This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version.

Research Articles: Cellular/Molecular

Target cell type-dependent differences in Ca²⁺ channel function underlie distinct release probabilities at hippocampal glutamatergic terminals

Tímea Éltes^{1,2,#}, Tekla Kirizs^{1,2,#}, Zoltan Nusser¹ and Noemi Holderith¹

¹Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, HUNGARY

DOI: 10.1523/JNEUROSCI.2024-16.2017

Received: 24 June 2016

Revised: 4 January 2017

Accepted: 10 January 2017

Published: 23 January 2017

Author contributions: T.E., T.K., and N.H. performed research; T.E., T.K., Z.N., and N.H. analyzed data; Z.N. and N.H. designed research; Z.N. and N.H. wrote the paper.

ZN is the recipient of a Hungarian Academy of Sciences Momentum Grant (Lendület, LP2012-29) and a European Research Council Advanced Grant (293681). N.H. is funded by Janos Bolyai Scholarships of the Hungarian Academy of Sciences. The financial support from these funding bodies is gratefully acknowledged. We would like to thank Éva Dobai and Dóra Rónaszéki for their excellent technical assistance, Borbála Bolonyai for contributing to the quantification of Elfn1/2-mGluR1# colocalization and Neurolucida reconstructions, Miklós Szoboszlay for writing the gold distribution analysis software, Csaba Cserép for his invaluable help in EM tomography, Drs Balazs Hangya, Judit Makara and Gabor Makara for their help in statistical analysis, Dr Mark Eyre for his comments on the MS.

Correspondence: Zoltan Nusser (nusser@koki.hu) or Noemi Holderith (noemi.holderith@koki.mta.hu)

Cite as: J. Neurosci; 10.1523/JNEUROSCI.2024-16.2017

Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted version of this article is published.

Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process.

²János Szentágothai School of Neurosciences, Semmelweis University, Budapest H1085, Hungary

^{*}Equal contribution

1	
2	Target cell type-dependent differences in Ca ²⁺ channel function underlie distinct release
3	probabilities at hippocampal glutamatergic terminals
4	
5	
	7. 12# 7. 12# 7. 12# 7. 12 18 18 18
6	Tímea Éltes ^{1,2#} , Tekla Kirizs ^{1,2#} , Zoltan Nusser ^{1*} and Noemi Holderith ^{1*}
7	
8	¹ Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian
9	Academy of Sciences, 1083 Budapest, HUNGARY
10	² János Szentágothai School of Neurosciences, Semmelweis University, Budapest H1085,
11	Hungary
12	
13	# Equal contribution
14	Short title: Target cell type-dependent differences in presynaptic Ca ²⁺ channel function
15	No. of words in the Abstract: 159; Introduction: 583; Discussion: 1518
16	No. of pages: 40
17	No. of figures: 7
18	No. of tables: 1
19 20 21 22	Correspondence to: Zoltan Nusser (nusser@koki.hu) or Noemi Holderith (noemi.holderith@koki.mta.hu)
23	Acknowledgements
24	ZN is the recipient of a Hungarian Academy of Sciences Momentum Grant (Lendület, LP2012-29)
25	and a European Research Council Advanced Grant (293681). N.H. is funded by Janos Bolyai
26	Scholarships of the Hungarian Academy of Sciences. The financial support from these funding
27	bodies is gratefully acknowledged. We would like to thank Éva Dobai and Dóra Rónaszéki for
28	their excellent technical assistance, Borbála Bolonyai for contributing to the quantification of
29	$Elfn1/2\text{-}mGluR1\alpha\ colocalization\ and\ Neurolucida\ reconstructions,\ Miklós\ Szoboszlay\ for\ writing$
30	the gold distribution analysis software, Csaba Cserép for his invaluable help in EM tomography,
31	Drs Balazs Hangya, Judit Makara and Gabor Makara for their help in statistical analysis, Dr Mark
32	Eyre for his comments on the MS.

33	ABSTRACT
34	Target cell type-dependent differences in presynaptic release probability (P_{r}) and short-term
35	plasticity are intriguing features of cortical microcircuits that increase the computational
36	power of neuronal networks. Here we tested the hypothesis that different voltage-gated Ca ²⁺
37	channel densities in presynaptic active zones (AZs) underlie different P_r . Two-photon Ca^{2^+}
38	imaging, triple immunofluorescent labeling and three-dimensional electron microscopic (EM)
39	reconstruction of rat CA3 pyramidal cell axon terminals revealed approximately 1.7 – 1.9-
40	times higher Ca^{2+} inflow per AZ area in high P_r boutons synapsing onto parvalbumin positive
41	interneurons than in low P_{r} boutons synapsing onto mGluR1 $\!\alpha$ positive interneurons. EM
42	replica immunogold labeling, however, demonstrated only 1.15-times larger Cav2.1 and
43	Cav2.2 subunit densities in high P _r AZs. Our results indicate target cell type-specific
44	modulation of voltage-gated Ca ²⁺ channel function or different subunit composition as
45	possible mechanisms underlying the functional differences. In addition, high $P_{\rm r}$ synapses are
46	also characterized by a higher density of docked vesicles, suggesting that a concerted action of
47	these mechanisms underlies the functional differences.
48	
49	Significance Statement
50	Target cell type-dependent variability in presynaptic properties is an intriguing feature of
51	cortical synapses. When a single cortical pyramidal cell establishes a synapse onto a
52	somatostatin-expressing interneuron (IN), the synapse releases glutamate with low
53	probability, whereas the next bouton of the same axon has high release probability when its
54	postsynaptic target is a parvalbumin-expressing IN. Here we used combined molecular,
55	imaging and anatomical approaches to investigate the mechanisms underlying these
56	differences. Our functional experiments implied a ~2-fold larger Ca ²⁺ channel density in high

57	release probability boutons whereas freeze-fracture immunolocalization demonstrated only a
58	15% difference in Ca ²⁺ channel subunit densities. Our results point toward a postsynaptic
59	target cell type-dependent regulation of Ca ²⁺ channel function or different subunit
60	composition as the underlying mechanism.
61	
62	Introduction
63	Target cell type-dependent differences in the probability of glutamate release (P _r) and the
64	consequent differences in short-term plasticity are well-established phenomena of cortical
65	microcircuits. Two decades ago, Thomson (1997) reported that neocortical pyramidal cell
66	(PC) to PC connections showed paired-pulse depression, whereas PC to certain interneuron
67	(IN) synapses displayed robust short-term facilitation. Later, a similar phenomenon was found
68	in the hippocampus (Ali et al., 1998; Ali and Thomson, 1998; Scanziani et al., 1998;
69	Losonczy et al., 2002), where combined functional and molecular neuroanatomical
70	approaches led to the identification of the postsynaptic IN types. Somatostatin and
71	metabotropic glutamate receptor 1α - (mGluR1 α) expressing, oriens-lacunosum moleculare
72	(O-LM) and oriens-bistratified (O-Bi) INs of the CA1 area receive facilitating EPSCs with
73	low initial P _r , whereas synaptic inputs onto fast-spiking (FS) parvalbumin- (PV) expressing
74	INs (e.g. basket, axo-axonic, bistratified cells) display short-term depression and have high
75	initial P_r (Atwood and Karunanithi, 2002; Losonczy et al., 2002; Biro et al., 2005; Koester and
76	Johnston, 2005; Mercer et al., 2012). Simultaneous recordings between a presynaptic PC and
77	two distinct types of IN revealed that the axon of a single PC can transmit different aspects of
78	information coded in a complex spike train to distinct postsynaptic cell types (Markram et al.,
79	1998b, 1998a; Reyes et al., 1998; Pouille and Scanziani, 2004; Koester and Johnston, 2005).

It has also been demonstrated that distinct types of short-term plasticity enable neuronal

81	networks to perform complex computations (Pouille and Scanziani, 2004), but almost nothing
82	is known about the mechanisms underlying these functional differences.
83	A candidate protein bestowing different $P_{\rm r}$ and short-term plasticity to axon terminals was
84	mGluR7, a metabotropic glutamate receptor that shows postsynaptic target cell type-
85	dependent differences in its presynaptic density (Shigemoto et al., 1996). However, a group
86	III mGluR-specific antagonist failed to abolish the differences in short-term plasticity of
87	synapses expressing or lacking mGluR7 (Losonczy et al., 2003). More recently, Sylwestrak
88	and Ghosh (2012) identified the extracellular leucine-rich repeat fibronectin containing
89	protein 1 (Elfn1) as a key molecule in bestowing short-term facilitation. This protein is
90	selectively expressed postsynaptically in O-LM cell somata and dendrites, and imposes
91	facilitating neurotransmitter release to the presynaptic axon terminals. Although, to date, there
92	is no data available regarding the mechanisms underlying the low initial $P_{\rm r}$ of these facilitating
93	synapses, Rozov et al. (2001) put forward an elegant hypothesis based on their experiments
94	involving fast and slow Ca^{2+} buffers. They postulated that the low initial P_r of facilitating
95	cortical PC synapses can be explained by a larger coupling distance between voltage-gated
96	Ca ²⁺ channels and Ca ²⁺ sensors on the docked vesicles compared to the high P _r PC synapses
97	on FS INs. Assuming similar Ca ²⁺ sensors and docked vesicle distributions, this would
98	suggest a lower average Ca^{2+} channel density within the AZs of low P_r synapses.
99	Here we tested this hypothesis with two independent methods. 1) Using two-photon Ca ²⁺
100	imaging in hippocampal CA3 PC axon terminals, post hoc immunohistochemical
101	identification of their postsynaptic target cells, followed by three-dimensional (3D) EM
102	reconstructions of the imaged boutons we estimated the amount of Ca ²⁺ entering the bouton
103	(peak concentration x the bouton volume) and divided it by the AZ area. We refer to this as
104	our 'functional Ca ²⁺ channel density' estimate. 2) We also measured the densities and
105	distribution of Cav2.1 and Cav2.2 voltage-gated Ca ²⁺ channel subunits in presynaptic AZs

106	using SDS-digested freeze-fracture replica immunogold labeling (SDS-FRL) and we refer to it
107	as 'Ca ²⁺ channel density'. Finally, we assessed the densities of docked vesicles in boutons
108	with different postsynaptic target cell types using EM tomography.
109	
110	Materials and Methods
111	Slice preparation and electrophysiological recordings. Male Wistar rats (14 – 17 days old, n
112	= 97) were sacrificed by decapitation in accordance with the Hungarian Act of Animal Care
113	and Experimentation (1998, XXVIII, section 243/1998) and with the ethical guidelines of the
114	Institute of Experimental Medicine Protection of Research Subjects Committee. The animals
115	were housed in the vivarium of the Institute of Experimental Medicine in a normal 12 hour /
116	12 hour light / dark cycle. Young experimental animals were kept in a cage with their mother
117	and were used before weaning. Acute hippocampal slices were prepared as published
118	previously (Holderith et al., 2012). Briefly: after decapitation, the brain was quickly removed
119	and placed into an ice-cold cutting solution containing (in mM): sucrose, 205.2; KCl, 2.5;
120	NaHCO ₃ , 26; CaCl ₂ , 0.5; MgCl ₂ , 5; NaH ₂ PO ₄ , 1.25; glucose, 10; saturated with 95 % O ₂ and
121	5 % ${\rm CO_2}$. 300 μm thick horizontal slices were cut from the ventral part of the hippocampus
122	using a Leica Vibratome (Leica VT1200S; Leica Microsystems, Vienna, Austria), incubated
123	in an interface-type holding chamber in ACSF containing in mM: NaCl, 126; KCl, 2.5;
124	NaHCO ₃ , 26; CaCl ₂ , 2; MgCl ₂ , 2; NaH ₂ PO ₄ , 1.25; glucose, 10 saturated with 95% O ₂ and 5%
125	CO_2 (pH = 7.2 – 7.4) at 36 °C, then kept at $22 - 24$ °C. Recordings were carried out in the
126	same ACSF at $22 - 24$ °C up to 6 hours after slicing.
127	Cells were visualized using a Femto2D microscope equipped with oblique illumination and a
128	water immersion lens (25X, NA = 1.05, Olympus, Japan or 25X, NA = 1.1, Nikon, Japan).

Whole-cell voltage- or current-clamp recordings were performed from CA3 PCs or INs

130	located in the strata oriens and pyramidale using MultiClamp 700A and B amplifiers
131	(Molecular Devices). Recorded traces were filtered at 3 - 4 kHz and digitized on-line at 20
132	kHz. Patch pipettes (resistance $3-6\ M\Omega$) were pulled from thick-walled borosilicate glass
133	capillaries with an inner filament. Intracellular solution contained in mM: K-gluconate, 110;
134	KCl, 5; creatine phosphate, 10; HEPES, 10; ATP, 2; GTP, 0.4; biocytin, 5 (pH = 7.3; 290 –
135	300 mOsm). For voltage-clamp recordings of evoked EPSCs in INs, the intracellular solution
136	contained picrotoxin (0.6 - 0.8 mM). For current-clamp recordings and Ca^{2+} imaging in PC
137	axons, 100 or 300 μM Fluo5F (Molecular Probes) and 20 μM Alexa594 (Molecular Probes)
138	was added to the intracellular solution.
139	The firing pattern of the INs was determined with a series of 500 ms long hyper- and
140	depolarizing current pulses with amplitudes of 125 - 500 pA. A cell was considered fast
141	spiking if the average firing frequency exceeded 70 Hz. For extracellular stimulation, a
142	unipolar stimulating electrode was placed in the stratum oriens at least 100 μm away from the
143	soma. Interneurons were held at -70 mV and 5 stimuli (0.2 – 0.3 ms duration, 20 - 200 $\mu A)$ at
144	40 or 50 Hz with 30 second inter-stimulus interval (15 – 70 repetitions) were applied. Data
145	from 40 and 50 Hz stimulations were pooled (Fig. 11). To be able to assess the Elfn1/2
146	expression in $mGluR1\alpha^+$ cells with different short-term plasticity, cells with inputs exhibiting
147	short-term depression (~10% in the random mGluR1 α^{+} population) were selectively searched
148	for (Fig. 1 <i>J</i> , <i>K</i>). Series resistance was monitored and was $\leq 20 \text{ M}\Omega$. Pyramidal cells were held
149	at -70 mV (with a maximum of –100 pA DC current) and single APs at $0.05-0.016~\mathrm{Hz}$ were
150	evoked with $2-4$ ms-long depolarizing current pulses $(1-1.2 \text{ nA})$. Peak amplitude and full
151	width at half maximal amplitude of the APs were monitored and cells were rejected if any of
152	these parameters changed more than 10%.
153	Two-photon $[Ca^{2+}]$ imaging. Experiments were performed with a Femto2D (Femtonics Ltd.,
154	Budapest, Hungary) laser scanning microscope equipped with a MaiTai femtosecond pulsing

155	laser tuned to 810 nm (described in Holderith et al., 2012). Electrophysiological data and
156	image acquisition was controlled with a software written in MATLAB (MES, Femtonics Ltd.,
157	Budapest, Hungary). Cells were filled for 2 hours with a Ca^{2^+} -insensitive (20 μM Alexa594)
158	and a Ca^{2^+} -sensitive fluorophore (100 or 300 μM Fluo5F). Boutons were selected at 150 – 300
159	μm distances from the soma on the second and third order collaterals of the main axon in the
160	stratum oriens at $35-80\ \mu m$ slice depth. They were imaged in line scan mode (scan duration
161	500 or 1200 ms at 1 kHz, 1 - 3 per minute repetition, 2 - 3 scans averaged for each bouton)
162	with a laser intensity of 2 - 6 mW at the back aperture of the objective lens. Single AP-evoked
163	changes in fluorescence were quantified during the recording as $\Delta G/R(t) = (F_{green(t)} - F_{rest, green})$
164	$/\left(F_{red}-I_{dark,red}\right) where \; F_{green(t)} \\ represents \; the \; green \; fluorescence \; signal \; as \; a \; function \; of time,$
165	$F_{\text{rest,green}}$ is the green fluorescence before stimulation, and $I_{\text{dark,red}}$ is the dark current in the red
166	channel. To normalize data across batches of dyes, $G_{\text{\scriptsize max}}/R$ values were measured by imaging
167	a sealed (tip melted and closed by heating) pipette filled with intracellular solution containing
168	10 mM CaCl $_2$ for each cell at the same position where the boutons were imaged. $\Delta G/R$
169	measurements from boutons were divided by G_{max}/R , yielding the reported values of G/G_{max} .
170	The effects of 50 μM CdCl $_2$ and 1 μM $\omega\text{-CTX}$ MVIIC (diluted in 1 mg/ml BSA; Tocris and
171	Alomone Labs) were tested by comparing the peak amplitudes of presynaptic [Ca ²⁺] transients
172	in individual boutons averaged from 2-3 consecutive scans in control conditions and after 10
173	(for $CdCl_2$) or 30 min (for $\omega\text{-}CTX$ MVIIC) of wash-in of the drug.
174	Tissue processing. Following recordings, the slices were fixed in a solution containing 4 %
175	paraformaldehyde (PFA), 0.2% picric acid in 0.1 M phosphate buffer (PB; pH = 7.4) at 4 °C
176	for either 12 - 36 hours (PV or mGluR1α immunolabeling) or 1-3 hours (for Elfn1/2 labeling).
177	Slices containing filled PCs were incubated in 10 and 20% sucrose as cryoprotectant,
178	repeatedly freeze-thawed above liquid nitrogen, embedded in agarose (2%) and re-sectioned

179	at $70-90~\mu m$ thickness. Slices containing filled INs were immunolabelled without re-
180	sectioning.
181	For quantification of colocalization of mGluR1 α and Elfn1/2 six, and for mGluR1 α and PV
182	three 14 - 17 days old male Wistar rats were deeply anaesthetized and were transcardially
183	perfused with ice cold fixative containing 2 or 4% PFA and 0.2% picric acid in 0.1 M PB for
184	25 minutes. The brains were then quickly removed from the skull and placed in 0.1 M PB. For
185	serial EM reconstructions and EM tomography the fixative contained 2% PFA and 1%
186	glutaraldehyde (GA) in 0.1 M sodium acetate buffer (pH = 6) for 2 minutes, followed by 45
187	minutes of perfusion with 2% PFA and 1% GA in 0.1 M borate buffer (pH = 9) in six $14 - 17$
188	days old male Wistar rats. The brains were left in the skull overnight then removed and placed
189	in 0.1 M PB. 60 μm thick sections were cut from the ventral hippocampus.
190	Light microscopy. Sections / slices were washed in 0.1M PB and blocked in normal goat
191	serum (NGS, 10%) for 1 hour made up in Tris-buffered saline (TBS; pH 7.4), incubated in the
192	following primary antibodies: mouse anti-PV (1:1000, SWANT; RRID:AB_10000343);
193	rabbit anti-PV (1:1000 Synaptic Systems; RRID:AB_1210396), guinea pig anti-mGluR1α
194	(1:1000, Frontier Institute Co. Ltd; Mansouri et al., 2015; RRID:AB_2531897) or rabbit anti-
195	Elfn1/2 (1:500, Sigma; RRID:AB_1079280) diluted in TBS containing 2% NGS. After
196	several washes the following secondary antibodies were applied: Alexa488- or Cy5-
197	conjugated goat anti-mouse or goat anti-rabbit, and Cy3-conjugated donkey anti-guinea pig
198	IgGs. Biocytin was visualized with Alexa488- (Molecular Probes) or Cy5- (Jackson
199	Laboratories) conjugated streptavidin (1:500). Sections were mounted in Vectashield. Image
200	stacks were acquired with an Olympus FV1000 confocal microscope with 20x and 60x (oil
201	immersion) objectives. Contacts between PC boutons and IN dendrites were considered as
202	nutative synances if they had no enperent can between them in the feed plane

203	Electron microscopy. For standard transmission EM and EM tomography, biotinylated goat
204	anti-mouse, goat anti-rabbit and goat anti-guinea pig secondary antibodies were used (Vector
205	Laboratories, 1:50). Reactions and biocytin in the filled cells (after fluorescent examination)
206	were visualized using an avidin-biotin-horseradish peroxidase complex (Vector Laboratories)
207	and 3-3'- diaminobenzidine tetrahydrochloride (DAB) as chromogen. Sections were treated
208	with 1% OsO ₄ , stained in 1% uranyl acetate, dehydrated in a graded series of ethanol and
209	embedded in epoxy resin (Durcupan). Representative cells were reconstructed using the
210	Neurolucida system (Micro-BrightField Europe, Magdeburg, Germany) attached to a Zeiss
211	Axioscope2 microscope using 40x or 100x oil-immersion objectives. Imaged axon segments
212	were re-embedded and sectioned at 60 nm. Digital images from serial EM sections were taken
213	from the identified imaged boutons or randomly selected $PV^{\scriptscriptstyle +}$ or $mGluR1\alpha^{\scriptscriptstyle +}$ dendrites in the
214	stratum oriens at magnifications of 7500x or 10000x with a Jeol1011 EM. Boutons were 3D
215	reconstructed, and their volumes and the area of the AZ (equal to the corresponding PSD)
216	were measured using the Reconstruct software (http://synapses.clm.utexas.edu/). In the case
217	of multiple AZ boutons (12% in PV and 9% in mGluR1 α targeting population), the total AZ
218	area was calculated by summing the individual AZ areas (Fig. 3E).
219	EM tomography. 200 nm thick sections were cut and proteinA-conjugated 10 nm gold
220	particles (Cytodiagnostic) were applied on both sides as fiducial markers. Immunolabelled
221	dendritic segments (n = 3 age-matched rats) were randomly selected in the stratum oriens.
222	Single-axis tilt series of perpendicularly oriented synapses were acquired using a Tecnai G2
223	Spirit BioTWIN transmission EM operating at 120 kV and equipped with an Eagle 4K HS
224	digital camera (Fei Europe Nanoport, Eindhoven, The Netherlands). Tilt series were recorded
225	between \pm 65° (with 2° increments between \pm 45° and with 1° increments between \pm 45-65°)
226	at 30 000x magnification using Fei Xplore3D. Tomographic volumes were reconstructed
227	using the IMOD package (Kremer et al., 1996; Imig et al., 2014), and exported without

binning as z-stacks for analysis (320 images per subvolume resulting an 0.6 nm virtual pixel
size in Z dimension). AZ area and vesicle distance from the presynaptic membrane were
measured with the Reconstruct software. A vesicle was considered to be docked if the outer
part of the lipid bilayer was in direct contact with the inner part of the AZ membrane bilayer.
A vesicle was considered to be pre-docked if the distance between these lipid bilayers did not
exceed 5 nm. The 'membrane-proximal' population was pooled from docked and pre-docked
populations.
SDS-digested freeze-fracture replica-labeling (SDS-FRL). Eight male Wistar rats (P15–17)
were deeply anaesthetized and transcardially perfused with a fixative containing 2% PFA and
0.2% picric acid in 0.1 M PB for 15 minutes. The brains were then quickly removed from the
skull and placed in 0.1 M PB. Horizontal sections of 80 μm thickness were cut from the
forebrain with a vibratome and were cryoprotected in 30% glycerol. Small blocks from the
ventral CA3 area were frozen with a high-pressure freezing machine (HPM100; Leica
Microsystems), fractured with a freeze-fracture machine (BAF060; Leica Microsystems), and
processed for SDS-FRL as described previously (Kerti et al., 2012). Tissue debris was
digested from the replicas in a TBS solution containing 2.5% SDS and 20% sucrose at 80°C
overnight. The replicas were then washed and blocked with 5% BSA in TBS for 1 hour
followed by an incubation in a solution of the following primary antibodies: rabbit anti-
Cav2.1 (1:500 or 1:600, Synaptic Systems, Cat No. 152 203; RRID:AB_2619841; this Ab
provides identical labeling to that of a guinea pig anti-Cav2.1, the specificity of which was
proven in Holderith et al., 2012) rabbit anti-Cav2.2 (1:400, Synaptic Systems; Cat No.: 152
303; RRID:AB_2619844; specificity of the reaction with this Ab is verified in Lenkey et al.,
2015), rabbit anti-Kv3.1b (1:200–1:250, Alomone; RRID:AB_2040166), guinea pig anti-
$mGluR1\alpha$ (1:100, Frontier Institute Co. Ltd; RRID:AB_2531897). Replicas then were washed

and incubated in a solution containing the following secondary antibodies: goat anti-rabbit

IgGs coupled to 5 or 10 nm gold particles (1:/5 or 1:100; British Biocell) and goat anti-guinea
pig IgGs coupled to 15 nm gold particles (1:75 or 1:100; British Biocell). Replicas were
rinsed in TBS and distilled water before they were picked up on copper parallel bar grids and
examined with a Jeol1011 EM. All antibodies used in this study recognized intracellular
epitopes on their target proteins and consequently were visualized by gold particles on the P-
face. The nonspecific background labeling was measured on surrounding E-face structures.
To quantify the Cav2.1 and the Cav2.2 subunit densities in the AZs of axon terminals
targeting Kv3.1b ⁺ or mGluR1 α ⁺ dendrites, all experiments were performed with the 'mirror
replica method' (Hagiwara et al., 2005). With this method, replicas are generated from both
matching sides of the fractured tissue surface, allowing the examination of the corresponding
E- and P-faces of exactly the same membranes. The AZs were delineated on the P-face based
on the underlying high density of intramembrane particles. Gold particles inside the synaptic
area and up to 30 nm away from its edge were counted. Axon terminals containing Cav
subunit labeling without an elevated density of intramembrane particles were discarded from
the analysis because this is a characteristic feature of inhibitory terminals (Lenkey et al.,
2015). All AZs, fractured partially or in their completeness, were quantified. When the
synaptic area was not flat, the replica was tilted. To eliminate reaction-to-reaction variability
in the Cav subunit labeling, synaptic, extrasynaptic bouton, and background Cav densities
were normalized to the mean of the Cav densities measured in the AZs targeting mGluR1 $\alpha^{^{+}}$
profiles in each reaction.
Analysis of the sub-AZ distribution of immunoreactive Cav2.1 and Cav2.2 subunits. To
investigate whether the within-AZ distribution of gold particles labeling the Cav2.1 or Cav2.2
subunits is different from random distributions, we computed two measures with an in-house
developed software. First, we calculated the mean of the nearest neighbor distances of all gold
particles within an A7 (NND) and that of random distributed gold particles within the same

278	AZ (same number of gold particles, 1000 repetitions). The $\overline{\text{NND}}$ s were then statistically
279	compared with Wilcoxon signed-rank test. In our second approach, we computed a two-
280	dimensional spatial autocorrelation function $(g(r))$ for our experimental data and for their
281	random controls based on the methods of Veatch et al. (2012). The $g(r)$ reports the probability
282	of finding a second gold particle at a given r distance away from a given gold (Veatch et al,
283	2012). For randomly distributed gold particles $g(\mathbf{r}) = 1$, whereas spatial inhomogeneities result
284	in $g(r)$ values > 1 at short distances. In our experiments, we computed the $g(r)$ for $0 < r < 80$
285	nm, then their mean $(\overline{g(\mathbf{r})})$ was calculated and compared to those obtained from random
286	distributions using the Wilcoxon signed-rank test.
287	
288	Quantification of $mGluR1\alpha$ and $Elfn1/2$, and $mGluR1\alpha$ and PV colocalization. Colocalization
289	of immunolabelled somata and dendrites was assessed in image stacks acquired with an
290	Olympus FV1000 confocal microscope with 20x (somata) or 60x (dendrites) objectives in
291	randomly selected areas of the CA3 stratum oriens for Elfn1/2, and dorsal and ventral CA1
292	and CA3 areas for PV. Image stacks were acquired at 20X magnification and cells were
293	quantified in ROIs of $200x600x60\ \mu m$ in the Fluoview software. Image stacks at $60X$
294	magnification were imported into the Neurolucida software, and the total length of single and
295	double labeled dendrites were measured in ROIs of $70x70x36\ \mu m$.
296	Data analysis and statistical tests. Analysis of electrophysiological and two-photon imaging
297	data was performed using specialized Matlab-based software (MES, Femtonics Ltd. Budapest,
298	Hungary). Data were plotted using OriginPro. Normality of data was assessed using Shapiro-
299	Wilks test; statistical significance was assessed with t-test (independent two-sample with
300	unequal variances, Table 1) when the distribution was not statistically different from normal.
301	For non-normal distributions and when the sample size was small, either Mann Whitney U-
302	test (MW U-test; two unpaired groups, Fig. 2J, 3D, E, Fig. 4O-Q, Fig. 7G, H), or Wilcoxon

303	signed-rank test (two paired groups, Fig. 5 P, R, 6 K, L), or Kruskal–Wallis test (multiple
304	unpaired groups) with MW U-test with Bonferroni adjustment (2I (3 groups), 5O (5 groups),
305	6J (5 groups)) were used. For the comparison of the short-term plasticity of evoked EPSCs,
306	two-way repeated measures ANOVA with Bonferroni post hoc test was used (Fig. 1). Power
307	analysis were performed and predicted a power of 0.8 for every dataset in Fig. 2 and 3 and
308	0.75 for data in Fig. 7. Data are presented as mean \pm standard deviation (SD) for normally
309	distributed data or median and interquartile ranges (IQR) for non-normal distributions. Results
310	were considered significant when $p < 0.05$. In all figures, * $p < 0.05$; ** $p \le 0.01$; *** $p \le 0.001$.
311	
312	Results
313	Distinct short-term plasticity of EPSCs in different IN types of the hippocampal CA3
314	region
315	We chose CA3 PC local axon collaterals as the subject of our study because they are
316	amenable to presynaptic [Ca ²⁺] measurements (Holderith et al., 2012) and establish synaptic
317	contacts onto both FS, PV positive (PV $^{\!$
318	characterized the short-term plasticity of EPSCs recorded from $PV^{^{+}}$ and $mGluR1\alpha^{^{+}}$ INs in the
319	CA3 region of young Wistar rats. Whole-cell voltage-clamp recordings were performed from
320	the somata of GABAergic INs located in the stratum oriens with biocytin-containing
321	intracellular solutions and five EPSCs were evoked by extracellular stimulation of PC axons
322	(Fig. 1). The cells were characterized based on their firing patterns (Fig. 1C, G), post hoc
323	determined dendritic and axonal arbors (Fig. 1A, E) and their PV or mGluR1 α
324	immunoreactivity (Fig. 1B, F). EPSCs evoked by a train of stimuli at 40 or 50 Hz in PV^+ INs
325	showed short-term depression (EPSC ^{5th} / EPSC ^{1st} : 0.48 ± 0.16 , n = 10; Fig. 1D, I). In contrast,
326	five stimuli elicited facilitating EPSCs in mGluR1 α^+ INs (EPSC ^{5th} / EPSC ^{1st} = 3.0 \pm 1.9, n =

31; Fig. 1H, I). Although the mGluR1 α cells showed marked heterogeneity based on their
dendritic and axonal arbors, firing patterns and short-term plasticity, their excitatory inputs
showed a different short-term plasticity pattern when compared to those recorded from PV ⁺
cells (Fig. 11). These results clearly demonstrate robust differences in the short-term plasticity
of evoked EPSCs in PV^{+} and $mGluR1\alpha^{+}$ INs in the CA3 area similar to those observed in the
CA1 area and the neocortex, offering the use of these molecules in this brain region as
markers to label the postsynaptic compartments of functionally distinct presynaptic axon
terminals. Because 75% of mGluR1 α^+ cells also contain low amounts of PV in the dorsal
hippocampal CA1 area (Ferraguti et al., 2004), we performed colocalization of these two
molecules in the dorsal and ventral CA1 and CA3 areas. Our results confirmed those of
Ferraguti et al. (2004) revealing $66 \pm 4\%$ and $65 \pm 21\%$ colocalization in the dorsal CA1 and
CA3 areas, respectively. However, we found that less than 4% of the mGluR1 $\alpha^{\scriptscriptstyle +}$ cells are
immunopositive for PV in the ventral CA3 area. This low prevalence of colocalization was
observed in perfusion fixed brain sections (2.4 \pm 1.7%, n = 3 rats) as well as in immersion
fixed hippocampal in vitro slices (3.3 \pm 3.5%, n = 4 rats).
As Elfn1 has been demonstrated to play a critical role in the short-term facilitation of EPSCs
in mGluR1 α^+ O-LM cells of the CA1 region (Sylwestrak and Ghosh, 2012), we performed
double immunolocalization for mGluR1 α and Elfn1/2 in the stratum oriens of the CA3 area of
perfusion fixed rats. We found that almost all $(99 \pm 4\%)$ Elfn1/2 immunopositive (Elfn1/2 ⁺)
dendrites also contained mGluR1 α and that, conversely, 90 ± 5% of the mGluR1 α ⁺ dendrites
were also Elfn1/2 ⁺ (\sim 6000 μ m dendrite / animal, n = 3 animals). When we tested the short-
term plasticity of EPSCs in Elfn1/2 and mGluR1α double labelled INs, they showed a robust
short-term facilitation, the degree of which was significantly larger than that detected in
mGluR1 α^+ , but Elfn1/2 negative, cells (Fig. 1 <i>J</i> , <i>K</i>). These results reveal a previously unseen
diversity among mGluR1 α^+ INs and provide an explanation for the variance in the short-term

352	plasticity of their inputs. Elfn1/2 seems to be an ideal molecular marker for postsynaptic INs
353	that receive strongly facilitating inputs, but its post hoc visualization requires very mild
354	fixation (see Methods) that is incompatible with post hoc recovery of axonal arbor and EM
355	analysis. However, because 90% of mGluR1 α^+ IN dendrites are also Elfn1/ 2^+ , we decided to
356	use $mGluR1\alpha$ as our molecular marker for facilitating synapses.
357	Target cell type-dependent differences in Ca ²⁺ inflow at the AZ
358	First we opted for a combined functional and morphological approach to estimate the
359	'functional Ca ²⁺ channel density' in the presynaptic AZs of CA3 PCs (Holderith et al., 2012).
860	This approach requires the measurements of [Ca ²⁺] in local axon terminals of PCs using two-
861	photon microscopy with an intracellularly applied Ca^{2+} sensitive dye (300 μ M Fluo5F; Fig. 2)
362	Single action potential (AP)-evoked [Ca ²⁺] transients showed sizeable variability in their peak
363	amplitudes (coefficient of variation (CV) = 0.37, n= 692 boutons in 30 cells). To specifically
364	examine [Ca ²⁺] in axon terminals with identified postsynaptic target cell types, we fixed the
365	slices following the in vitro imaging experiments and then visualized the intracellular biocytin
866	and immunolabelled the tissue for mGluR1 $\!\alpha$ and PV for confocal microscopy analysis (Fig.
867	$2D$ - G). In most experiments we imaged 15-30 boutons, out of which few had apparently PV $^+$
868	or mGluR1 $\alpha^{\scriptscriptstyle +}$ dendrites as postsynaptic targets. From the total of 692 imaged boutons, we
869	found 26 and 61 as potential presynaptic elements to PV^{+} and $mGluR1\alpha^{+}$ INs, respectively.
370	Our <i>post hoc</i> analysis revealed that the peak amplitude of the [Ca ²⁺] transient was 1.25-times
371	larger in $PV^{^{+}}$ dendrite-targeting boutons compared to their $mGluR1\alpha^{^{+}}$ dendrite-targeting
372	$counterparts \ (PV: median: 0.134 \ G/G_{max}, interquartile \ ranges \ (IQR): 0.105-0.168 \ G/G_{max}, n$
373	= 26; mGluR1 α : median: 0.107 G/G _{max} , IQR: 0.081 – 0.138 G/G _{max} , n = 61, unidentified
374	target: median: $0.114~G/G_{max}$, $IQR: 0.084 - 0.145~G/G_{max}$, $n = 605$,; Fig. $2\emph{I}$; Table 1). To
375	minimize potential errors caused by slightly different dye concentrations in distinct PCs, we
376	calculated neak amplitude ratios with two other methods. First, we restricted our analyses to

377	cells that contained both PV and mGluR1a dendrite-targeting boutons and calculated
378	within-cell ratios, and found a similar 1.28-times higher value in boutons targeting PV^{\dagger}
379	dendrites (n = 10 cells). Second, we normalized the peak amplitude of the $[Ca^{2+}]$ transients in
380	each $\text{PV}^{^{+}}$ and $\text{mGluR1}\alpha^{^{+}}$ dendrite-innervating bouton to the mean of peak amplitudes
381	recorded from all boutons of a given cell and again found a 1.21-times larger value in boutons
382	targeting PV ⁺ dendrites. In a separate set of experiments, we performed [Ca ²⁺] imaging with
383	$100\;\mu\text{M}$ Fluo5F and calculated the above mentioned peak amplitude ratios. The within-cell
384	ratio of peak $[Ca^{2+}]$ in boutons innervating PV^+ or $mGluR1\alpha^+$ dendrites was 1.32 (n = 11 cell).
385	whereas the $\text{[Ca$^{2+}$]}$ transients in PV or mGluR1 α -innervating boutons normalized to the mean
386	$[Ca^{2+}]$ transients were 1.33 (n = 18) and 1.04 (n = 35), respectively, yielding a ratio of 1.27
387	(Table 1).
388	Because Sylwestrak and Ghosh (2012) reported the presence of kainate receptors in axon
389	terminals innervating mGluR1 α^+ O-LM cells that could potentially contribute to the
390	presynaptic [Ca ²⁺], we examined the effect of a non-selective voltage-gated Ca ²⁺ channel
391	blocker. We found that 50 $\mu M \; \text{Cd}^{2^+}$ caused a similar reduction in the peak $[\text{Ca}^{2^+}]$ in
392	$mGluR1\alpha^{+}$ dendrite-innervating boutons (89 \pm 10 % block n = 8) compared to that of
393	unidentified targets (87 $\pm10\%$ block, n = 36 in n = 4 cells), ruling out a significant cell type-
394	dependent differential contribution of kainate receptors to single AP-evoked presynaptic
395	$[Ca^{2+}]$ transients. To assess the contribution of the N/P/Q-type Ca^{2+} channels to the $[Ca^{2+}]$
396	transients we applied $\omega\text{-}CTX$ MVIIC (a selective N- and P/Q-type Ca^{2^+} channel blocker) in a
397	concentration (1 $\mu M)$ that almost completely abolishes the evoked EPSCs in both $PV^{^{+}}$ (96 \pm
398	3% block, n = 4 cells) and mGluR1 α^+ (93 ± 7% block, n = 6) INs in the str. oriens of the CA3
399	area. The toxin reduced the peak amplitude of the presynaptic [Ca $^{2+}$] transients by 45 \pm 10%
400	$(n = 12 \text{ in PV-innervating boutons})$ and $46 + 18\%$ $(n = 19 \text{ mGluR1}\alpha\text{-innervating boutons})$

demonstrating a similar contribution of these channels to the [Ca²⁺] transients in the two 401 402 bouton populations. A larger [Ca²⁺] transient might be the consequence of lower Ca²⁺ buffering, a smaller bouton 403 volume, or a larger amount of Ca²⁺ entering the bouton. To assess potential differences in 404 Ca²⁺ buffering in these boutons, which were often only a few microns away from each other 405 406 (inter-bouton distance: $6.4 \pm 3.5 \mu m$) on the same axon branch, first we fitted the decay of the grand total averaged [Ca²⁺] transients with single exponentials and found very similar time 407 408 constants (PV: 352 ms vs. mGluR1α: 413 ms). However, the high fluorescent dye 409 concentration (300 µM) used in these experiments might dominate the decay, masking 410 potential differences in the fixed buffer concentration. To circumvent this problem, we recorded [Ca²⁺] transients with 100 μM Fluo5F and analyzed their decay times (Fig. 2J). The 411 [Ca²⁺] transients recorded with lower dye concentrations displayed a substantially faster decay 412 $(300 \mu M: 463 \text{ ms vs. } 100 \mu M: 210 \text{ ms}, fitted to the first 260 ms of the averaged traces). When$ 413 414 the decay time constants of [Ca²⁺] transients were compared in boutons innervating PV⁺ and 415 mGluR1α⁺ dendrites, no significant difference was found (PV: median: 277 ms, IQR: 212 – 403 ms, n = 18; mGluR1 α : median: 259 ms, IQR: 207 – 322 ms, n = 35; p = 0.61, MW U-test; 416 Fig. 2J), arguing against a robust difference in Ca²⁺ buffering. To test potential differences in 417 bouton volumes, we carried out 3D EM reconstructions of PV⁺ or mGluR1α⁺ dendritic 418 419 segments together with their presynaptic axon terminals in the stratum oriens of perfusion fixed tissue (Fig. 3). Both PV⁺ and mGluR1α⁺ dendrites were densely innervated by axon 420 terminals, the majority of which formed asymmetrical (excitatory) synapses onto dendritic 421 422 shafts (Fig. 3A, B). These boutons mainly originate from CA3 PCs located either in the ipsi-423 or contralateral hemisphere. Three-dimensional reconstructions (Fig. 3C) revealed no significant difference in the volume of the boutons innervating these IN types (PV: median: 424 $0.20 \, \mu m^3$, IQR: $0.136 - 0.25 \, \mu m^3$, n = 67; mGluR1 α : median: $0.20 \, \mu m^3$, IQR: 0.125 - 0.291425

426	μ m, n = 8/; p = 0.65, MW U-test; Fig. 3D), demonstrating that distinct bouton volumes are
427	not the main cause of the observed differences in peak [Ca ²⁺]. Because previous studies from
428	our laboratory revealed that presynaptic Cav2.1 and Cav2.2 Ca ²⁺ channel subunits are
129	confined to the AZ of hippocampal glutamatergic and GABAergic axon terminals (Holderith
430	et al., 2012; Lenkey et al., 2015), we measured the total AZ areas in the 3D reconstructed
431	boutons and found significantly smaller AZs in $PV^{^{+}}$ dendrite-innervating boutons (PV:
432	median: $0.06~\mu m^2$, IQR : $0.04-0.08~\mu m^2$, $n=67$; $mGluR1\alpha$: $median$: $0.08~\mu m^2$, IQR : $0.05-0.08$
433	$0.11 \ \mu\text{m}^2$, $n = 87$; $p = 0.0001$, MW U-test; Fig. 3E). Finally, we calculated the total Ca^{2^+} that
434	enters upon an AP by multiplying the peak [Ca ²⁺] with the medians of the volume of
435	randomly selected and 3D reconstructed boutons. Assuming that this Ca ²⁺ enters through Ca ²⁺
436	channels located in the AZs, we normalized this data to the median AZ area. This way we can
437	calculate the total amount of Ca2+ that enters the boutons through a unit AZ area (termed as
438	'functional $\text{Ca}^{2^{+}}$ channel density') in $\text{PV}^{^{+}}$ and $\text{mGluR1}\alpha^{^{+}}$ dendrite-targeting boutons and
439	found it to be 1.7-times larger in PV^{\dagger} dendrite-innervating boutons.
440	To provide a more direct measure of the 'functional Ca ²⁺ channel density' in these AZs, we
441	randomly selected a subset of our in vitro two-photon imaged boutons with LM
142	immunofluorescent identification of their postsynaptic target cells ($n = 12 \text{ PV}^+$ and $n = 18$
143	$mGluR1\alpha^{+}$ -targeting boutons from 9 PCs) and performed serial section EM of the imaged
144	boutons (Fig. 4A-M). This method provides a more accurate 'functional Ca ²⁺ channel density'
145	estimate, but it has the disadvantage of being so labor intensive that a smaller data set was
446	obtained. The peak amplitude of the [Ca ²⁺] transient in EM-verified PV ⁺ dendrite-targeting
147	boutons was 1.32-times larger compared to that recorded in mGluR1 $\alpha^{\scriptscriptstyle +}$ dendrite-targeting
448	boutons (PV: 0.18 ± 0.06 G/G _{max} , median: 0.17 G/G _{max} , n = 10; mGluR1 α : 0.13 ± 0.03
149	G/G_{max} , median: 0.13 G/G_{max} , n = 13, p = 0.02, MW U-test). We could faithfully measure the
450	AZ area in 7 and 10 houtons targeting PV^{+} and $mGluR1a^{+}$ dendrites, respectively. In this

immunolabeling

173	Cav2.1 and Cav2.2 subunit densities in presynaptic AZs as determined with replica
172	of 18 boutons) dendrites.
171	between biocytin filled axon terminals and $PV^{^{+}}$ (10 out of 12 boutons) or $mGluR1\alpha^{^{+}}$ (13 out
170	analysis revealed a similar accuracy in predicting synaptic contacts with confocal microscopy
169	'functional Ca ²⁺ channel density' in the AZs of these two bouton populations. Finally, our EM
168	combined functional-structural approaches indicated 1.7- and 1.9-times differences in the
167	mGluR1α: 0.28 ± 0.06, median: 0.27, $n = 10$; $p = 0.002$, MW U-test; Fig. 4 Q). These two
166	value for the PV^{+} dendrite-innervating axon terminals (PV: 0.54 \pm 0.12, median: 0.56, n = 7;
165	Ca ²⁺ per AZ area for these imaged and EM analyzed boutons and obtained a 1.9-times larger
164	79; p < 0.001, MW U-test, single AZ boutons only). Finally, we calculated the total amount of
163	$0.13\ 1/\mu m,\ median:\ 0.29\ 1/\mu m,\ n=59;\ mGluR1\alpha:\ 0.42\pm0.18\ 1/\mu m,\ median:\ 0.40\ 1/\mu m,\ n=10$
162	obtained from the perfusion-fixed tissue with better ultrastructural preservation (PV: 0.32 \pm
161	test, Fig. 4P), a similar significant difference was observed compared to the larger population
160	$0.31\ 1/\mu m, n=7; mGluR1\alpha; 0.47\pm0.13\ 1/\mu m, median; 0.50\ 1/\mu m, n=10; p=0.04, MW\ U-1000000000000000000000000000000000000$
159	bouton volume ratio was calculated for this subset of boutons (PV: 0.32 ± 0.08 1/µm, median:
158	qualitatively similar to those reconstructed from perfusion-fixed tissue. When the AZ area to
157	boutons had any ultrastructural sign of photodamage; they had only a single AZ and appeared
156	convergent asymmetrical synapses (implying that they were IN dendrites). None of these
155	boutons revealed that they established synapses onto dendritic shafts that received many
154	to the difference observed for the population data (c.f. Fig. 2 <i>I</i> , 4 <i>N-O</i>). EM analysis of these
153	7; $mGluR1\alpha$: 0.13 ± 0.02 G/G_{max} , $median$: 0.13 G/G_{max} , $n = 10$, $p = 0.045$, MW U-test) similar
152	that in mGluR1 α^+ dendrite-targeting ones (PV: 0.17 \pm 0.05 G/G _{max} , median: 0.17 G/G _{max} , n =
151	subset, the peak [Ca ²⁺] in PV ⁺ dendrite-targeting boutons was 1.34-times larger compared to

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

In the next set of experiments, we performed SDS-FRL to obtain an independent measure of presynaptic Ca²⁺ channel densities. In order to quantitatively compare the immunogold labeling for Ca²⁺ channel subunits in presynaptic AZs that synapse onto distinct IN types, the postsynaptic targets of the axon terminals need to be identified. This requires the use of the so called face-matched mirror replica technique (Hagiwara et al., 2005) and the molecular identification of the target IN types, because the type of IN from small fractured membrane segments cannot be determined based on morphological features. Following rapid freezing under high pressure, we randomly fractured tissue sections from the CA3 area and created carbon-platinum-carbon replicas of both fractured surfaces (Figs. 5, 6). One replica was immunoreacted to identify IN dendrites and its mirror surface was labeled for a Ca²⁺ channel subunit, and all subcellular structures (dendrites, AZs) were identified in both replicas. Metabotropic GluR 1α is a transmembrane protein that is expressed in the somato-dendritic plasma membrane of hippocampal INs and specific antibodies are available that can be used for replica labeling (Mansouri et al., 2015). PV is a cytoplasmic protein that cannot be detected with SDS-FRL, therefore we identified somato-dendritic regions of PV⁺ INs based on the presence of immunogold labeling for the Kv3.1b voltage-gated K⁺ channel subunit (Du et al., 1996). Both mGluR1α and Kv3.1b antibodies recognize intracellular epitopes, therefore, label the protoplasmic-face (P-face) of dendritic plasma membranes (Figs. 5, 6). Many membrane segments are attached to these IN dendrites that represent the extracellularface (E-face) of presynaptic axon terminals. As our antibodies against Ca²⁺ channel subunits recognize intracellular epitopes (label on the P-face), they cannot be used to localize these channels in these attached axonal E-face membranes. The P-faces of these dendrite-attached presynaptic membranes are present in the 'mirror replicas' (Figs. 5, 6). Because the release of glutamate from these axon terminals are mainly mediated by P/Q- and N-type Ca²⁺ channels (see above), we localized both Cay2.1 and Cay2.2 subunits. The dendrite-attached P-face

000	membrane segments were often labelled for the Cav2.1 subunit and the gold particles were
501	concentrated over areas that had an elevated density of intra-membrane particles,
502	corresponding to the AZs (Fig. 5A-N). The normalized density of gold particles within the
503	AZs was significantly larger than that found in the surrounding E-face plasma membranes
504	(defined as background), while the Cav2.1 subunit density in extrasynaptic bouton membranes
505	was similar to that of the background (Fig. 50). We performed these experiments in five
506	animals and analyzed a total of 112 and 172 AZs attached to $Kv3.1b^{^{+}}$ and $mGluR1\alpha^{^{+}}$
507	dendrites, respectively, in the stratum oriens of the CA3 area. Quantitative comparison of the
808	two AZ populations revealed an overall 1.15-times higher density in Kv3.1b ⁺ dendrite-
509	targeting AZs (Fig. 50; for non-normalized gold densities see Table 1)
510	Next, we conducted the same investigation for the other major Ca ²⁺ channel subunit (Cav2.2;
511	Fig. 6). Presynaptic P-face plasma membranes attached to $Kv3.1b^+$ (n = 52) or $mGluR1\alpha^+$ (n =
512	114) dendrites were also heavily labeled for the Cav2.2 subunit (Fig. 6A-I). Gold particles
513	were confined to the AZs, where their densities were significantly higher than the background
514	(Fig. 6 <i>J</i>). Cav2.2 subunit densities also showed a 1.20-fold higher values in Kv3.1b ⁺
515	compared to $mGluR1\alpha^{+}$ dendrite-targeting AZs, but the difference did not reach significance
516	(Fig. 6J; for non-normalized gold densities see Table 1). Finally, we investigated whether the
517	sub-AZ distribution of the gold particles labeling the Cav subunits is compatible with a
518	random process. To test this, we computed two measures (nearest neighbor distance (NND),
519	and a two-dimensional spatial autocorrelation function (ACF), see Methods) and compared
520	the real anti-Cav2.1 immunogold distribution data in 43 Kv3.1b $^{\!\!\!+}$ and 72 mGluR1 $\alpha^{\!\!\!+}$ dendrite-
521	targeting AZs (fractured in their completeness) to those of random gold distributions. Both
522	NND and ACF analysis revealed that the actual data was significantly different from random
523	distributions (Fig. 5P, R). A similar result was obtained for the Cav2.2 subunit in 21 (Kv3.1b)
524	and 40 (mGluR1a) AZs (Fig. 6K. L.). The significantly lower mean NNDs in both Kv3.1b ⁺

525	and $mGluR1\alpha^+$ dendrite-innervating AZs demonstrate spatial inhomogeneities of gold
526	particles.
527	Difference in docked vesicle density in $PV^{^{+}}$ and $mGluR1\alpha^{^{+}}$ dendrite-innervating boutons
528	Not only the Ca ²⁺ channel density influences the distance between the presynaptic Ca ²⁺
529	channels and the Ca ²⁺ sensors on the synaptic vesicles, but the density of vesicles docked at
530	the AZ is also a key parameter. The best currently known method to analyze the distribution
531	of synaptic vesicles around the AZ at high resolution is EM tomography (Siksou et al., 2007;
532	Imig et al., 2014). We therefore carried out EM tomography on 200 nm thick resin embedded,
533	perfusion fixed tissue immunoreacted for PV or mGluR1 α (Fig. 7) and estimated the densities
534	of vesicles associated with these two AZ populations. Examining the tomographic sub-
535	volumes at a resolution of 0.6 nm allowed the selection of the Z directional planes where each
536	vesicle is closest to the presynaptic AZ membrane, from which the measurements were
537	performed. We defined a vesicle as docked if it directly contacted the AZ membrane (Fig. 7B,
538	E) or as pre-docked if the vesicle to AZ membrane distance was ≤ 5 nm (Fig. 7 C , F).
539	Quantitative comparisons revealed a 1.5- and 1.4-times higher density of docked (Fig. 7G)
540	and membrane-proximal (docked and pre-docked vesicles pooled together; Fig. 7H, Table 1.)
541	vesicles in AZs contacting $PV^{^{\scriptscriptstyle +}}$ INs, compared to mGluR1 $\alpha^{^{\scriptscriptstyle +}}$ INs, respectively.
542	
543	Discussion
544	In the present manuscript, we performed two series of experiments to estimate the densities of
545	Ca ²⁺ channels in presynaptic AZs of CA3 PCs contacting two distinct types of IN. First, we
546	carried out a combined functional and morphological investigation to estimate what we call
547	'functional Ca^{2+} channel density' and found an almost 2-fold higher density in the AZs

548	innervating PV^+ compared to $mGluR1\alpha^+$ INs. This is the consequence of a larger presynaptic
549	$[Ca^{2+}]$ transient, a smaller AZ area and a similar volume of boutons innervating PV^+ INs. We
550	also determined the densities of immunogold particles labeling the Cav2.1 and Cav2.2 Ca ²⁺
551	channel subunits using SDS-FRL and found that PV^{\dagger} dendrite-innervating terminals exhibited
552	only a 1.15-times higher Ca ²⁺ channel subunit density. Finally, a 1.5-times higher density of
553	docked vesicles in PV^{\dagger} dendrite-innervating AZs was revealed by EM tomography.
554	
555	Target cell type-dependent differential modulation of Ca ²⁺ channel function
556	Our Ca ²⁺ imaging experiments are consistent with the results of Koester and Johnston (2005)
557	who have performed simultaneous paired whole-cell recordings and imaged [Ca ²⁺] transients
558	in presynaptic boutons mediating either facilitating or depressing EPSPs in the neocortex.
559	They also observed a larger presynaptic [Ca ²⁺] transient in depressing PC to multipolar cell
560	synapses compared to those mediating facilitating EPSPs in bitufted cells. However, the
561	difference in the recorded cortical boutons was more robust than that found in our present
562	study in CA3 PCs. Koester and Johnston (2005) did not provide ultrastructural information
563	regarding the bouton volume or AZ size, so the basis for the difference in [Ca ²⁺] between the
564	depressing and facilitating synapses could not be determined. Our data thus extend the current
565	knowledge by demonstrating that the larger [Ca $^{2+}$] in high P_r , FS PV^+ IN-innervating boutons
566	is not the consequence of a smaller bouton volume, but is caused by a larger amount of Ca ²⁺
567	entering the bouton upon an AP. By determining the size of the AZs (where Ca ²⁺ channels are
568	concentrated) we can predict the [Ca ²⁺] in the vicinity of the release sites. Assuming similar
569	Ca^{2+} channel properties in different P_r boutons, our data predict a $1.7-1.9$ -times higher
570	density of Ca ²⁺ channels in high P _r AZs. However, quantitative evaluation of several hundreds

of AZs with SDS-FRL for both Cav2.1 (P/Q) and Cav2.2 (N-type) Ca²⁺ channel subunits in

572	AZs that remained physically attached to $\text{Kv3.1b}^+\text{(PV}^+\text{)}$ or $\text{mGluR1}\alpha^+$ somato-dendritic
573	membranes revealed only a \sim 15% higher Cav subunit density in the Kv3.1b $^{+}$ dendrite-
574	innervating AZs.
575	A potential explanation for the discrepancy between our 'functional channel density' and
576	SDS-FRL Cav subunit density estimates is a preferential enrichment of Cav2.3 (R-type)/Cav1
577	(L-type)/Cav3 (T-type) subunits in PV ⁺ dendrite-innervating boutons (Parajuli et al., 2012;
578	Carbone et al., 2014). However, our experiments with 1 μM $\omega\textsc{-CTX}$ MVIIC (a concentration
579	that almost fully block the evoked EPSCs in both IN types) revealed an almost identical block
580	of [Ca ²⁺] transients in boutons targeting these distinct IN types, arguing against differential
581	contribution of R-, T-, and L-type Ca ²⁺ channels to the [Ca ²⁺] transients. Another possible
582	explanation for this discrepancy is a differential fixed Ca ²⁺ buffer concentration in these two
583	bouton populations. However, the similar decay of the [Ca ²⁺] transients (recorded with either
584	$300~\text{or}~100~\mu\text{M}$ Fluo5F) in these bouton populations argues against this possibility. We
585	suggest that differential target cell type-dependent regulation of Ca ²⁺ channel function is the
586	most likely mechanism underlying the differences.
587	There are a number of ways to regulate Ca^{2^+} channel function. Association with different β
588	subunits promotes different voltage-dependent activation and inactivation (reviewed by
589	Buraei and Yang, 2010). Interactions with SNARE proteins such as syntaxin and SNAP25 at
590	the so called 'synprint' motif reduce the channel open probability, whereas additional co-
591	expression of synaptotagmin reverses this effect (Zhong et al., 1999). This suggests a
592	regulatory switch by which presynaptic Ca ²⁺ channels bound to Ca ²⁺ sensors are functionally
593	enabled, whereas Ca ²⁺ channels decoupled from Ca ²⁺ sensors are disabled (Eggermann et al.,
594	2012). The AZ protein Munc13, which is involved in vesicle priming processes, has also been
595	found to alter Ca ²⁺ inflow by modulating the kinetic properties of Ca ²⁺ channels without

96	changing their density (Calloway et al., 2015). Probably the most widely studied modulation
597	of Ca ²⁺ channel function is its regulation by presynaptic G-protein-coupled receptors (e.g.
598	mGluRs, A1 adenosine-, $\alpha 2$ noradrenergic, GABAB or endocannabinoid receptors; Bean,
599	1989; Dittman and Regehr, 1996; Takahashi et al., 1996; Leao and Von Gersdorff, 2002;
500	Brown et al., 2004; Szabo et al., 2014; Kupferschmidt and Lovinger, 2015). P/Q- and N-type
501	$Ca^{2^{+}} \ channel \ function \ is \ reduced \ via \ direct \ binding \ of \ G-protein \ \beta/\gamma-subunits \ to \ Ca^{2^{+}} \ channel$
502	β subunits. In a recent study, Anderson et al. (2015) demonstrated that presynaptic β
503	neurexins can transsynaptically reduce tonic endocannabinoid production and increase the $P_{\rm r}$
504	of CA1 PC axons by alleviating presynaptic [Ca ²⁺] from CB1-mediated inhibition. Another
505	way of modulating Ca^{2+} channel function is phosphorylation: CDK5 (kinase) / calcineurin
506	(phosphatase) equilibrium has been shown to set the phosphorylation state of the $\alpha 1$ subunit of
507	N-type Ca ²⁺ channels, which influences the voltage dependence of the open probability of the
508	channel (Su et al., 2012; Kim and Ryan, 2013). Whatever the mechanisms are, they must be
509	able to modulate the function of presynaptic Ca ²⁺ channels in a postsynaptic target cell type-
510	dependent manner.
511	The amount of Ca ²⁺ entering through presynaptic voltage-gated Ca ²⁺ channels is very
512	sensitive to the shape/waveform of the AP (Geiger and Jonas, 2000), and therefore a
513	postsynaptic target cell type-dependent difference in the AP waveform could also explain our
514	results. It remains to be seen whether the AP waveform in boutons (Rowan et al., 2014) that
515	are segregated by only a few microns along the same axon could be sufficiently different to
516	account for the \sim 30% difference in the [Ca ²⁺] transient observed in our experiments.
	•
517	The larger amount of Ca ²⁺ together with a higher docked vesicle density in high P _r boutons,
518	indicates a higher [Ca ²⁺] at the Ca ²⁺ sensors. Rozov et al. (2001) tested the transmission
519	between cortical PCs and two distinct IN types (multipolar and bitufted) with fast and slow
520	Ca ²⁺ buffers. The more robust effect of EGTA (slow buffer) on neurotransmitter release from

021	PC to bituited compared to multipolar cells predicted a larger physical distance between the
622	Ca^{2^+} channels and Ca^{2^+} sensors (larger coupling distance) in the low P_r synapse. Our
623	'functional Ca ²⁺ channel density' estimate is consistent with this prediction and supports the
624	hypothesis that the mechanisms underlying the low initial $P_{\rm r}$ and the subsequent short-term
625	facilitation is a large Ca ²⁺ channel to Ca ²⁺ sensor distance (Neher, 1998; Atwood and
626	Karunanithi, 2002; Eggermann et al., 2012).
627	Another level of complexity might arise from the potential target cell type-dependent
628	differences in the sub-AZ distribution of Ca ²⁺ channels (Holderith et al., 2012; Nakamura et
629	al., 2015). Our NND and ACF analysis revealed that Cav2.1 and Cav2.2 subunits show
630	within-AZ distributions that are significantly different from random distributions. Note,
631	however, that the fact that the distribution of gold particles in both AZ populations differ from
632	random does not mean that the sub-AZ distribution of Cav channels is identical in both AZ
633	populations.
634	
635	Target cell type-dependent molecular differences in presynaptic axon terminals
636	So far, the only known protein with a dramatic difference in its density between low- and
637	high-P _r synapses of a single PC axon is mGluR7 (Shigemoto et al., 1996), making it an ideal
638	candidate through which a low initial P _r and a consequent short-term facilitation could be
639	achieved. The pharmacological blockade of group III mGluRs (including mGluR7) increases
640	the amplitude of evoked EPSCs, but does not change the facilitating phenotype of EPSCs
641	recorded from CA1 mGluR1 α^+ INs (Losonczy et al., 2003), suggesting a tonic, mGluR-
642	mediated reduction of transmitter release from these axon terminals. Similarly, knocking
643	down Elfn1 from somatostatin-positive INs also led to an increase in the amplitude of the 1st
644	EPSC of a train and a reduction in the degree of short-term facilitation, consistent with the

results of pharmacological block of mGluR7. Indeed, it has recently been	shown that the
postsynaptically located Elfn1 has a key role in the selective recruitment	of mGluR7 to the
presynaptic AZs of PC axons that contact somatostatin/mGluR1 α^+ INs (T	Comioka et al., 2014).
However, the short-term plasticity of the mGluR1 α^+ dendrite-targeting be	outons in mGluR7
antagonist or following Elfn1 knock-down is still facilitating, very different	ent from that
observed in PV ⁺ IN-targeting boutons, suggesting that other mechanisms	must be involved.
These might include the regulation of Ca ²⁺ channel function mentioned a	bove or the selective
presence of molecules that might impose facilitation on synapses (e.g. NI	MDA receptors,
Buchanan et al., 2012; kainate receptors, Sylwestrak and Ghosh, 2012; sy	/naptotagmin-7,
Jackman et al., 2016). Additional factors could contribute to differences in	n initial P _r by
changing the sensitivity of the release machinery to [Ca ²⁺]. Proteins like	Rab3A-D and
Munc13-3 increase (Schluter et al., 2004; Schluter et al., 2006; Ishiyama	et al., 2014) whereas
others such as mover decrease (Korber et al., 2015) P_r without affecting t	he readily releasable
pool. Unc13 isoforms have been implicated in the preferential targeting of	of vesicles to docking
sites that are formed at varying distances from the Ca ²⁺ channels (Bohme	et al., 2016). Any of
these mechanisms may also contribute to the differences in initial P_{r} in ac	ldition to the above
described differences in [Ca ²⁺].	

Pflugers Arch 466:677-687.

662	References
663	Ali AB, Thomson AM (1998) Facilitating pyramid to horizontal oriens-alveus interneurone
664	inputs: dual intracellular recordings in slices of rat hippocampus. J Physiol (London)
665	507:185-199.
666	Ali AB, Deuchars J, Pawelzik H, Thomson AM (1998) CA1 pyramidal to basket and
667	bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices. J
668	Physiol (London) 507:201-217.
669	Anderson GR, Aoto J, Tabuchi K, Foldy C, Covy J, Yee AX, Wu D, Lee SJ, Chen L,
670	Malenka RC, Sudhof TC (2015) beta-Neurexins Control Neural Circuits by
671	Regulating Synaptic Endocannabinoid Signaling. Cell 162:593-606.
672	Atwood HL, Karunanithi S (2002) Diversification of synaptic strength: presynaptic elements.
673	Nature Rev Neurosci 3:497-516.
674	Bean BP (1989) Neurotransmitter inhibition of neuronal calcium currents by changes in
675	channel voltage dependence. Nature 340:153-156.
676	Biro AA, Holderith NB, Nusser Z (2005) Quantal size is independent of the release
677	probability at hippocampal excitatory synapses. J Neurosci 25:223-232.
678	Bohme MA, Beis C, Reddy-Alla S, Reynolds E, Mampell MM, Grasskamp AT, Lutzkendorf
679	J, Bergeron DD, Driller JH, Babikir H, Gottfert F, Robinson IM, O'Kane CJ, Hell SW,
680	Wahl MC, Stelzl U, Loll B, Walter AM, Sigrist SJ (2016) Active zone scaffolds
681	differentially accumulate Unc13 isoforms to tune Ca ²⁺ channel-vesicle coupling. Nat
682	Neurosci 19:1311-1320.
683	Brown SP, Safo PK, Regehr WG (2004) Endocannabinoids inhibit transmission at granule
684	cell to Purkinje cell synapses by modulating three types of presynaptic calcium
685	channels. J Neurosci 24:5623-5631.
686	Buchanan KA, Blackman AV, Moreau AW, Elgar D, Costa RP, Lalanne T, Tudor Jones AA,
687	Oyrer J, Sjostrom PJ (2012) Target-specific expression of presynaptic NMDA
688	receptors in neocortical microcircuits. Neuron 75:451-466.
689	Buraei Z, Yang J (2010) The β subunit of voltage-gated Ca^{2+} channels. Physiological Reviews
690	90:1461-1506.
691	Calloway N, Gouzer G, Xue M, Ryan TA (2015) The active-zone protein Munc13 controls
692	the use-dependence of presynaptic voltage-gated calcium channels. eLife 4.
693	Carbone E, Calorio C, Vandael DH (2014) T-type channel-mediated neurotransmitter release.

695	Dittman JS, Regehr WG (1996) Contributions of calcium-dependent and calcium-independent
696	mechanisms to presynaptic inhibition at a cerebellar synapse. J Neurosci 16:1623-
697	1633.
698	Du J, Zhang L, Weiser M, Rudy B, McBain CJ (1996) Developmental expression and
699	functional characterization of the potassium-channel subunit Kv3.1b in parvalbumin-
700	containing interneurons in the rat hippocampus. J Neurosci 16:506-518.
701	Eggermann E, Bucurenciu I, Goswami SP, Jonas P (2012) Nanodomain coupling between
702	Ca(2+) channels and sensors of exocytosis at fast mammalian synapses. Nature Rev
703	Neurosci 13:7-21.
704	Ferraguti F, Cobden P, Pollard M, Cope D, Shigemoto R, Watanabe M, Somogyi P (2004)
705	Immunolocalization of metabotropic glutamate receptor 1α (mGluR1 α) in distinct
706	classes of interneuron in the CA1 region of the rat hippocampus. Hippocampus
707	14:193-215.
708	Geiger JR, Jonas P (2000) Dynamic control of presynaptic Ca ²⁺ inflow by fast-inactivating K ⁺
709	channels in hippocampal mossy fiber boutons. Neuron 28:927-939.
710	Hagiwara A, Fukazawa Y, Deguchi-Tawarada M, Ohtsuka T, Shigemoto R (2005)
711	Differential distribution of release-related proteins in the hippocampal CA3 area as
712	revealed by freeze-fracture replica labeling. J Comp Neurol 489:195-216.
713	Holderith N, Lorincz A, Katona G, Rozsa B, Kulik A, Watanabe M, Nusser Z (2012) Release
714	probability of hippocampal glutamatergic terminals scales with the size of the active
715	zone. Nature Neurosci 15:988-997.
716	Imig C, Min SW, Krinner S, Arancillo M, Rosenmund C, Sudhof TC, Rhee J, Brose N,
717	Cooper BH (2014) The morphological and molecular nature of synaptic vesicle
718	priming at presynaptic active zones. Neuron 84:416-431.
719	Ishiyama S, Schmidt H, Cooper BH, Brose N, Eilers J (2014) Munc13-3 superprimes synaptic
720	vesicles at granule cell-to-basket cell synapses in the mouse cerebellum. J Neurosci
721	34:14687-14696.
722	Jackman SL, Turecek J, Belinsky JE, Regehr WG (2016) The calcium sensor synaptotagmin 7
723	is required for synaptic facilitation. Nature 529:88-91.
724	Kerti K, Lorincz A, Nusser Z (2012) Unique somato-dendritic distribution pattern of Kv4.2
725	channels on hippocampal CA1 pyramidal cells. Eur J Neurosci 35:66-75.
726	Kim SH, Ryan TA (2013) Balance of calcineurin Aalpha and CDK5 activities sets release
727	probability at nerve terminals. J Neurosci 33:8937-8950.

728	Koester HJ, Johnston D (2005) Target cell-dependent normalization of transmitter release at
729	neocortical synapses. Science 308:863-866.
730	Korber C, Horstmann H, Venkataramani V, Herrmannsdorfer F, Kremer T, Kaiser M,
731	Schwenger DB, Ahmed S, Dean C, Dresbach T, Kuner T (2015) Modulation of
732	Presynaptic Release Probability by the Vertebrate-Specific Protein Mover. Neuron
733	87:521-533.
734	Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-
735	dimensional image data using IMOD. J Struct Biol 116:71-76.
736	Kupferschmidt DA, Lovinger DM (2015) Inhibition of presynaptic calcium transients in
737	cortical inputs to the dorsolateral striatum by metabotropic $GABA_{B}$ and $mGlu2/3$
738	receptors. J Physiol (London) 593:2295-2310.
739	Leao RM, Von Gersdorff H (2002) Noradrenaline increases high-frequency firing at the caly
740	of Held synapse during development by inhibiting glutamate release. J Neurophysiol
741	87:2297-2306.
742	Lenkey N, Kirizs T, Holderith N, Mate Z, Szabo G, Vizi ES, Hajos N, Nusser Z (2015) Tonio
743	endocannabinoid-mediated modulation of GABA release is independent of the CB1
744	content of axon terminals. Nat Comm 6:6557.
745	Losonczy A, Somogyi P, Nusser Z (2003) Reduction of excitatory postsynaptic responses by
746	persistently active metabotropic glutamate receptors in the hippocampus. J
747	Neurophysiol 89:1910-1919.
748	Losonczy A, Zhang L, Shigemoto R, Somogyi P, Nusser Z (2002) Cell type dependence and
749	variability in the short-term plasticity of EPSCs in identified mouse hippocampal
750	interneurones. J Physiol (London) 542:193-210.
751	Mansouri M, Kasugai Y, Fukazawa Y, Bertaso F, Raynaud F, Perroy J, Fagni L, Kaufmann
752	WA, Watanabe M, Shigemoto R, Ferraguti F (2015) Distinct subsynaptic localization
753	of type 1 metabotropic glutamate receptors at glutamatergic and GABAergic synapses
754	in the rodent cerebellar cortex. Eur J Neurosci 41:157-167.
755	Markram H, Wang Y, Tsodyks M (1998a) Differential signaling via the same axon of
756	neocortical pyramidal neurons. Proc Natl Acad Sci USA 95:5323-5328.
757	Markram H, Gupta A, Uziel A, Wang Y, Tsodyks M (1998b) Information processing with
758	frequency-dependent synaptic connections. Neurobiol Learn Mem 70:101-112.
759	Mercer A, Eastlake K, Trigg HL, Thomson AM (2012) Local circuitry involving
760	parvalbumin-positive basket cells in the CA2 region of the hippocampus.
761	Hippocampus 22:43-56.

762	Nakamura Y, Harada H, Kamasawa N, Matsui K, Rothman JS, Shigemoto R, Silver RA,
763	DiGregorio DA, Takahashi T (2015) Nanoscale distribution of presynaptic Ca ²⁺
764	channels and its impact on vesicular release during development. Neuron 85:145-158.
765	Neher E (1998) Vesicle pools and Ca ²⁺ microdomains: new tools for understanding their roles
766	in neurotransmitter release. Neuron 20:389-399.
767	Parajuli LK, Nakajima C, Kulik A, Matsui K, Schneider T, Shigemoto R, Fukazawa Y (2012)
768	Quantitative regional and ultrastructural localization of the Cav2.3 subunit of R-type
769	calcium channel in mouse brain. J Neurosci 32:13555-13567.
770	Pouille F, Scanziani M (2004) Routing of spike series by dynamic circuits in the
771	hippocampus. Nature 429:717-723.
772	Reyes A, Lujan R, Rozov A, Burnashev N, Somogyi P, Sakmann B (1998) Target-cell-
773	specific facilitation and depression in neocortical circuits. Nature Neurosci 1:279-285.
774	Rowan MJ, Tranquil E, Christie JM (2014) Distinct Kv channel subtypes contribute to
775	differences in spike signaling properties in the axon initial segment and presynaptic
776	boutons of cerebellar interneurons. J Neurosci 34:6611-6623.
777	Rozov A, Burnashev N, Sakmann B, Neher E (2001) Transmitter release modulation by
778	intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal
779	cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in
780	presynaptic calcium dynamics. J Physiol (London) 531:807-826.
781	Scanziani M, Gahwiler BH, Charpak S (1998) Target cell-specific modulation of transmitter
782	release at terminals from a single axon. Proc Natl Acad Sci USA 95:12004-12009.
783	Schluter OM, Basu J, Sudhof TC, Rosenmund C (2006) Rab3 superprimes synaptic vesicles
784	for release: implications for short-term synaptic plasticity. J Neurosci 26:1239-1246.
785	Schluter OM, Schmitz F, Jahn R, Rosenmund C, Sudhof TC (2004) A complete genetic
786	analysis of neuronal Rab3 function. J Neurosci 24:6629-6637.
787	Shigemoto R, Kulik A, Roberts JD, Ohishi H, Nusser Z, Kaneko T, Somogyi P (1996) Target
788	cell-specific concentration of a metabotropic glutamate receptor in the presynaptic
789	active zone. Nature 381:523-525.
790	Siksou L, Rostaing P, Lechaire JP, Boudier T, Ohtsuka T, Fejtova A, Kao HT, Greengard P,
791	Gundelfinger ED, Triller A, Marty S (2007) Three-dimensional architecture of
792	presynaptic terminal cytomatrix. J Neurosci 27:6868-6877.
793	Su SC, Seo J, Pan JQ, Samuels BA, Rudenko A, Ericsson M, Neve RL, Yue DT, Tsai LH
794	(2012) Regulation of N-type voltage-gated calcium channels and presynaptic function
795	by cyclin-dependent kinase 5. Neuron 75:675-687.

796	Sylwestrak EL, Ghosh A (2012) Elfn1 regulates target-specific release probability at CA1-
797	interneuron synapses. Science 338:536-540.
798	Szabo GG, Lenkey N, Holderith N, Andrasi T, Nusser Z, Hajos N (2014) Presynaptic calcium
799	channel inhibition underlies CB1 cannabinoid receptor-mediated suppression of
800	GABA release. J Neurosci 34:7958-7963.
801	Takahashi T, Forsythe ID, Tsujimoto T, Barnes-Davies M, Onodera K (1996) Presynaptic
802	calcium current modulation by a metabotropic glutamate receptor. Science 274:594-
803	597.
804	Thomson AM (1997) Activity-dependent properties of synaptic transmission at two classes of
805	connections made by rat neocortical pyramidal axons in vitro. J Physiol (London)
806	502:131-147.
807	Tomioka NH, Yasuda H, Miyamoto H, Hatayama M, Morimura N, Matsumoto Y, Suzuki T,
808	Odagawa M, Odaka YS, Iwayama Y, Won Um J, Ko J, Inoue Y, Kaneko S, Hirose S,
809	Yamada K, Yoshikawa T, Yamakawa K, Aruga J (2014) Elfn1 recruits presynaptic
810	mGluR7 in trans and its loss results in seizures. Nat Comm 5:4501.
811	Veatch SL, Machta BB, Shelby SA, Chiang EN, Holowka DA, Baird BA (2012) Correlation
812	functions quantify super-resolution images and estimate apparent clustering due to
813	over-counting. PLoS One 7:e31457.
814	Zhong H, Yokoyama CT, Scheuer T, Catterall WA (1999) Reciprocal regulation of P/Q-type
815	Ca ²⁺ channels by SNAP-25, syntaxin and synaptotagmin. Nature Neurosci 2:939-941.
816	

Table1: Properties of [Ca²⁺] transients, bouton volumes, AZ areas and Cav immunoreactivities in PV⁺ and mGluR1α⁺ dendrite-innervating axon terminals.

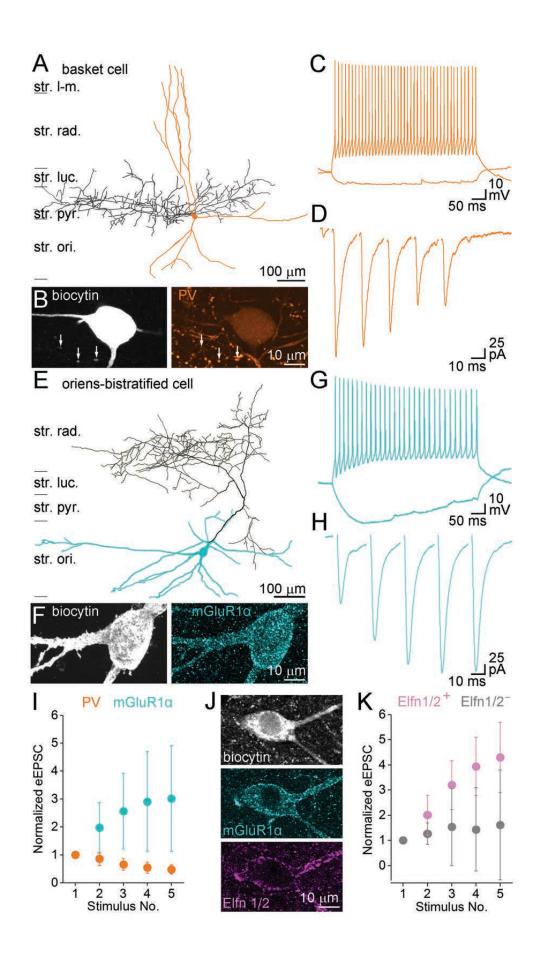
	PV⁺	dendrit	e-targeti	ng boı	utons	$mGluR1\alpha^+$ dendrite-targeting boutons						
	Mean	SD	Median	n	# animal	Mean	SD	Median	n	# animal	Test	р
Peak amplitude of [Ca ²⁺] transient (300 μM Fluo5F) (G/G _{max})	0.14	0.05	0.13	26*	15	0.11	0.04	0.11	61*	23	MW U-test	0.012
Normalized peak amplitude of [Ca ²⁺] transient (300 µM Fluo5F) ¹	1.20	0.41	1.12	26*	15	1.00	0.28	0.98	61*	23	t-test	0.024
Peak amplitude of $[Ca^{2+}]$ transient (100 μ M Fluo5F) (G/G_{max})	0.21	0.10	0.22	14*	9	0.17	0.11	0.14	21*	13	MW U-test	0.100
Normalized peak amplitude of [Ca ²⁺] transient (100 uM Fluo5F) ¹	1.33	0.51	1.36	18*	12	1.04	0.25	1.03	35*	18	t-test	0.037
Bouton volume in perfused tissue (μm³)	0.20	0.10	0.20	67*	3	0.25	0.18	0.20	87*	3	MW U-test	0.650
Bouton volume <i>in vitro</i> slices (μm³)	0.31	0.12	0.26	7	5	0.20	0.12	0.18	10	4		
Total AZ area in perfused tissue (μm²)	0.06	0.03	0.06	67*	3	0.09	0.05	0.08	87*	3	MW U-test	0.000
AZ area <i>in vitro</i> slices (μm²)	0.10	0.04	0.09	7	5	0.09	0.03	0.09	10	4		
Cav2.1 subunit density in AZs (gold/μm²)²	373	47	370	112	5	321	46	325	172	5		
Cav2.2 subunit density in AZs (gold/μm²)²	151	30	139	52	4	130	39	130	114	4		
Cav2.1 subunit density in extrasynaptic membranes (gold/µm²)²	2.14	2.46	2.21	93	5	2.88	2.64	2.23	174	5		
Cav2.2 subunit density in extrasynaptic membranes (gold/µm²)²	2.69	3.15	2.35	48	4	1.02	1.26	0.75	113	4		
Background Cav2.1 subunit density (gold/µm²)²	2.27	1.93	2.94	132	5	2.27	1.93	2.94	132	5		
Background Cav2.2 subunit density (gold/µm²)²	0.66	0.33	0.62	104	4	0.66	0.33	0.62	104	4		
Cav2.1 NND distance (nm)	24.7	4.0	23.3	43	5	24.3	4.6	23.1	72	5		
Cav2.2 NND distance (nm)	32.1	7.2	30.3	21	4	32.0	8.3	28.7	40	4		
Docked vesicle density (vesicle/µm²)	33.1	21.1	35.5	47*	3	21.9	17.5	22.2	49*	3	MW U-test	0.010
Membrane proximal vesicle density (vesicle/um²)	64.9	42.0	59.1	47*	3	47.3	26.6	49.9	49*	3	MW U-test	0.037

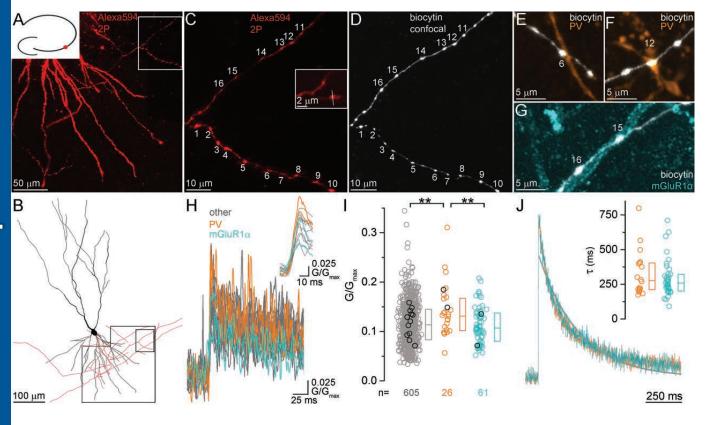
^{*} indicates the 'n' used for the statistical comparisons. ¹: [Ca²⁺] transients were normalized to the mean of all measured [Ca²⁺] transients of the given cell. ²: Values calculated from the medians of 5 (Cav2.1) and 4 (Cav2.2) rats.

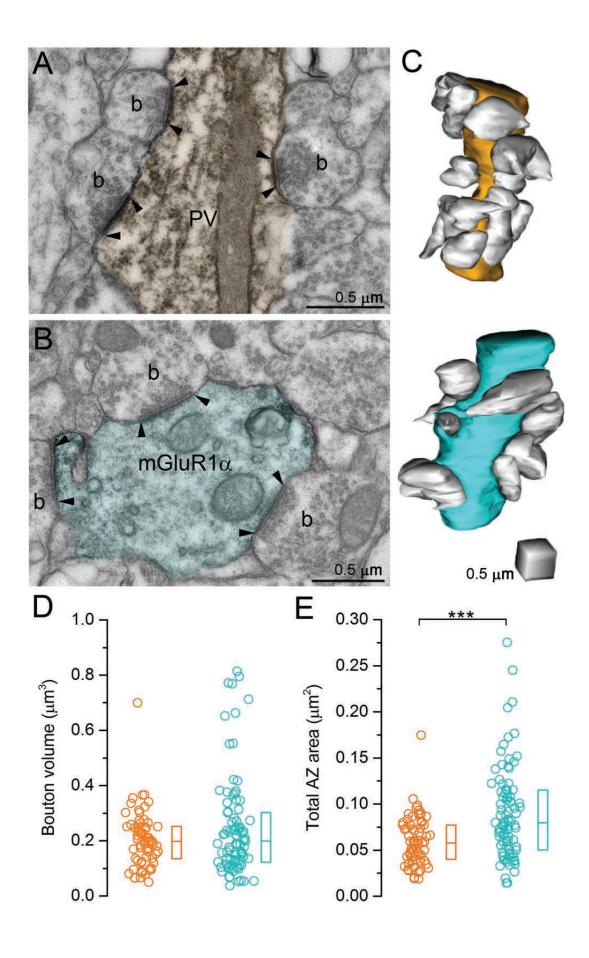
824 Figure Legends

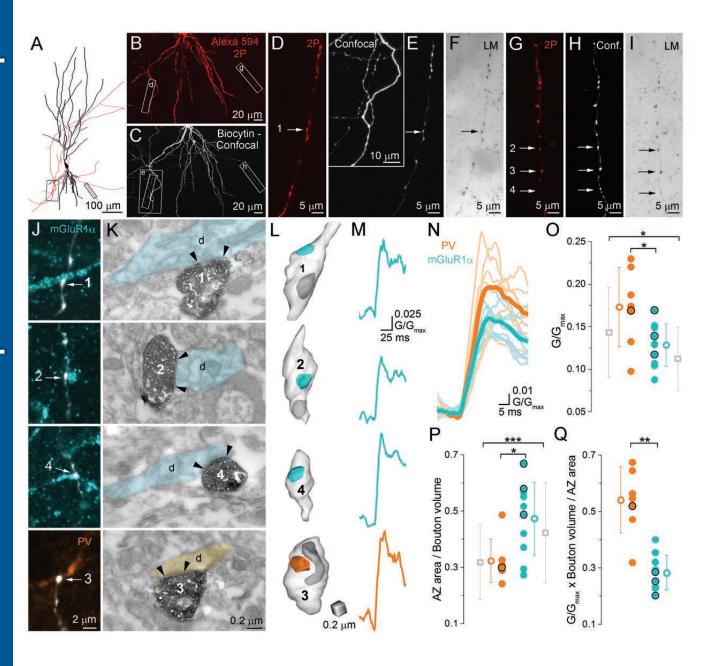
Figure 1. Short-term plasticity of CA3 pyramidal cell synapses contacting $PV^{\scriptscriptstyle +}$ or $mGluR1\alpha^{\scriptscriptstyle +}$
interneurons. A, Neurolucida reconstruction of an in vitro recorded basket cell in stratum
pyramidale (str. pyr.) of the CA3 region of the hippocampus (soma and dendrites orange, axon
black). B , Confocal image of the biocytin filled interneuron (IN, left) showing
immunoreactivity for PV (right). Arrows indicate PV immunoreactivity of the biocytin filled
boutons. C, Membrane potential responses upon de- and hyperpolarizing current injections.
The depolarizing suprathreshold response shows fast spiking (FS) characteristics. D ,
Excitatory postsynaptic currents (EPSC, average of 20 traces) evoked by extracellular
stimulation in the stratum oriens (str. ori.) display short-term depression. E , Neurolucida
reconstruction of an in vitro recorded and biocytin filled oriens-bistratified IN (soma and
dendrites blue, axon black) in the str. ori. F , The biocytin filled cell (left) is intensely labeled
for mGluR1 α (right). G , Membrane potential responses to hyper- and depolarizing current
pulses. Firing pattern shows moderate spike frequency adaptation and amplitude
accommodation. Note the prominent sag and the slow membrane time constant in response to
the hyperpolarizing current step. \boldsymbol{H} , Extracellular stimulation-evoked EPSCs display short-
term facilitation (average of 20 traces). I , The short-term plasticity of evoked EPSCs onto PV
and mGluR1 α positive INs differs significantly (p < 0.01 for cell type, p = 0.2 for stimulus
number and $p = 0.01$ for cell type and stimulus number interaction, two-way repeated
measures ANOVA, Bonferroni $post\ hoc$ test). (J) A biocytin filled IN is intensely labeled for
mGluR1 α and Elfn1/2. $\emph{\textbf{K}}$, Peak amplitudes of evoked EPSCs onto mGluR1 α and Elfn1/2
double positive INs are significantly larger (p $<$ 0.05 for cell type, p $=$ 0.31 for stimulus
number and $p = 0.17$ for cell type and stimulus number interaction, two-way repeated
measures ANOVA, Bonferroni <i>post hoc</i> test) than those recorded from mGluR1α positive, but

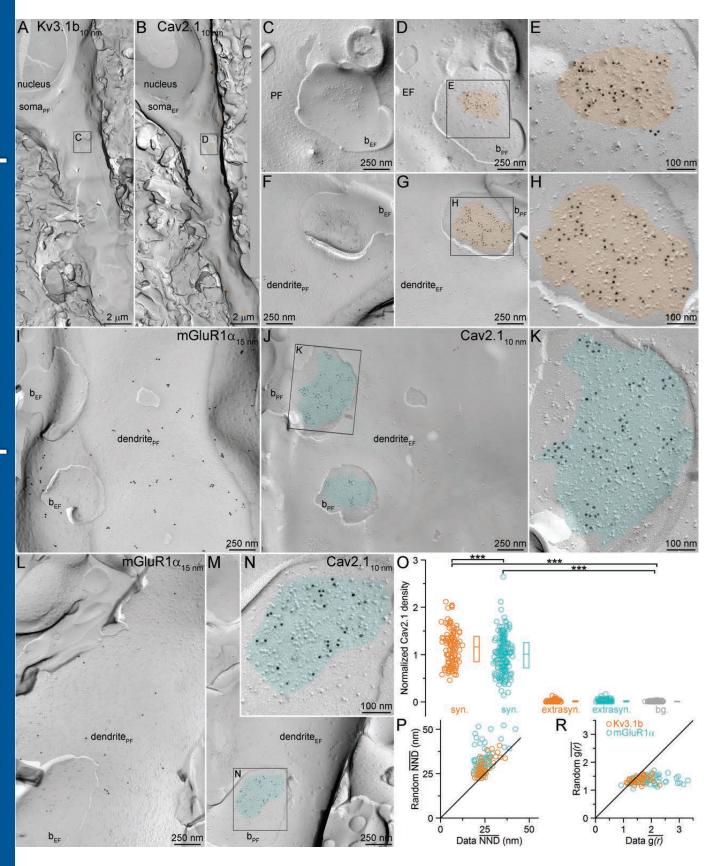
848 Elfn1/2 negative cells. str. luc., stratum lucidum; str. rad., stratum radiatum; str. l-m, stratum 849 lacunosum-moleculare. Data are presented as mean \pm SD. 850 **Figure 2.** Larger $[Ca^{2+}]$ transients in PV⁺ than in mGluR1 α ⁺ dendrite-contacting boutons. A. 851 852 Two-photon (2P) image stack of a CA3 PC basal dendritic tree and axonal arbor filled with 20 853 μM Alexa Fluor 594 (Alexa594, red), 300 μM Fluo5F and biocytin. Boxed area is shown at 854 higher magnification in panel C. Cartoon at the upper left corner illustrates the position of the 855 cell in the CA3 area, B. Neurolucida reconstruction of the cell shown in panel A. Boxed areas 856 correspond to panels A and C. C-D, High magnification two-photon (C) and confocal (D) 857 images of the scanned axon collaterals following fixation and visualization of the biocytin. 858 Numbers indicate the boutons that have been line scanned. Inset in C shows bouton #1 at a 859 higher magnification. The line indicates the position of the line scan. E-G, Some of the 860 imaged boutons are in contact with PV (E-F, boutons #6 and #12) or mGluR1α (G, boutons 861 #15 and #16) immunolabeled dendrites (biocytin: white, PV: orange, mGluR1a: cyan). H, Single action potential-evoked $[Ca^{2+}]$ transients (n = 16 transients from 16 boutons, each trace 862 863 is the average of 2 scans) recorded in the axon terminals shown in panel C. Orange and cyan 864 traces are transients from PV+ and mGluR1 α^+ dendrite-contacting boutons, respectively. Inset 865 shows the same traces after Gauss filtering on an extended time scale. I, The peak $[Ca^{2+}]$ 866 transient amplitudes are significantly larger (Kruskal-Wallis test: p = 0.01, MW U post hoc 867 test, p = 0.01 between unidentified and PV and p = 0.01 between PV and mGluR1 α) in PV⁺ 868 (orange) than in mGluR1 α^+ dendrite-contacting (cyan) or all other boutons (grey, n = 605 869 boutons from 30 cells). Black symbols correspond to individual data points obtained from the cell shown in panels A-G. J, Averaged [Ca²⁺] transients, recorded with 100 μ M Fluo5F, in 870 PV^{+} (orange) or mGluR1 α^{+} (cyan) dendrite-targeting boutons. Mono-exponential fits show 871 872 similar decay kinetics. Inset shows the individual decay time constant values in 18 PV⁺ and 35

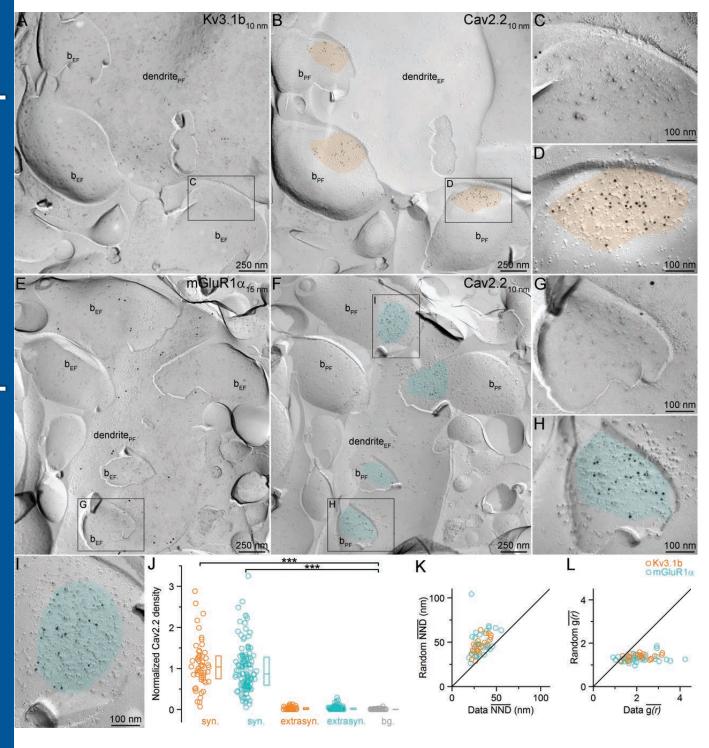

873	$mGluR1\alpha^{+}$ dendrite-innervating boutons. The two populations are not significantly different
874	(p = 0.61, MW U-test). Circles indicate individual boutons, the boxes represent interquartile
875	ranges with the horizontal bars showing the medians.
876	
877	Figure 3 . Three dimensional reconstructions of PC axon terminals targeting PV ⁺ or
878	$mGluR1\alpha^{+}$ dendrites. A , B , Electron micrograph of a PV^{+} (orange, A) and an $mGluR1\alpha^{+}$
879	(cyan, B) dendrite (labeled with pre-embedding peroxidase reaction, dark precipitate)
880	receiving several excitatory inputs from presynaptic boutons (b). Arrowheads demarcate the
881	postsynaptic densities. C, Representative dendritic segments are reconstructed in 3D. Boutons
882	are white and postsynaptic dendrites are orange (PV ⁺) or cyan (mGluR1 α ⁺). $\textbf{\textit{D}}, \textbf{\textit{E}}$, Bouton
883	volume is not (p = 0.65 MW U-test, D), but the total active zone area is significantly (p =
884	$0.0001~\mathrm{MW~U-test}$, $E)$ different between PV^+ and $\mathrm{mGluR1}\alpha^+$ dendrite-targeting terminals.
885	Circles indicate individual boutons, the boxes represent interquartile ranges with the
886	horizontal bars showing the medians.
887	
888	Fig. 4. Combined functional and morphological analyses of individual boutons show
889	differences in the amount of Ca^{2+} in PC axon terminals innervating PV^{+} or $mGluR1\alpha^{+}$ INs. A,
890	Neurolucida reconstruction of a CA3 PC filled with 20 μM Alexa 594, 300 μM Fluo5F and
891	biocytin. B , Low magnification 2P microscopic image stack of the basal dendritic tree and the
892	axonal arbor of the cell. C , Low magnification confocal image stack of the same cell. Boxed
893	areas on panels <i>A-C</i> indicate the axon collaterals where 21 boutons were imaged. <i>D-I</i> , High
894	magnification views of the two imaged axon collaterals (2P images: D and G , corresponding
895	confocal images: E and H , corresponding transmission LM images: F and I). Inset in panel E
896	shows the same axonal arbor at a lower magnification. Arrows indicate those boutons that
897	contacted either mGluR1a (#1-2 and #4) or PV (#3) immunonositive dendrites I

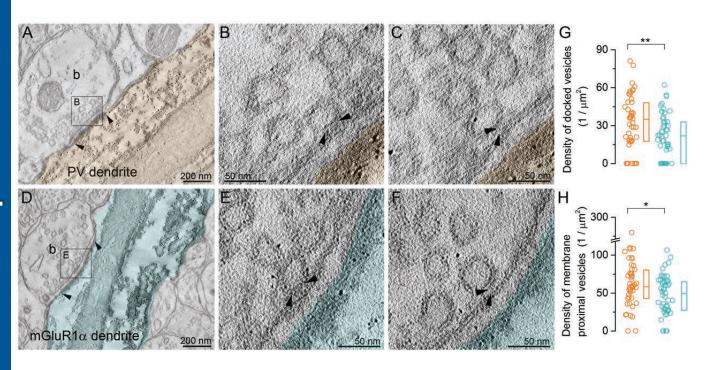

898	$Immun of luorescent\ labeling\ for\ mGluR1\alpha\ (cyan),\ PV\ (orange)\ and\ biocytin\ (white)\ of\ the$
899	imaged area. Arrows point to boutons that form putative synapses on the labeled dendrites. K ,
900	Correlated electron micrographs of the boutons shown in panel J . Arrowheads demarcate the
901	edges of the morphologically identified postsynaptic densities. \boldsymbol{L} , Three-dimensional
902	reconstructions of the boutons shown in panels J and K . Light blue indicates the active zone,
903	dark grey deciphers mitochondria. M , Individual [Ca ²⁺] transients (average of 2 scans)
904	recorded in the same boutons. N , O , Calcium transients in boutons with EM reconstructed
905	AZs (N : individual transients: semitransparent, mean: bold; PV: orange, n = 7, mGluR1 α :
906	cyan, $n = 10$). The peak amplitude of the $[Ca^{2+}]$ transients is 1.3 times larger in PV (orange),
907	compared to mGluR1 α (cyan) targeting boutons (p = 0.045 MW U-test, black circles
908	correspond to data points obtained from the cell shown in panels A-M). Grey symbols indicate
909	average [Ca ²⁺] transients of the two bouton populations that were verified with confocal
910	microscopy only (values are from Figure $2I$). P , The active zone area normalized to the
911	bouton volume was significantly (p = 0.04 MW U-test) larger in mGluR1 α^+ (n = 10) than in
912	PV^{+} (n = 7) dendrite-targeting boutons similar to the population averages (grey symbols, p <
913	0.0001 MW U-test). Q , Calculated total Ca^{2+} per AZ area is twice as large in PV^{+} (n = 7) as in
914	$mGluR1\alpha^{+}$ (n = 10) dendrite-targeting boutons (p = 0.002, MW U-test). Data are presented as
915	mean \pm SD.
916	
917	Figure 5. The density of Cav2.1 subunits is 1.15-times larger in the AZs of Kv3.1b ⁺
918	compared to mGluR1 α^+ dendrite-targeting boutons. A , B , Corresponding EM protoplasmic-
919	(PF) and exoplasmic-face (EF) images of a Kv3.1b ⁺ (expressed in PV ⁺ cells) cell receiving
920	several excitatory inputs (orange on panel B). C, D , Higher magnification images of the boxed
921	areas in \boldsymbol{A} and \boldsymbol{B} show a perisomatic EF membrane with attached PF fragments of axon
922	terminals (b_{PF}) containing AZs (orange in D). Active zones are indicated by the loose cluster


of intramembrane particles. E, Higher magnification view of the boxed areas in D. F-H,
Another example of an intensely Cav2.1 labelled AZ attached to a $Kv3.1b^+$ dendrite. I , J , PF
and EF images of an mGluR1 α immunoreactive dendrite contacted by axon terminals with
AZs (cyan in J). K , A higher magnification image of the boxed area in J . L - N , Another
mGluR1 α^+ dendrite-attached AZ with intense Cav2.1 labeling. \boldsymbol{O} , Normalized densities of
gold particles labeling the Cav2.1 subunit within presynaptic AZ (syn.), extrasynaptic bouton
membranes (extrasyn.) and surrounding EF membranes (background: bg., grey) obtained from
5 rats. Post hoc MW U-tests with Bonferroni correction after Kruskal-Wallis test (p $<$
0.0001) demonstrated a significant difference between the synaptic and background labeling
$(p \leq 0.0001)$ and between the synaptic compartments of $Kv3.1b^{^{+}}$ and $mGluR1\alpha^{^{+}}$ dendrite
targeting boutons (p \leq 0.001). Circles indicate individual measurements of AZs, the boxes
represent interquartile ranges with the horizontal bars showing the medians. P , The nearest
neighbor distance (NND) was calculated for each gold particle within an AZ and the mean
value (\overline{NND}) is plotted against the \overline{NND} of randomly placed gold particles (repeated 1000
times) for each AZ contacting $Kv3.1b^+$ (n = 43) or $mGluR1\alpha^+$ (n = 72) dendrites. Wilcoxon
signed-rank test revealed significant difference (p \leq 0.0001) between the data and the random
distributions for both AZ populations. R, Comparison of the mean two dimensional spatial
autocorrelation functions ($\overline{g(r)}$) measured in individual Kv3.1b ⁺ (n = 43) or mGluR1 α ⁺ (n =
72) dendrite-targeting AZs to their simulated random controls (repeated 1000 times).
Wilcoxon signed-rank test revealed significant differences (p <0.0001) between the data and
the random distributions for both AZ populations.
Figure 6. The densities of Cav2.2 subunit in AZs of PC boutons targeting Kv3.1b ⁺ and
mGluR1 α^+ dendrites. A , B , A Kv3.1 b^+ dendrite (dendrite _{PF} in A) is contacted by boutons
whose PF (b_{PF}) membranes show strong Cav2.2 subunit reactivity in their AZs (orange in \boldsymbol{B}).


C, D, High magnification images of the boxed areas shown in A, B, E, F , PF bouton
membranes contacting an mGluR1 α^+ dendrite (dendrite _{PF} in E) contain Cav2.2 subunit
immunolabeled AZs (cyan in F). G - I , Enlarged views of the boxed areas in E , F . J ,
Normalized densities of gold particles labeling the Cav2.2 subunit within presynaptic AZs
(syn.) and extrasynaptic membranes (extrasyn.) of boutons contacting $Kv3.1b^{^{+}}$ or $mGluR1\alpha^{^{+}}$
profiles and in surrounding EF membranes (background: bg., grey). Post hoc MW U-tests
with Bonferroni correction after Kruskal-Wallis test (p < 0.0001) demonstrated a significant
difference between the synaptic and background labeling (p \leq 0.0001). Circles indicate
individual measurements of AZs, the boxes represent interquartile ranges with the horizontal
bars showing the medians. K , Comparison of \overline{NNDs} measured in 21 Kv3.1b ⁺ and 40
$mGluR1\alpha^{+}$ dendrite-contacting AZs to their random controls (repeated 1000 times). Wilcoxon
signed-rank test revealed significant difference (p \leq 0.0001) between the data and the random
distributions for both AZ populations. L, The $\overline{g(r)}$ of individual Kv3.1b ⁺ (n = 21) or
mGluR1 α^+ (n = 40) dendrite-targeting AZs is plotted against the $\overline{g(r)}$ of their random
controls (repeated 1000 times). Wilcoxon signed-rank test revealed significant differences (p
< 0.0001) between the data and the random distributions for both AZ populations.
Figure 7. EM tomography of the AZs of PC axon terminals synapsing onto PV^+ or $mGluR1\alpha^+$
dendrites. A , D , Electron tomographic subvolumes (0.6 nm thick) of representative boutons
(b) establishing asymmetric synaptic contacts (arrowheads demarcate the edges of the
synapses) on a PV^+ (orange, A) and a mGluR1 α^+ (cyan, D) dendrite (labeled with pre-
embedding peroxidase reaction). B-C and E-F , Higher magnification views show docked (B
and E , area boxed on A and D , respectively) and predocked vesicles (C , F from the same
tomographic subvolumes). G , H , Docked (G , $p = 0.01$, MW U-test) and membrane proximal
(<i>H</i> , p = 0.037, MW U-test, docked + pre-docked vesicles) vesicles have significantly different


- 973 densities (PV $^+$: n = 47; mGluR1 α^+ : n = 49 subvolumes) in the two AZ populations. Circles
- 974 indicate individual AZ subvolumes; boxes represent interquartile ranges with the horizontal
- 975 bars showing the medians.





	PV ⁺ dendrite-targeting boutons				mGluR1α ⁺ dendtargeting boutons							
	Mean	SD	Median	n	# animal	Mean	SD	Median	n	# animal	Test	р
Peak amplitude of [Ca $^{2+}$] transient (300 μ M Fluo5F) (G/G $_{max}$)	0.14	0.05	0.13	26*	15	0.11	0.04	0.11	61*	23	MW U- test	0.012
Normalized peak amplitude of [Ca ²⁺] transient (300 µM Fluo5F) ¹	1.20	0.41	1.12	26*	15	1.00	0.28	0.98	61*	23	t-test	0.024
Peak amplitude of [Ca ²⁺] transient (100 μM Fluo5F) (G/G _{max})	0.21	0.10	0.22	14*	9	0.17	0.11	0.14	21*	13	MW U- test	0.100
Normalized peak amplitude of [Ca ²⁺] transient (100 µM Fluo5F) ¹	1.33	0.51	1.36	18*	12	1.04	0.25	1.03	35*	18	t-test	0.037
Bouton volume in perfused tissue (μm³)	0.20	0.10	0.20	67*	3	0.25	0.18	0.20	87*	3	MW U- test	0.650
Bouton volume in vitro slices (μm³)	0.31	0.12	0.26	7	5	0.20	0.12	0.18	10	4		
Total AZ area in perfused tissue (μm²)	0.06	0.03	0.06	67*	3	0.09	0.05	0.08	87*	3	MW U- test	0.000
AZ area in vitro slices (μm²)	0.10	0.04	0.09	7	5	0.09	0.03	0.09	10	4		
Cav2.1 density in AZs (gold/μm²)²	373	47	370	112	5	321	46	325	172	5		
Cav2.2 density in AZs (gold/μm²)²	151	30	139	52	4	130	39	130	114	4		
Cav2.1 extrasynaptic density (gold/μm²)²	2.14	2.46	2.21	93	5	2.88	2.64	2.23	174	5		
Cav2.2 extrasynaptic density (gold/μm²)²	2.69	3.15	2.35	48	4	1.02	1.26	0.75	113	4		
Background Cav2.1 density (gold/μm²)²	2.27	1.93	2.94	132	5	2.27	1.93	2.94	132	5		
Background Cav2.2 density (gold/μm²)²	0.66	0.33	0.62	104	4	0.66	0.33	0.62	104	4		
Cav2.1 NND distance (nm)	24.7	4.0	23.3	43	5	24.3	4.6	23.1	72	5		
Cav2.2 NND distance (nm)	32.1	7.2	30.3	21	4	32.0	8.3	28.7	40	4		
Docked vesicle density (vesicle/µm²)	33.1	21.1	35.5	47*	3	21.9	17.5	22.2	49*	3	MW U- test	0.010
Membrane proximal vesicle density (vesicle/ μ m ²)	64.9	42.0	59.1	47*	3	47.3	26.6	49.9	49*	3	MW U- test	0.037