle −θ, i. e. Tθ = (tjk), where

tjk =
{
e−ikθ if j = k,
0 else.

We have the simple commutation relation

TθB = e−iθBTθ. (15)

For n × n matrices A1 and A2 with A1A
−1
2 = A−1

2 A1 we shall write sometimes A1/A2 instead of
A1A

−1
2 or A−1

2 A1.
For a complex number z ∈ C we denote by <(z) and =(z) the real and the imaginary part, respectively.

We shall use the complex d-dimensional space Cd endowed with the inner product

〈z, w〉 = z1w1 + . . .+ zdwd

and with the norm
‖z‖ = (|z1|2 + . . .+ |zd|2)1/2

for z = (z1, . . . , zd) ∈ Cd, w = (w1, . . . , wd) ∈ Cd. We denote by C([0, 1] → Rd) and C([0, 1] → Cd) the
spaces of continuous functions with values in Rd and Cd, respectively, endowed with the supremum norm.
The supremum norm and the Skorokhod metric on the space D([0, 1] → Cd) will be denoted by ‖ · ‖∞
and ρ, respectively.

For measurable mappings Φ,Φn : D([0, 1] → Ck) → D([0, 1] → C`), n = 1, 2, . . . we shall write Φn Φ
if ‖Φn(xn) − Φ(x)‖∞ → 0 for all xn ∈ D([0, 1] → Ck), x ∈ C([0, 1] → Ck) with ‖xn − x‖∞ → 0.
We shall need the following simple lemma, which is based on the continuous mapping theorem and the
Skorokhod-construction.

Lemma 1. Let Φ,Φn : D([0, 1] → Ck) → D([0, 1] → C`), n = 1, 2, . . . be measurable mappings such
that Φn Φ. Let Z,Zn, n = 1, 2, . . . be stochastic processes with values in D([0, 1] → Ck) such that
Zn

D−→ Z in D([0, 1] → Ck) and almost all trajectories of Z are continuous. Then Φn(Zn) D−→ Φ(Z)
in D([0, 1] → C`).

Proof. Due to the Skorokhod-construction we can find processes Z̃n and a process Z̃, such that
Z̃n

D= Zn, Z̃
D= Z and

ρ(Z̃n, Z̃) → 0 a. s.

Using the fact that Z̃ has continuous trajectories a. s., we conclude that

‖Z̃n − Z̃‖∞ → 0 a. s.

Thus we have
‖Φn(Z̃n)− Φ(Z̃)‖∞ → 0 a.s.

and hence
Φn(Z̃n) D−→ Φ(Z̃) in D([0, 1] → C`).

The last relation implies the desired result.
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3. PARAMETRIZATIONS OF THE AR(p) MODEL

In addition to the parameters β1,n, . . . , βp,n and hj,k,n, j = 1, . . . , q, k = 1, . . . , rj of the model (9)
we introduce another two other systems of parameters, which both tend to the limit cj,k, j = 1, . . . , q,
k = 1, . . . , rj (given in (13)) as n→∞, and will be useful for the investigation of the LSE.

For j = 1, . . . , q, n ≥ 1 let dj,0,n, . . . , dj,rj ,n ∈ C be defined (uniquely) by∏rj

k=1(1− aj,k,nz)
(1− ajz)rj

= dj,0,n −
∑rj

k=1

dj,k,n

nk(1− ajz)k
, z ∈ C. (16)

Lemma 2. For j = 1, . . . , q, k = 1, . . . , rj we have

limn→∞ dj,k,n = cj,k,

where cj,k is defined by (13).

Proof. Let u ∈ C, u 6= 0. Then substituting

z =
1
aj

(
1− 1

nu

)
into (16) we obtain

dj,0,n −
∑rj

k=1
dj,k,nu

k =
rj∏

k=1

(
aj,k,n

aj
− n

(
aj,k,n

aj
− 1
)
u

)

→
rj∏

k=1

(1− hj,ku) = 1− cj,1u− . . .− cj,rj
urj ,

since aj,k,n = ehj,k,n/n+iθj → eiθj = aj and

n

(
aj,k,n

aj
− 1
)

= n
(
ehj,k,n/n − 1

)
→ hj,k.

For j = 1, . . . , q, k = 1, . . . , rj , n ≥ 1 let cj,k,n ∈ C be defined (uniquely) by

ϕn(z)
ϕ(z)

=

∏q
j=1

∏rj

k=1(1− aj,k,nz)∏q
j=1(1− ajz)rj

= 1−
∑q

j=1

∑rj

k=1

cj,k,n

nk

ajz

(1− ajz)k
, z ∈ C. (17)

Lemma 3. For j = 1, . . . , q, k = 1, . . . , rj, n ≥ 1 we have

cj,k,n =
∑rj−k

`=0

ψ
(`)
n,j(a

−1
j )

n`(−aj)``!
dj,k+`,n +

cj,k+1,n

n
,

where cj,rj+1,n = 0 and

ψn,j(z) =
∏

1≤m≤q
m 6=j

rm∏
k=1

(
1− am,k,nz

1− ajz

)
z ∈ C.

For j = 1, . . . , q, k = 1, . . . , rj, and sufficiently large n ≥ 1 we have

dj,k,n =
∑rj−k

`=0

(zψ̃n,j)(`)(a−1
j )

n`(−aj)`−1`!
cj,k+`,n,

where ψ̃n,j(z) = 1/ψn,j(z), z ∈ C.

Proof. For j = 1, . . . , q let Γj be a closed curve around the point a−1
j , not containing a−1

` , ` 6= j.
Applying Cauchy’s Integral Theorem we obtain for k = 1, 2, . . . , rj

1
2πi

∫
Γj

ϕn(z)
ϕ(z)

nk−1(1− ajz)k−1dz
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=
1

2πi

∫
Γj

(
1−

∑q

m=1

∑rm

`=1

cm,`,n

n`

amz

(1− amz)`

)
nk−1(1− ajz)k−1dz

= − 1
2πi

∫
Γj

(
cj,k,n

n

ajz

1− ajz
+
cj,k+1,n

n2

ajz

(1− ajz)2

)
dz

=
1
aj

(cj,k,n

n
− cj,k+1,n

n2

)
,

consequently

cj,k,n =
aj

2πi

∫
Γj

nk(1− ajz)k−1ϕn(z)
ϕ(z)

dz +
cj,k+1,n

n
.

On the other hand

1
2πi

∫
Γj

nk(1− ajz)k−1ϕn(z)
ϕ(z)

dz

=
1

2πi

∫
Γj

nk(1− ajz)k−1

∏rj

`=1(1− aj,`,nz)
(1− ajz)rj

ψn,j(z)dz

=
1

2πi

∫
Γj

nk(1− ajz)k−1

(
dj,0,n −

∑rj

`=1

dj,`,n

n`(1− ajz)`

)
ψn,j(z)dz

= −
∑rj

`=k
dj,`,n

1
2πi

∫
Γj

ψn,j(z)
n`−k(1− ajz)`−k+1

dz

= −
∑rj−k

`=0

ψ
(`)
n,j(a

−1
j )

n`(−aj)`+1`!
dj,k+`,n.

The second statement can be proved similarly.

Remark 1. For j = 1, . . . , q we obtain

lim
n→∞

ψn,j(a−1
j ) = 1, (18)

since for m 6= j we have limn→∞(1−am,k,na
−1
j )/(1−ama

−1
j ) = 1. Moreover, for j = 1, . . . , q, ` = 1, 2, . . .

limn→∞ ψ
(`)
n,j(a

−1
j ) exists. Similarly, for j = 1, . . . , q we obtain

lim
n→∞

ψ̃n,j(a−1
j ) = 1, (19)

and for j = 1, . . . , q, ` = 1, 2, . . . limn→∞(zψ̃n,j)(`)(a−1
j ) exists. Consequently we have the following easy

corollary.

Corollary 1. For j = 1, . . . , q, k = 1, . . . , rj we have

limn→∞ cj,k,n = cj,k,

where cj,k is defined by (13).

4. COMPLEX-VALUED AR(1) PROCESSES

In this section we collect some convergence results for nearly ubstable complex-valued AR(1) processes which
will be used in the next sections.

For every n = 1, 2, . . . consider the complex-valued AR(1) model{
Xn,k = βnXn,k−1 + εn,k, k = 1, 2, . . . , n
Xn,0 = 0, (20)

where {εn,k} is an array of complex random variables and βn = ehn/n+iθ, where {hn} is a sequence of
complex numbers such that hn → h, and θ ∈ (−π, π]. Then βn → β = eiθ.
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For θ1 ∈ (−π, π] the random step functions

Yn,θ1(t) =
1√
n
e−i[nt]θ1Xn,[nt] =

1√
n

(Tθ1Xn)[nt], t ∈ [0, 1]

Mn,θ1(t) =
1√
n

∑[nt]

k=1
e−ikθ1εn,k =

1√
n

∑[nt]

k=1
(Tθ1εn)k, t ∈ [0, 1]

can be considered as random elements in the complex Skorokhod space D([0, 1] → C).
First we investigate convergence of the sequence Yn,θ, n ≥ 1, in D([0, 1] → C).

Theorem 1. Suppose that Mn,θ
D−→M in D([0, 1] → C), where M(t), t ∈ [0, 1], is a complex-valued

continuous semimartingale.
Then there exist measurable mappings Φ,Φn : D([0, 1] → C) → D([0, 1] → C2), n = 1, 2, . . ., such that

(Mn,θ, Yn,θ) = Φn(Mn,θ) and Φn Φ, where Φ(M) = (M,Y ), and Y (t), t ∈ [0, 1], is the complex-valued
Ornstein-Uhlenbeck process defined as the solution of the stochastic differential equation

dY (t) = hY (t) dt+ dM(t), Y (0) = 0. (21)

Particularly, Yn,θ
D−→ Y in D([0, 1] → C).

Remark 2. The converse statement is also true and can be proved similarly. We also remark that
convergence Mn,θ1

D−→M for some θ1 6= θ does not imply convergence of the sequence Yn,θ1 , rotated by
a ‘wrong’ angle.

Proof. The model (20) can be written as

(I − ehn/n+iθB)Xn = εn,

consequently the commutation relation (15) implies that the rotated observations Zn = TθXn form again
a nearly unstable complex AR(1) model

(I − ehn/nB)Zn = ζn, (22)

where ζn = Tθεn contains the rotated random disturbances.
It is known that the process Y (t), t ∈ [0, 1], can be expressed as

Y (t) =
∫ t

0

eh(t−s) dM(s), t ∈ [0, 1].

Itô’s formula gives also the representation

Y (t) = M(t) + h

∫ t

0

eh(t−s)M(s) ds, t ∈ [0, 1].

A similar formula holds for the random step functions Yn,θ(t), t ∈ [0, 1]:

Yn,θ(t) = Mn,θ(t) + hn

∫ [nt]/n

0

ehn([nt]/n−s)Mn,θ(s) ds, (23)

since (22) implies

Yn,θ(t) =
1√
n

∑[nt]

k=1
ehn([nt]−k)/nζn,k,

and the discrete analogue of the partial integration yields

hn

∫ [nt]/n

0

e−hnsMn,θ(s) ds = hn

∑[nt]

j=1
Mn,θ ((j − 1)/n)

∫ j/n

(j−1)/n

e−hns ds

=
∑[nt]

j=1
Mn,θ ((j − 1)/n)

(
e−hn(j−1)/n − e−hnj/n

)
=

1√
n

∑[nt]

j=1

∑j−1

k=1
ζn,k

(
e−hn(j−1)/n − e−hnj/n

)
10



=
1√
n

∑[nt]−1

k=1

∑[nt]

j=k+1
ζn,k

(
e−hn(j−1)/n − e−hnj/n

)
=

1√
n

∑[nt]−1

k=1
ζn,k

(
e−hnk/n − e−hn[nt]/n

)
=

1√
n

∑[nt]

k=1
ζn,k

(
e−hnk/n − e−hn[nt]/n

)
= e−hn[nt]/n(Yn,θ(t)−Mn,θ(t)).

Hence the processes (M,Y ) and (Mn,θ, Yn,θ) can be expressed as

(M,Y ) = Φ(M), (Mn,θ, Yn,θ) = Φn(Mn,θ), n = 1, 2, . . . ,

where the measurable mappings Φ,Φn : D([0, 1] → C) → D([0, 1] → C2), n = 1, 2, . . . are defined as follows

Φ(x)(t) =
(
x(t), x(t) + h

∫ t

0

eh(t−s)x(s)ds
)
,

Φn(x)(t) =

(
x(t), x(t) + hn

∫ [nt]/n

0

ehn([nt]/n−s)x(s)ds

)
.

Applying Lemma 1 we obtain the last statement.

Consider now the random step functions

Un,θ1(t) =
1

n3/2

∑[nt]

k=1
e−i(k−1)θ1Xn,k−1,

where θ1 ∈ (−π, π].

Theorem 2. Let θ1 ∈ (−π, π]. Let us suppose that (Mn,θ,Mn,θ1)
D−→ (M,M1) in D([0, 1] → C2),

where (M(t),M1(t)), t ∈ [0, 1], is a continuous semimartingale with values in C2.
Then there exist measurable mappings Φ,Φn : D([0, 1] → C2) → D([0, 1] → C3), n = 1, 2, . . ., such

that (Mn,θ,Mn,θ1 , Un,θ1) = Φn(Mn,θ,Mn,θ1) and Φn Φ, where

Φ(M,M1)(t) =
{

(M(t),M(t),
∫ t

0
Y (s) ds), if θ1 = θ,

(M(t),M1(t), 0), if θ1 6= θ,

and Y (t), t ∈ [0, 1], is defined by (21). Particularly,

1
n3/2

∑[nt]

k=1
e−i(k−1)θ1Xn,k−1

D−→
{∫ t

0
Y (s) ds, if θ1 = θ,

0, if θ1 6= θ

in D([0, 1] → C).

Proof. If θ1 = θ then

Un,θ(t) =
1

n3/2

∑[nt]

k=1
e−i(k−1)θXn,k−1 =

1
n

∑[nt]

k=1
Yn,θ ((k − 1)/n) =

∫ [nt]/n

0

Yn,θ(s) ds,

and Theorem 1 gives the result.
If θ1 6= θ then using

Xn,k =
∑k

j=1
βk−j

n εn,j

we obtain ∑[nt]

k=1
e−i(k−1)θ1Xn,k−1 =

∑[nt]

k=1
e−i(k−1)θ1

∑k−1

j=1
βk−j−1

n εn,j

=
∑[nt]−1

j=1

∑[nt]

k=j+1
e−i(k−1)θ1βk−j−1

n εn,j

=
∑[nt]−1

j=1

e−i[nt]θ1β
[nt]−j
n − e−ijθ1

e−iθ1βn − 1
εn,j ,

11



consequently

Un,θ1(t) =
1

n(βn − eiθ1)

(
βne

i([nt]−1)(θ−θ1)Yn,θ

(
t− n−1

)
− eiθ1Mn,θ1

(
t− n−1

))
,

and Theorem 1 gives the result.

For every n = 1, 2, . . . consider the complex ARMA(1,1) process defined by{
ε̃n,k − βnε̃n,k−1 = εn,k − βεn,k−1, k = 1, 2, . . . , n
ε̃n,0 = 0, (24)

and the random step functions

M̃n,θ1(t) =
1√
n

∑[nt]

k=1
e−ikθ1 ε̃n,k, t ∈ [0, 1],

where θ1 ∈ (−π, π].

Corollary 2. Let θ1 ∈ (−π, π]. Let us suppose that (Mn,θ,Mn,θ1)
D−→ (M,M1) in D([0, 1] → C2),

where (M(t),M1(t)), t ∈ [0, 1], is a continuous semimartingale with values in C2.
Then there exist measurable mappings Φ,Φn : D([0, 1] → C2) → D([0, 1] → C3), n = 1, 2, . . ., such

that
(
Mn,θ,Mn,θ1 , M̃n,θ1

)
= Φn(Mn,θ,Mn,θ1) and Φn Φ, where

Φ(M,M1) =
{

(M,M,Y ), if θ1 = θ,
(M,M1,M1), if θ1 6= θ,

and Y (t), t ∈ [0, 1], is defined by (21). Particularly,

1√
n

∑[nt]

k=1
e−ikθ1 ε̃n,k

D−→
{
Y (t), if θ1 = θ,
M1(t), if θ1 6= θ

in D([0, 1] → C).

Remark 3. Using the notation
ε̃n = (ε̃n,1, . . . , ε̃n,n)′

we can write the ARMA(1,1) model (24) in the form

(I − βnB)ε̃n = (I − βB)εn,

that is,

ε̃n =
I − βB

I − βnB
εn = (I − βB)Xn.

Corollary 2 can be interpreted in the following way: the above ARMA(1,1) process after a ‘wrong’ rotation
have similar property as the original {εn,k}, k = 1, . . . , n, sequence, while after the ‘appropriate’ rotation
it is the solution of a stochastic differential equation governed by the process M .

Proof. If θ1 = θ then using the commutation relation (15) we obtain

M̃n,θ(t) =
1√
n

∑[nt]

k=1
(Tθε̃n)k =

1√
n

∑[nt]

k=1
(Tθ(I − eiθB)Xn)k

=
1√
n

∑[nt]

k=1
((I −B)TθXn)k =

1√
n
TθXn,[nt] = Yn,θ(t),

and Theorem 1 gives the result.
If θ1 6= θ then using

ε̃n,k = ((I − βB)Xn)k = Xn,k − eiθXn,k−1 = εn,k + eiθ(ehn/n − 1)Xn,k−1

we get

M̃n,θ1(t) = Mn,θ1(t) +
1√
n
eiθ(ehn/n − 1)

∑[nt]

k=1
e−ikθ1Xn,k−1

= Mn,θ1(t) + n(ehn/n − 1)ei(θ−θ1)Un,θ1(t).

Consequently, Theorem 1, Corollary 2 and Lemma 1 imply the statements.

12



5. COMPLEX-VALUED AR(p) PROCESSES

For every n = 1, 2, . . . consider the complex-valued AR(p) model{
Xn,k = β1,nXn,k−1 + . . .+ βp,nXn,k−p + εn,k, k = 1, 2, . . . , n
Xn,0 = Xn,−1 = . . . = Xn,1−p = 0, (25)

where {εn,k} is an array of complex random variables and β1,n, . . . , βp,n are complex numbers. We suppose
that the characteristic polynomial of the model has the form

ϕn(z) = 1− β1,nz − . . .− βp,nz
p =

q∏
j=1

rj∏
k=1

(1− aj,k,nz),

where aj,k,n = ehj,k,n/n+iθj , hj,k,n ∈ C, j = 1, . . . , q, k = 1, . . . , rj , n ≥ 1, such that hj,k,n → hj,k, as
n→∞, and θ1, . . . , θq ∈ (−π, π] are different numbers. Clearly

ϕn(z) → ϕ(z) =
q∏

j=1

(1− ajz)rj ,

where aj = eiθj , j = 1, . . . , q. Obviously p =
∑q

j=1 rj .
For j = 1, . . . , q, k = 0, 1, . . . , rj − 1 consider the random step functions

Y
(k)
j,n (t) =

1
nrj−k−1/2

(
Tθj (I − ajB)k−rjϕ(B)Xn

)
[nt]

, t ∈ [0, 1].

Theorem 3. Suppose that (Mn,θ1 , . . . ,Mn,θq
) D−→ (M1, . . . ,Mq) in D([0, 1] → Cq), where

(M1(t), . . . ,Mq(t)), t ∈ [0, 1], is a continuous semimartingale with values in Cq.
Then

Y
(k)
j,n

D−→ Y
(k)
j , as n→∞, (26)

jointly for j = 1, . . . , q, k = 0, 1, . . . , rj − 1, in D([0, 1] → Cp), where

(Y (k)
j (t); j = 1, . . . , q, k = 0, 1, . . . , rj − 1), t ∈ [0, 1],

is the Ornstein-Uhlenbeck process with values in Cp defined as the solution of the system of stochastic
differential equations 

dY
(rj−1)
j (t) =

(
cj,1Y

(rj−1)
j (t) + . . .+ cj,rjY

(0)
j (t)

)
dt+ dMj(t),

dY
(k)
j (t) = Y

(k+1)
j (t) dt, k = 0, 1, . . . , rj − 2

Y
(0)
j (0) = Y

(1)
j (0) = . . . = Y

(rj−1)
j (0) = 0,

(27)

for j = 1, . . . , q, where the complex numbers cj,1, . . . , cj,rj , j = 1, . . . , q are given by

1− cj,1z − . . .− cj,rjz
rj =

rj∏
k=1

(1− hj,kz), z ∈ C.

Proof. For j = 1, . . . , q, k = 0, 1, . . . , rj , n ≥ 1 consider the random step functions

Uj,k,n(t) =
1√
n

∑[nt]

`=1

(
Tθj

k∏
m=1

(
I − ajB

I − aj,m,nB

) ∏
1≤u≤q

u 6=j

ru∏
v=1

(
I − auB

I − au,v,nB

)
εn

)
`

,

where
0∏

m=1

(
I − ajB

I − aj,m,nB

)
:= I.

Repeatedly using Corollary 2 we conclude that there exist measurable mappings
Φ,Φn : D([0, 1] → Cq) → D([0, 1] → C2q+p), n = 1, 2, . . ., such that(

Mn,θ1 , . . . ,Mn,θq , U1,0,n, . . . , U1,r1,n, . . . , Uq,0,n, . . . , Uq,rq,n

)
= Φn(Mn,θ1 , . . . ,Mn,θq )
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and Φn Φ, where

Φn(M1, . . . ,Mq) = (M1, . . . ,Mq, U1,0, . . . , U1,r1 , . . . , Uq,0, . . . , Uq,rq
),

and Uj,k(t), t ∈ [0, 1], j = 1, . . . , q, k = 0, 1, . . . , rj is given by{
dUj,k(t) = hj,kUj,k(t)dt+ dUj,k−1(t), j = 1, . . . , q, k = 1, . . . , rj
Uj,0(t) = Mj(t), j = 1, . . . , q.

Particularly,
Uj,k,n

D−→ Uj,k, as n→∞, (28)

jointly for j = 1, . . . , q, k = 0, 1, . . . , rj , in D([0, 1] → Cq+p). Using

Uj,k−1(t) = Uj,k(t)− hj,k

∫ t

0

Uj,k(s) ds

for j = 1, . . . , q, k = 1, . . . , rj , t ∈ [0, 1], we obtain

dUj,rj
(t) =

(
cj,1Uj,rj

(t) + cj,2

∫ t

0

Uj,rj
(s) ds+

+ . . .+ cj,rj

∫ t

0

∫ s1

0

. . .

∫ srj−2

0

Uj,rj
(srj−1) ds1 . . . dsrj−1

)
dt+ dMj(t).

On the other hand, by the help of the commutation relation (15) we obtain for j = 1, . . . , q

Y
(rj−1)
j,n (t) = Uj,rj ,n(t), t ∈ [0, 1], (29)

since

Y
(rj−1)
j,n (t) =

1√
n

(
Tθj (I − ajB)−1ϕ(B)Xn

)
[nt]

=
1√
n

∑[nt]

`=1
(I −B)

(
Tθj (I − ajB)−1ϕ(B)Xn

)
`

=
1√
n

∑[nt]

`=1

(
Tθjϕ(B)Xn

)
`
= Uj,rj ,n(t).

Moreover, we have for j = 1, . . . , q, k = 0, 1, . . . , rj − 2

Y
(k)
j,n (t) =

∫ [nt]/n

0

Y
(k+1)
j,n (s) ds, (30)

since by induction

Y
(k)
j,n (t) =

1
nrj−k−1/2

(
Tθj (I − ajB)k−rjϕ(B)Xn

)
[nt]

=
1

nrj−k−1/2

∑[nt]

`=1

(
(I −B)Tθj (I − ajB)k−rjϕ(B)Xn

)
`

=
1

nrj−k−1/2

∑[nt]

`=1

(
Tθj (I − ajB)k−rj+1ϕ(B)Xn

)
`
=
∫ [nt]/n

0

Y
(k+1)
j,n (s) ds.

The convergence (28) implies

(U1,r1,n, . . . , Uq,rq,n) D−→ (U1,r1 , . . . , Uq,rq ), as n→∞,

from which together with (29) and (30) we conclude (26).
For j, ` ∈ {1, . . . , q}, j 6= `, k = 1, . . . , rj − 1 consider the random step functions

Y
(k)
j,`,n(t) =

1
nrj−k+1/2

(
Tθ`

(I − a`B)−1(I − ajB)k−rjϕ(B)Xn

)
[nt]

, t ∈ [0, 1].

Theorem 4. Suppose that (Mn,θ1 , . . . ,Mn,θq )
D−→ (M1, . . . ,Mq) in D([0, 1] → Cq), where

(M1(t), . . . ,Mq(t)), t ∈ [0, 1], is a continuous semimartingale with values in Cq.
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Then
Y

(k)
j,`,n

D−→ 0, as n→∞, (31)

jointly for j, ` ∈ {1, . . . , q}, j 6= `, k = 1, . . . , rj − 1.

Proof. For k = rj − 1 we have

Y
(rj−1)
j,`,n (t) =

1
n3/2

(
Tθ`

(I − a`B)−1(I − ajB)−1ϕ(B)Xn

)
[nt]

=
1

n3/2

∑[nt]

m=1

(
(I −B)Tθ`

(I − a`B)−1(I − ajB)−1ϕ(B)Xn

)
m

=
1

n3/2

∑[nt]

m=1

(
Tθ`

(I − ajB)−1ϕ(B)Xn

)
m
,

and we can apply Theorem 2 (using ϕ(B)Xn instead of εn), since Theorem 3 implies

1√
n

∑[nt]

m=1

(
Tθjϕ(B)Xn

)
m

= Y
(rj−1)
j,n (t) D−→ Y

(rj−1)
j

and
1√
n

∑[nt]

m=1
(Tθ`

ϕ(B)Xn)m = Y
(r`−1)
`,n (t) D−→ Y

(r`−1)
` .

For k = rj − 2, rj − 3, . . . , 1 we have

Y
(k)
j,`,n(t) =

1
nrj−k+1/2

(
Tθ`

(I − a`B)−1(I − ajB)k−rjϕ(B)Xn

)
[nt]

=
1

nrj−k+1/2

∑[nt]

m=1

(
(I −B)Tθ`

(I − a`B)−1(I − ajB)k−rjϕ(B)Xn

)
m

=
1

n3/2

∑[nt]

m=1

(
Tθ`

(I − ajB)−1nk−rj+1(I − ajB)k−rj+1ϕ(B)Xn

)
m
,

and we can apply again Theorem 2 (using nk−rj+1(I − ajB)k−rj+1ϕ(B)Xn instead of εn), since

1√
n

∑[nt]

m=1

(
Tθjn

k−rj+1(I − ajB)k−rj+1ϕ(B)Xn

)
m

=
1

nrj−k−1/2

∑[nt]

m=1

(
Tθj (I − ajB)k−rj+1ϕ(B)Xn

)
m

=
1

nrj−k−1/2

∑[nt]

m=1

(
(I −B)Tθj (I − ajB)k−rjϕ(B)Xn

)
m

=
1

nrj−k−1/2

(
Tθj (I − ajB)k−rjϕ(B)Xn

)
[nt]

= Y
(rj−k)
j,n

D−→ Y
(rj−k)
j

and

1√
n

∑[nt]

m=1

(
Tθ`

nk−rj+1(I − ajB)k−rj+1ϕ(B)Xn

)
m

=
1

nrj−k−1/2

∑[nt]

m=1

(
Tθ`

(I − ajB)k−rj+1ϕ(B)Xn

)
m

=
1

nrj−k−1/2

∑[nt]

m=1

(
(I −B)Tθ`

(I − a`B)−1(I − ajB)k−rj+1ϕ(B)Xn

)
m

=
1

nrj−k−1/2

(
Tθ`

(I − a`B)−1(I − ajB)k−rj+1ϕ(B)Xn

)
[nt]

= Y
(k+1)
j,`,n ,

hence we can use induction for k = rj − 2, rj − 3, . . . , 1.

6. CONVERGENCE OF LEAST-SQUARES ESTIMATORS

The least-squares estimator of the parameter βn = (β1,n, . . . , βp,n)′ of the model (25) can be obtained by
minimizing the sum of squares

n∑
k=1

|Xnk − β1,nXn,k−1 − . . .− βp,nXn,k−p|2 = ‖Xn − β1,nBXn − . . .− βp,nB
pXn‖2.
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It is known that the LSE β̂n = (β̂1,n, . . . , β̂p,n)′ is the unique solution of the Yule-Walker equations

〈Xn − β̂1,nBXn − . . .− β̂p,nB
pXn, B

`Xn〉 = 0, ` = 1, . . . , p, (32)

and β̂n can be written in the form (2).

Lemma 4. The least-squares estimators ĉj,k,n, j = 1, . . . , q, k = 1, . . . , rj are the unique solutions of
the system of linear equations∑q

j=1

∑rj

k=1
〈qj,k(B)Xn, qu,v(B)Xn〉

ĉj,k,n − cj,k,n

nk+v
=

1
nv
〈εn, qu,v(B)Xn〉,

for u = 1, . . . , q, v = 1, . . . , ru, where

qj,k(z) = ajz(1− ajz)−kϕ(z), z ∈ C.

Proof. The existence of the unique LSE ĉj,k,n follows from the one-to-one correspondence between
the parameters cj,k,n, j = 1, . . . , q, k = 1, . . . , rj and βn,`, ` = 1, . . . , p.

Introduce the notation

ϕ̂n(z) = 1− β̂1,nz − . . .− β̂p,nz
p, z ∈ C, n ≥ 1.

The model (25) can be written as ϕn(B)Xn = εn, while the Yule-Walker equations (32) has the form
〈ϕ̂n(B)Xn, B

`Xn〉 = 0, ` = 1, . . . , p. Consequently, the LSE β̂n can be obtained from the system of
equations

〈(ϕn(B)− ϕ̂n(B))Xn, B
`Xn〉 = 〈εn, B

`Xn〉, ` = 1, . . . , p,

which is equivalent to
〈(ϕn(B)− ϕ̂n(B))Xn, qu,v(B)Xn〉 = 〈εn, qu,v(B)Xn〉,

u = 1, . . . , q, v = 1, . . . , ru,

since the polynomials qu,v, u = 1, . . . , q, v = 1, . . . , ru, are linearly independent. From the definition of
the parameters cj,k,n, j = 1, . . . , q, k = 1, . . . , rj it follows

ϕ(z)− ϕn(z) =
∑q

j=1

∑rj

k=1

cj,k,n

nk
qj,k(z), z ∈ C. (33)

Obviously we have

ϕ(z)− ϕ̂n(z) =
∑q

j=1

∑rj

k=1

ĉj,k,n

nk
qj,k(z), z ∈ C. (34)

Consequently we conclude the statement.
From now on we shall put the following condition on the random disturbances {εn,k}.

(C) εn,k, k = 1, . . . , n, n ≥ 1 is a triangular array of real square integrable martingale differences with
respect to the filtrations (Fnk)k=0,1,...,n;n≥1 such that for all t ∈ [0, 1]

1
nt

[nt]∑
k=1

E(ε2nk|Fn,k−1)
P−→ 1, as n→∞

and

∀α > 0
1
n

[nt]∑
k=1

E(ε2nkχ{|εnk|>α
√

n}|Fn,k−1)
P−→ 0, as n→∞.

We shall say that W (t), t ∈ [0, 1], is a standard complex-valued Wiener process, if W (t) = W1(t) +
iW2(t), where (

√
2W1(t),

√
2W2(t)), t ∈ [0, 1], is a standard Wiener process with values in R2.

Lemma 5. Suppose that the array εn,k, k = 1, . . . , n, n ≥ 1, satisfies the condition (C). Then

(Mn,θ1 , . . . ,Mn,θq )
D−→ (W1, . . . ,Wq)
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in D([0, 1] → Cq), where Wj(t), t ∈ [0, 1], j = 1, . . . , q, are standard Wiener processes, real-valued for
θj = 0 or θj = π, and complex-valued otherwise. Moreover, Wj and Wk are independent if θj 6= −θk,
and Wj = W k if θj = −θk.

Proof. The statement follows from a version of the functional central limit theorem on the space
D([0, 1] → Rp) (Theorem 7.11 in Liptser and Shiryayev (1989)), remarking the facts that for θ 6= 0, θ 6= π

lim
n→∞

1
n

n∑
k=1

cos2 kθ =
1
2
, lim

n→∞

1
n

n∑
k=1

sin2 kθ =
1
2
, lim

n→∞

1
n

n∑
k=1

sin kθ cos kθ = 0,

and for θ, α ∈ (−π, π], θ 6= ±α

lim
n→∞

1
n

n∑
k=1

cos kθ cos kα = lim
n→∞

1
n

n∑
k=1

sin kθ sin kα = lim
n→∞

1
n

n∑
k=1

sin kθ cos kα = 0.

Lemma 6. Suppose that the array εn,k, k = 1, . . . , n, n ≥ 1, satisfies the condition (C). Then

1
nk+v

〈qj,k(B)Xn, qu,v(B)Xn〉
D−→

{∫ 1

0
Y

(rj−k)
j (t)Y (rj−v)

j (t)dt, if j = u
0, if j 6= u

1
nv
〈εn, qu,v(B)Xn〉

D−→
∫ 1

0

Y
(ru−v)
u (t) dWu(t),

jointly for j = 1, . . . , q, k = 1, . . . , rj, u = 1, . . . , q, v = 1, . . . , ru.

Proof. If j = u then

1
nk+v

〈qj,k(B)Xn, qj,v(B)Xn〉 =
1

nk+v
〈ajB(I − ajB)−kϕ(B)Xn, ajB(I − ajB)−vϕ(B)Xn〉

=
1
n

∑n

`=1
Y

(rj−k)
j,n ((`− 1)/n)Y (rj−v)

j,n ((`− 1)/n)

=
∫ 1

0

Y
(rj−k)
j,n (t)Y (rj−v)

j,n (t) dt,

and the convergence follows from Theorem 3.
If j 6= u then using the decomposition

qu,v(z) = (1− auz)−vϕ(z)− (1− auz)−v+1ϕ(z)

we obtain

1
nk+v

〈qj,k(B)Xn, qu,v(B)Xn〉 =

=
1

nk+v

〈
Tθj

ajBϕ(B)
(I − ajB)k

Xn, Tθj

(
ϕ(B)

(1− auz)v
− ϕ(B)

(1− ajz)v−1

)
Xn

〉
=
〈
BTθj

ϕ(B)
nk−1/2(I − ajB)k

Xn, Tθj

ϕ(B)
nv+1/2(I − auB)v

Xn

〉
− 1
n

〈
BTθj

ϕ(B)
nk−1/2(I − ajB)k

Xn, Tθj

ϕ(B)
nv−1/2(I − auB)v−1

Xn

〉
=
〈
BTθj

ϕ(B)
nk−1/2(I − ajB)k

Xn, (I −B)Tθj

ϕ(B)
nv+1/2(I − ajB)(I − auB)v

Xn

〉
− 1
n

〈
BTθj

ϕ(B)
nk−1/2(I − ajB)k

Xn, (I −B)Tθj

ϕ(B)
nv−1/2(I − ajB)(I − auB)v−1

Xn

〉
=
∫ 1

0

Y
(rj−k)
j,n (t) dY (ru−v)

u,j,n (t)− 1
n

∫ 1

0

Y
(rj−k)
j,n (t) dY (ru−v+1)

u,j,n (t),

and the convergence follows from Theorems 3 and 4 combined with Proposition 6 in Jeganathan (1991).
Finally,

1
nv
〈εn, qu,v(B)Xn〉 =

1
nv

∑n

`=1
εn`(auB(I − auB)−vϕ(B)Xn)`

17



=
∑n

`=1
n−1/2(Tθuεn)`n−v+1/2 (BTθu(I − auB)−vϕ(B)Xn)`

=
∑n

`=1

(
M (θu)

n (`/n)−M (θu)
n ((`− 1)/n)

)
Y

(ru−v)
u,n ((`− 1)/n)

=
∫ 1

0

Y
(ru−v)
u,n (t) dM (θu)

n (t),

and the convergence follows again from Theorem 3 combined with Proposition 6 in Jeganathan (1991).

Theorem 5. Suppose that the array εn,k, k = 1, . . . , n, n ≥ 1, satisfies the condition (C). Then

ĉj,k,n
D−→ ĉj,k, as n→∞,

jointly for j = 1, . . . , q, k = 1, . . . , rj, where ĉj = (ĉj,1, . . . , ĉj,rj
)′ is given by

ĉj = S−1
j


∫ 1

0
Y

(rj−1)
j (t) dY (rj−1)

j (t)
...∫ 1

0
Y

(0)
j (t) dY (rj−1)

j (t)

 , (35)

where

Sj =


∫ 1

0
|Y (rj−1)

j (t)|2 dt . . .
∫ 1

0
Y

(rj−1)
j (t)Y (0)

j (t) dt
...

. . .
...∫ 1

0
Y

(0)
j (t)Y (rj−1)

j (t) dt . . .
∫ 1

0
|Y (0)

j (t)|2 dt

 ,

and the processes Y
(k)
j , j = 1, . . . , q, k = 1, . . . , rj, are given by (27).

Proof. Using Itô’s formula we can write

ĉj = cj + S−1
j


∫ 1

0
Y

(rj−1)
j (t) dWj(t)

...∫ 1

0
Y

(0)
j (t) dWj(t)

 ,

where cj = (cj,1, . . . , cj,rj
)′.

From Lemma 4, Corollary 1 and Lemma 6 we can derive

ĉj,k,n
D−→ ĉj,k, as n→∞,

jointly for j = 1, . . . , q, k = 1, . . . , rj .

Remark 5. It is known that ĉj is the MLE of cj = (cj,1, . . . , cj,rj )
′ in the complex-valued continuous

time rj-order autoregressive model
dY

(rj−1)
j (t) =

(
cj,1Y

(rj−1)
j (t) + . . .+ cj,rjY

(0)
j (t)

)
dt+ dWj(t),

dY
(k)
j (t) = Y

(k+1)
j (t) dt, k = 0, 1, . . . , rj − 2

Y
(0)
j (0) = Y

(1)
j (0) = . . . = Y

(rj−1)
j (0) = 0,

where Wj(t), t ∈ [0, 1], is a standard complex-valued Wiener process (see, for example, Arató [3]).

7. APPLICATIONS FOR REAL-VALUED AR(p) PROCESSES

Consider now for every n = 1, 2, . . . the real-valued AR(p) model{
Xn,k = β1,nXn,k−1 + . . .+ βp,nXn,k−p + εn,k, k = 1, 2, . . . , n
Xn,0 = Xn,−1 = . . . = Xn,1−p = 0,
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where {εn,k} is an array of real random variables and β1,n, . . . , βp,n are real numbers. For the sake of
simplicity we suppose that the characteristic polynomial of the limit unstable model has all roots on the unit
circle. Then the characteristic polynomial has the form

ϕn(z) =
r1∏

k=1

(1− eh1,k,n/nz)
r2∏

k=1

(1 + eh2,k,n/nz)
∏̀
j=3

rj∏
k=1

(
(1− ehj,k,n/n+iθjz)(1− ehj,k,n/n−iθjz)

)
,

where r1, . . . , r` are non-negative integers, r1 + r2 + 2(r3 + . . . + r`) = p, hj,k,n ∈ C, j = 1, . . . , `,
k = 1, . . . , rj , n ≥ 1, such that hj,k,n → hj,k, as n→∞, and

r1∏
k=1

(1− eh1,k,n/nz),
r2∏

k=1

(1 + eh2,k,n/nz)

are polynomials with real coefficients, and θj ∈ (0, π), j = 3, . . . , `, are pairwise different. We remark
that for the complex conjugate pairs of roots we had to put complex conjugate pairs of parameters hj,k,n

and hj,k,n, j = 3, . . . , `, k = 1, . . . , rj , in order to assure that the polynomial ϕ has real coefficients.
Obviously it implies that in the other two parametrizations we have again complex conjugate pairs dj,k,n,
dj,k,n and cj,k,n, cj,k,n, j = 3, . . . , `, k = 1, . . . , rj . We shall write θ1 = 0, θ2 = π. Lemma 5 has the
following obvious corollary.

Corollary 3. Suppose that the array εn,k, k = 1, . . . , n, n ≥ 1, satisfies the condition (C). Then

(Mn,θ1 , . . . ,Mn,θ`
) D−→ (W1, . . . ,W`)

in D([0, 1] → C`), where Wj(t), t ∈ [0, 1], j = 1, . . . , `, are independent standard Wiener processes,
real-valued for j = 1, 2, and complex-valued for j = 3, . . . , `.

Theorem 5 has the following corollary.

Corollary 4. Suppose that the array εn,k, k = 1, . . . , n, n ≥ 1, satisfies the condition (C). Then

ĉj,k,n
D−→ ĉj,k, as n→∞,

jointly for j = 1, . . . , `, k = 1, . . . , rj, and for all z ∈ C

rj∏
k=1

(1− ĥj,k,nz)
D−→ 1− ĉj,1z − . . .− ĉj,rjz

rj , as n→∞,

jointly for j = 1, . . . , `, where ĉj = (ĉj,1, . . . , ĉj,rj )
′ is given by (35). In other words, ĉj,k, j = 1, . . . , `,

k = 1, . . . , rj are the MLE of the parameters cj,k, j = 1, . . . , `, k = 1, . . . , rj, in the continuous time

model (27). Loosely speaking, ĥj,k,n
D−→ ĥj,k.

Remark 5. From Corollary 4 we can derive convergence theorem for the LSE of the coefficients
β1,n, . . . , βp,n (see Theorem 1 in Jeganathan [10]; the stable case, i. e. when hj,k,n = 0, j = 1, . . . , `,
k = 1, . . . , rj , is treated in Chan and Wei [7]).

From (33) we have

(β1,n − β1)z + . . .+ (βp,n − βp)zp

=
∑r1

k=1

c1,k,n

nk

zϕ(z)
(1− z)k

−
∑r2

k=1

c2,k,n

nk

zϕ(z)
(1 + z)k

+
∑`

j=3

∑rj

k=1

(
cj,k,n

nk

eiθjzϕ(z)
(1− eiθjz)k

+
cj,k,n

nk

e−iθjzϕ(z)
(1− e−iθjz)k

)
,

for z ∈ C. Obviously for all n ≥ 1 there is an invertible real p× p matrix An such that

βn − β = AnCn,

where
Cn = (c′1,n, . . . , c

′
`,n)′,
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and

cj,n =
{

(cj,1,n, . . . , cj,rj ,n)′ for j = 1, 2
(<(cj,1,n),=(cj,1,n), . . . ,<(cj,rj ,n),=(cj,rj ,n))′ for j = 3, . . . , `.

Clearly we have also
β̂n − β = AnĈn,

where Ĉn contains the LSE. Using Corollary 1 and 4 we conclude

A−1
n (β̂n − βn) = Ĉn −Cn

D−→ Ĉ−C = (ĉ′1 − c′1, . . . , ĉ
′
` − c′`)

′,

where

cj =
{

(cj,1, . . . , cj,rj )
′ for j = 1, 2

(<(cj,1),=(cj,1), . . . ,<(cj,rj ),=(cj,rj ))
′ for j = 3, . . . , `,

ĉj contains the MLE, which is given by (35). Corollary 3 implies that now the processes

{(Y (0)
j (t), Y (1)

j (t), . . . , Y (rj)
j (t)), t ∈ [0, 1]}, j = 1, . . . , `

are mutually independent, and real-valued for j = 1, 2, complex-valued for j = 3, . . . , `. Furthermore,
ĉj,k, j = 1, . . . , `, k = 1, . . . , rj are the MLE of the parameters cj,k, j = 1, . . . , `, k = 1, . . . , rj , in the
continuous time model (27). We remark that Jeganathan (1991) and Chan and Wei (1988b) used a slightly
different normalization of β̂n − βn, but the results are obviously equivalent.

8. EXAMPLES

For illustration first we shall study real-valued AR(2) models near to an unstable model given by{
Xn,k = β1,nXn,k−1 + β2,nXn,k−2 + εn,k, k = 1, 2, . . . , n
Xn,0 = Xn,−1 = 0, (36)

where {εn,k} is an array of real random variables satisfying the condition (C) and β1,n, β2,n are real
numbers.

First consider the case when the limit unstable model has complex roots, i.e., its characteristic polynomial
is

ϕ(z) = (1− eiθz)(1− e−iθz) = 1− 2z cos θ + z2.

Then we have β1 = 2 cos θ and β2 = −1. The characteristic polynomial of the model (36) has the form

ϕn(z) = (1− ehn/n+iθz)(1− ehn/n−iθz),

where hn ∈ C such that hn → h, as n→∞ and θ ∈ (0, π). Remark, that (13) implies c = h. From
(33) we have

(β1,n − β1)z + (β2,n − β2)z2 =
1
n

(
cne

iθz(1− e−iθz) + cne
−iθz(1− eiθz)

)
for z ∈ C. Comparing the coefficients of z and z2 we obtain

n(β1,n − β1) = 2(<(cn) cos θ −=(cn) sin θ)
n(β2,n − β2) = −2<(cn).

Applying Theorem 5 we conclude

n (β̂n − β) =

 n(β̂1,n − β1)

n(β̂2,n − β2)

 D−→

 2(<(ĉ) cos θ −=(ĉ) sin θ)

−2<(ĉ)

 ,

where

ĉ =

∫ 1

0
Y (t) dY (t)∫ 1

0
|Y (t)|2 dt

,

and Y (t), t ∈ [0, 1], is the continuous time complex-valued AR(1) process given by

dY (t) = hY (t)dt+ dW (t), Y (0) = 0,
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where W (t), t ∈ [0, 1], is a standard complex-valued Wiener process. Moreover, ĉ can be interpreted as
the MLE of the parameter h. We have also

n (β̂n − βn) =

 n(β̂1,n − β1,n)

n(β̂2,n − β2,n)

 D−→

 2(<(ĉ− c) cos θ −=(ĉ− c) sin θ)

−2<(ĉ− c)

 ,

where by Itô’s formula we can derive

ĉ− c =

∫ 1

0
Y (t) dW (t)∫ 1

0
|Y (t)|2 dt

.

The above convergence statement can be reformulated as

n (β̂n − βn) =

 n(β̂1,n − β1,n)

n(β̂2,n − β2,n)

 D−→ 2
s2Y

 r+Y W cos θ − r−Y W sin θ

−r+Y W

 ,

where

s2Y =
∫ 1

0

(Y 2
1 (t) + Y 2

2 (t)) dt

r+Y W =
∫ 1

0

(Y1(t) dW1(t) + Y2(t) dW2(t))

r−Y W =
∫ 1

0

(Y1(t) dW2(t)− Y2(t) dW1(t)),

W1(t), W2(t), t ∈ [0, 1], are independent real-valued standard Wiener processes, and the process (Y1(t), Y2(t)),
t ∈ [0, 1], is given by  dY1(t)

dY2(t)

 =

 λ −ω

ω λ

 Y1(t) dt

Y2(t) dt

+

 dW1(t)

dW2(t)

 ,

with initial values Y1(0) = Y2(0) = 0, where λ = <(h) and ω = =(h). We remark that Corollary 3.3.8
in Chan and Wei (1988b) contains convergence of n(β̂2,n + 1) in the stable case, i.e., when hn ≡ 0.

Now consider the case when the limit unstable model has double roots equal to 1, i.e., its characteristic
polynomial is

ϕ(z) = (1− z)2 = 1− 2z + z2

and we have β1 = 2 and β2 = −1. The characteristic polynomial of the model (36) has the form

ϕn(z) = (1− eh1,n/nz)(1− eh2,n/nz),

where hk,n ∈ C such that hk,n → hk, as n → ∞ for k = 1, 2, and the polynomial ϕn has real
coefficients. This implies that h1,n and h2,n are real numbers or conjugated complex numbers. The same
is valid for h1 and h2. Remark, that (13) now has the form

1− c1z − c2z
2 = (1− h1z)(1− h2z), z ∈ C,

hence c1 = h1 + h2 and c2 = −h1h2. From (33) we have

(β1,n − β1)z + (β2,n − β2)z2 =
1
n
c1,nz(1− z) +

1
n2
c2,nz

for z ∈ C. Comparing the coefficients of z and z2 we obtain

c1,n = −n(β2,n − β2)
c2,n = n2(β1,n − β1) + n2(β2,n − β2).

Applying Corollary 4 as in Remark 4 we conclude 0 −n

n2 n2

 β̂1,n − β1

β̂2,n − β2

 =

 ĉ1,n

ĉ2,n

 D−→

 ĉ1

ĉ2

 ,
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where  ĉ1

ĉ2

 = S−1

 ∫ 1

0
Ẏ (t) dẎ (t)∫ 1

0
Y (t) dẎ (t)

 , S =

 ∫ 1

0
(Ẏ (t))2 dt

∫ 1

0
Ẏ (t)Y (t) dt∫ 1

0
Y (t)Ẏ (t) dt

∫ 1

0
(Y (t))2 dt

 ,

and (Y (t), Ẏ (t)), t ∈ [0, 1], is the continuous time real-valued AR(2) process dẎ (t) =
(
(h1 + h2)Ẏ (t)− h1h2Y (t)

)
dt+ dW (t),

dY (t) = Ẏ (t) dt,
Y (0) = Ẏ (0) = 0,

(37)

where W (t), t ∈ [0, 1], is a standard real-valued Wiener process. Moreover, ĉ1, ĉ2 can be interpreted as
the MLE of c1 = h1 + h2 and c2 = −h1h2. By Itô’s formula we can also derive 0 −n

n2 n2

 β̂1,n − β1,n

β̂2,n − β2,n

 D−→ S−1

 ∫ 1

0
Ẏ (t) dW (t)∫ 1

0
Y (t) dW (t)

 .

The case when the limit unstable model has double roots equal to −1, i.e., its characteristic polynomial
is

ϕ(z) = (1 + z)2 = 1 + 2z + z2

can be handled similarly, and we obtain 0 −n

−n2 n2

 β̂1,n − β1,n

β̂2,n − β2,n

 D−→ S−1

 ∫ 1

0
Ẏ (t) dW (t)∫ 1

0
Y (t) dW (t)

 ,

where (Y (t), Ẏ (t)), t ∈ [0, 1], is the continuous time real-valued AR(2) process given by (37).
Now consider the case when the limit unstable model has the roots 1 and −1, i.e., its characteristic

polynomial is
ϕ(z) = (1− z)(1 + z) = 1− z2

and we have β1 = 0 and β2 = 1. The characteristic polynomial of the model (36) has the form

ϕn(z) = (1− eh1,n/nz)(1 + eh2,n/nz),

where hk,n ∈ R such that hk,n → hk, as n → ∞ for k = 1, 2. Remark, that (13) implies ck = hk,
k = 1, 2. From (33) we have

(β1,n − β1)z + (β2,n − β2)z2 =
1
n

(c1,nz(1 + z)− c2,nz(1− z))

for z ∈ C. Comparing the coefficients of z and z2 we obtain

2c1,n = n((β1,n − β1) + (β2,n − β2))
2c2,n = n(−(β1,n − β1) + (β2,n − β2)).

Applying Corollary 4 as in Remark 4 we conclude n n

−n n

 β̂1,n − β1

β̂2,n − β2

 =

 2 ĉ1,n

2 ĉ2,n

 D−→

 2 ĉ1

2 ĉ2

 ,

where

ĉk =

∫ 1

0
Yk(t) dYk(t)∫ 1

0
Y 2

k (t) dt
,

and Yk(t), t ∈ [0, 1], k = 1, 2 are the (independent) continuous time real-valued AR(1) processes given by

dYk(t) = hkYk(t)dt+ dWk(t), Yk(0) = 0, k = 1, 2,

22



where Wk(t), t ∈ [0, 1], k = 1, 2, are independent standard real-valued Wiener processes. Moreover, ĉk,
k = 1, 2 can be interpreted as the MLE of the parameters hk, k = 1, 2. We have also n n

−n n

 β̂1,n − β1,n

β̂2,n − β2,n

 D−→

 2
∫ 1

0
Y1(t) dW1(t)

/∫ 1

0
Y 2

1 (t) dt

2
∫ 1

0
Y2(t) dW2(t)

/∫ 1

0
Y 2

2 (t) dt

 .

Next we investigate complex-valued AR(2) models near to an unstable model given by{
Xn,k = β1,nXn,k−1 + β2,nXn,k−2 + εn,k, k = 1, 2, . . . , n
Xn,0 = Xn,−1 = 0, (38)

where β1,n, β2,n are complex numbers and {εn,k} is an array of real-valued random variables satisfying
the condition (C).

First consider the case where the limit unstable model has different (complex) roots, i.e., its characteristic
polynomial is

ϕ(z) = (1− eiθ1z)(1− e−iθ2z),

where θ1, θ2 ∈ (−π, π], θ1 6= θ2. The characteristic polynomial of the model (38) has the form

ϕn(z) = (1− eh1,n/n+iθ1z)(1 + eh2,n/n+iθ2z),

where hk,n ∈ C such that hk,n → hk, as n → ∞ for k = 1, 2. Remark, that (13) implies ck = hk,
k = 1, 2. From (33) we have

(β1,n − β1)z + (β2,n − β2)z2 =
1
n

(c1,ne
iθ1z(1− eiθ2z) + c2,ne

iθ2z(1− eiθ1z))

for z ∈ C. Comparing the coefficients of z and z2 we obtain

(eiθ1 − eiθ2)c1,n = n((β1,n − β1) + (β2,n − β2)e−iθ1)
(eiθ1 − eiθ2)c2,n = n(−(β1,n − β1)− (β2,n − β2)e−iθ2).

Applying Theorem 5 we conclude n ne−iθ1

−n −ne−iθ2

 β̂1,n − β1

β̂2,n − β2

 = (eiθ1 − eiθ2)

 ĉ1,n

ĉ2,n

 D−→ (eiθ1 − eiθ2)

 ĉ1

ĉ2

 ,

where

ĉk =

∫ 1

0
Yk(t) dYk(t)∫ 1

0
|Yk(t)|2 dt

,

and Yk(t), t ∈ [0, 1], k = 1, 2 are continuous time AR(1) processes given by

dYk(t) = hkYk(t)dt+ dWk(t), Yk(0) = 0, k = 1, 2,

where Wk(t), t ∈ [0, 1], k = 1, 2, are standard Wiener processes, real-valued if θk = 0 or θk = π,
and complex-valued otherwise. Further, W1 and W2 are independent if θ1 6= −θ2, and W1 = W 2 if
θ1 = −θ2.

Moreover, ĉk, k = 1, 2 can be interpreted as the MLE of the parameters hk, k = 1, 2. We also have n ne−iθ1

−n −ne−iθ2

 β̂1,n − β1,n

β̂2,n − β2,n

 D−→ (eiθ1 − eiθ2)

 ∫ 1

0
Y1(t) dW1(t)

/∫ 1

0
|Y1(t)|2 dt∫ 1

0
Y2(t) dW2(t)

/∫ 1

0
|Y2(t)|2 dt

 .

Now consider the case when the limit unstable model has double (complex) roots equal to eiθ, i.e., its
characteristic polynomial is

ϕ(z) = (1− eiθz)2,

where θ ∈ (−π, π]. The characteristic polynomial of the model (38) has the form

ϕn(z) = (1− eh1,n/n+iθz)(1− eh2,n/n+iθz),
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where hk,n ∈ C such that hk,n → hk, as n→∞ for k = 1, 2. Remark, that (13) implies c1 = h1 + h2

and c2 = −h1h2. From (33) we have

(β1,n − β1)z + (β2,n − β2)z2 =
1
n
c1,ne

iθz(1− eiθz) +
1
n2
c2,ne

iθz

for z ∈ C. Comparing the coefficients of z and z2 we obtain

c1,n = −n(β2,n − β2)e−2iθ

c2,n = n2(β1,n − β1)e−iθ + n2(β2,n − β2)e−2iθ.

Applying Theorem 5 we conclude 0 −ne−2iθ

n2e−iθ n2e−2iθ

 β̂1,n − β1

β̂2,n − β2

 =

 ĉ1,n

ĉ2,n

 D−→

 ĉ1

ĉ2

 ,

where  ĉ1

ĉ2

 = S−1

 ∫ 1

0
Ẏ (t) dẎ (t)∫ 1

0
Y (t) dẎ (t)

 , S =

 ∫ 1

0
|Ẏ (t)|2 dt

∫ 1

0
Ẏ (t)Y (t) dt∫ 1

0
Y (t)Ẏ (t) dt

∫ 1

0
|Y (t)|2 dt

 ,

and (Y (t), Ẏ (t)), t ∈ [0, 1], is the continuous time AR(2) process dẎ (t) =
(
(h1 + h2)Ẏ (t)− h1h2Y (t)

)
dt+ dW (t),

dY (t) = Ẏ (t) dt,
Y (0) = Ẏ (0) = 0,

where W (t), t ∈ [0, 1], is a standard Wiener process, real-valued if θ = 0 or θ = π, and complex-valued
otherwise.

Moreover, ĉ1, ĉ2 can be interpreted as the MLE of c1 = h1 + h2 and c2 = −h1h2. By Itô’s formula
we can also have  0 −ne−2iθ

n2e−iθ n2e−2iθ

 β̂1,n − β1,n

β̂2,n − β2,n

 D−→ S−1

 ∫ 1

0
Ẏ (t) dW (t)∫ 1

0
Y (t) dW (t)

 .

Comparing the complex-valued AR(2) models with the real-valued AR(2) models we observe that con-
vergence of least squares estimators in the real-valued models can be deived from the complex-valued case
by taking into account of the extra requirement, that the coefficients should be real numbers. However, the
formulations in the context of complex-valued models are remarkably simpler.

As we have seen, a multiple root in the model implies a higher order autoregressive component in the
corresponding continuous time model. Different but not conjugated roots imply components driven by
independent Wiener processes in the continuous time model. In case the roots are conjugated pairs, then
the components are driven by conjugated complex-valued Wiener processes. A real root is connected to a
real-valued Wiener process, and a complex root is connected to a complex-valued Wiener process, even if
the model has real coefficients!

We finally note that convergence of least squares estimators in models with complex-valued disturbances
{εn,k} can be handled similarly, see the AR(1) case in Kormos, van der Meer, Pap and van Zuijlen [12].
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