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ABSTRACT 

We studied two boreholes (Cserépváralja-1 and Kiscell-1) with continuous sedimentary 

records across the Eocene-Oligocene climate transition from the Central Paratethyan area. 

Assemblages of benthic foraminifera display a shift in dominance by epifaunal taxa in the late 

Eocene to shallow and deep infaunal taxa in the early Oligocene. Using the benthic 

foraminiferal oxygen index (BFOI), a decreasing trend of bottom-water oxygen levels is 

established across the Eocene-Oligocene transition (EOT), leading to the development of 

dysoxic conditions later in the early Oligocene.  

Trends in δ18O and δ13C values measured on tests of selected benthic and planktic 

foraminifera roughly parallel those of the global record of stepped EOT δ18O increase and 
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deviate only later in the early Oligocene, related to the isolation of the Paratethys. The overall 

similarity of the isotope curves and the presence of a planktic-benthic ecological offset 

suggest that the original isotope trends are preserved, despite the systematically more negative 

δ18O values. Of different scenarios, a quasi-uniform diagenetic overprint by fluids with low 

δ18O values, during burial or uplift, appears best supported. We conclude that the globally 

established isotopic expression of Antarctic ice sheet growth across the EOT may be 

recognizable in the Paratethys. Deviations from the global trends after the EOT were caused 

by regional paleoceanographic changes induced by the progressing Alpine orogeny and sea-

level change, which led to a restricted connection with the open ocean, freshwater influx from 

increased precipitation, and gradual development of bottom-water oxygen depletion.  

Keywords: EOT; Paleogene; climate evolution; δ18O and δ13C records; paleoceanography; 

foraminifera; calcareous nannoplankton 

1. Introduction 

The onset of major Antarctic glaciation close to the Eocene-Oligocene boundary was one 

of the most significant events in the climate evolution of the Cenozoic Era. The principal 

cause of this climate transition is debated, although its consequences are indisputable: rapid 

expansion of continental ice volume on Antarctica (e.g., Shackleton and Kennett, 1975; Miller 

et al., 1991; Zachos et al., 1996; Lear et al., 2008; Galeotti et al., 2016) and significant (>1 

km) deepening of the global calcite compensation depth (e.g., Coxall et al., 2005) from ~34 

Ma. A remarkable decrease in atmospheric pCO2 is also detected (e.g., Pagani et al., 2005, 

DeConto et al., 2007, Pearson et al., 2009) during the Eocene-Oligocene transition (EOT), 

although the exact magnitude of change is still poorly defined. All inferences are derived from 

deep-sea benthic foraminiferal oxygen and carbon isotope (δ18O, δ13C) records, which have 

been extensively studied, on the basis of the vast amount of Deep Sea Drilling Project 
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(DSDP), Ocean Drilling Program (ODP) and Integrated Ocean Discovery Program (IODP) 

cores (e.g., Shackleton and Kennett, 1975; Zachos et al., 1996; Zachos et al., 2001; Salamy 

and Zachos, 1999; Coxall et al., 2005; Pearson et al., 2009). However, significantly fewer 

studies have focused on the record of isolated marginal seas or terrestrial paleoclimatic 

changes from this interval (e.g.,, Zanazzi et al., 2007; Kocsis et al., 2014). The stratigraphic 

record of marginal seas, such as the Paratethys in east-central Europe, may provide valuable 

new insights about the EOT, but the scarcity of available stable isotope data has hampered the 

understanding of this dramatic climate change event in this area. Moreover, the northward 

drift and rotation of the African continent and related microcontinents (e.g., the Apulian 

microcontinent) and their collision with the European foreland had a strong impact on 

Cenozoic paleoceanography, paleogeography and paleoclimate (Kocsis et al., 2014). The 

ongoing subduction of the Eastern Alps and external Carpathian lithosphere under the 

overthrusted Apulian units (Csontos et al., 1992) resulted in the first isolation of Paratethys 

from the late Eocene (e.g., Báldi, 1984; Rögl, 1998). However, seaways existed intermittently 

between the North Sea and the Paratethys, and the repeated disconnections of the Paratethys 

from the adjacent oceans eventually led its isolation by the late early Oligocene. Increased 

river runoff from surrounding landmasses resulted at times in a strongly stratified water 

column and dysoxic to anoxic conditions in the moderately deep-water Paratethyan subbasins 

(Báldi, 1984). Regional tectonic activity and significant glacio-eustatic fluctuations during the 

early Oligocene might have reduced the surface and bottom watermass exchange between the 

Paratethys, the western part of Neotethyan basin, and the Atlantic Ocean, which in turn could 

have restricted the internal circulation pattern within the Paratethys. These oceanographic 

changes led to repeated deposition of laminated organic-rich sediments, considered as 

hydrocarbon source rocks from the Alpine molasse basins through the Central Paratethys 

(Hungarian Paleogene Basin (HPB), Slovenian Paleogene Basin, Central Carpathian 

Paleogene Basin and Transylvanian Paleogene Basin) to the Caucasus (Báldi, 1984). The 
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paleoenvironmental consequences of the progressive separation of the Paratethys are reflected 

in radical changes in numerous marine proxies that imply unstable paleoceanographic 

conditions. The causes and consequences of these paleoenvironmental changes during the 

EOT are still not fully understood. The primary objective of this study is to reconstruct the 

paleoclimatic and paleoceanographic changes of the Central Paratethys during the EOT. Two 

continuous epicontinental Eocene/Oligocene boundary core sections (Cserépváralja-1 [CSV-

1] and Kiscell-1 [KL-1]) from the HPB of the Central Paratethys have been investigated, 

including studies of their foraminifera and calcareous nannoplankton and high-resolution 

stable isotope geochemical analyses, which allowed paleoecological and paleoceanographic 

reconstructions. Comparison of the results is then used to assess whether the well-dated global 

paleoclimatic signals can be recognized in the regional climate archive of the Paratethys.  

2. Geological setting and stratigraphy 

The Hungarian Paleogene Basin (HPB) is one of the largest Paleogene basin remnants in 

the Eastern Alpine–Western Carpathian–Dinarides junction (Fig. 1) and includes various 

subbasins, which contain different sedimentary successions. Several tectonic models have 

been proposed in order to explain the evolution of HPB (Báldi and Báldi-Beke, 1985; Báldi-

Beke and Báldi, 1991; Csontos et al., 1992; Tari et al., 1993, Kázmér et al., 2003). One of 

their common features is that they attempt to relate the basin-forming mechanisms to strike-

slip tectonics and an overall ENE-directed migration of subsequent depocenters (Tari et al., 

1993). Owing to the economic interest and exploration for coal, bauxite, and hydrocarbon, 

thousands of industrial wells provide scientific information about the middle Eocene to upper 

Oligocene succession in the region. In the central part of the HPB the Paleogene 

sedimentation started in the late Eocene (NP18) with a typical transgressive succession 

(Vörös, 1989). The sedimentary succession is the following: terrestrial clastic rocks with coal 

measures followed by shallow marine carbonates, and a transgressive succession of dark shale 
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or bryozoan marl overlain by shallow bathyal marl (Buda Marl Formation), which upwards 

continuously grades into anoxic black shale (Tard Clay Formation). This continuous shallow 

bathyal succession with water depths between ~500 and 800 m contains the EOT in the HPB, 

including clay, siltstone, marl, shallow-water limestone, clayey marl, argillaceous siltstone 

and shale (Báldi, 1986). Water-depth reconstructions are based on quantitative analysis of 

benthic foraminifera assemblage and planktic/benthic foraminiferal ratios (Ozsvárt, 2007). 

The Tard Clay Formation was deposited under dominantly anoxic conditions in a sediment-

starved basin (Báldi et al., 1984), where sedimentation rate was extremely low (30–50 m 

Myr-1). In the anoxic, laminated black shale, mono- or duospecific calcareous nannoplankton 

assemblages occur, suggesting brackish surface-water conditions (Nagymarosy, 1985). 

Similar anoxic black shales are common in the Alpine foreland, in the Carpathian Flysch belt 

and in the Transylvanian Paleogene Basins as well (Fig. 1), indicating the first isolation of the 

Paratethys from the westernmost part of the Neotethys Ocean (Fig. 2). The laminated strata 

gradually pass upward into argillaceous siltstone and clay (Kiscell Clay Formation), with the 

simultaneous appearance of a diverse benthic and planktic fauna that implies the return of 

normal marine conditions and re-established connection to the open ocean (Báldi et al., 1984).  

2.1. EOT strata in the CSV-1 borehole 

The CSV-1 hydrocarbon exploration borehole was drilled in 1977 in the southern 

foreland of Bükk Mts. in Northeastern Hungary (Fig. 1). The borehole penetrated ~460 m of 

sediments, of which EOT strata were recovered in ~100 m thickness (Fig. 3). Unpublished 

sedimentological and geophysical measurements from CSV-1 borehole are available in the 

archive of the Geological and Geophysical Institute of Hungary (MFGI). The entire CSV-1 

core is archived in the core repository of the MFGI at Rákóczitelep, Hungary. All investigated 

samples are housed in the Department of Paleontology and Geology of the Hungarian Natural 

History Museum, Budapest. The transgressive upper Eocene (NP20) conglomerate and 
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carbonate (Szépvölgy Limestone Formation) grade at a depth of 426.3 m into grey (Fig. 3), 

greenish grey marl (Buda Marl Formation). Upwards, between 402.0 and 350.0 m, the 

carbonate content decreases, while the clay content increases and the succession becomes 

lithologically more homogenous in the lower member of Tard Clay Formation (Fig. 3). This 

unit is non-laminated siltstone with characteristic marine micro and macrofauna (Bechtel et 

al., 2012). Between 350.0 and ~300 m thin-bedded, slightly laminated, dark brownish 

siltstone occurs, which is grading continuously upward into anoxic (Fig. 3), dark brownish 

grey shale with up to 5 wt.% TOC, alternating locally with thin, white coccolith-bearing 

layers (Nagymarosy, 1985). The anoxic black shale is followed by shallow bathyal, brownish 

grey argillaceous, calcareous siltstone, claymarl and sandstone (Kiscell Clay Formation). For 

the present study, the upper Eocene and lower Oligocene section were sampled between 443.1 

and 364.0 m (see Fig. 3). The preservation of planktic and benthic foraminifera is moderate to 

excellent. 

2.2. EOT strata in the KL-1 borehole 

The KL-1 borehole was drilled in 1980, in the northwestern part of Budapest (Fig. 1) and 

it penetrated ~96 m thick EOT strata (Fig. 4). This is the most comprehensively studied 

Eocene-Oligocene section from the Paratethys with biostratigraphic (nannoplankton and 

planktonic foraminifera), magnetostratigraphic, and K/Ar radiometric data (Báldi, 1984). The 

KL-1 section is the lower boundary stratotype of the regional lower Oligocene Kiscellian 

Stage. The core is housed in the core repository of MFGI in Szépvízér, Hungary. The 

sediments consist of mainly grey and greenish grey marl (Buda Marl Formation) between 110 

m and 91.4 m (Fig. 4) and dark grey, non-laminated and strongly laminated claystone (Tard 

Clay Formation) between 91.4 m and 14.0 m (Fig. 4). The Buda Marl and Tard Clay 

formations display a gradational transition without any major changes in the sedimentation 

during the EOT, with characteristic benthic foraminiferal assemblages. A significant change 
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can be observed at about 65 m (Fig. 4), where the non-laminated strata pass upward into dark 

grey, brownish, slightly laminated member of Tard Clay Formation. A typical cold-adapted 

epiplanktic mollusc fauna (Spiratella spp.) appears around 70 m and indicates the increasing 

influence of cold water masses (Báldi, 1984). Between 52 and 14 m thin-bedded or laminated, 

dark gray to black shale occurs (Fig. 4), suggesting deposition under anoxic conditions. The 

carbonate content is around 50 wt.% in the lower part of the core and it decreases to 10 wt.% 

in the upper, strongly laminated part (Kázmér, 1985), which indicates decreasing carbonate 

production parallel to the development of anoxic environment. The upper Eocene and lower 

Oligocene parts of the section were sampled between 107.4 and 69.8 m (Fig. 4) for this study. 

The preservation of planktic and benthic foraminifera is moderate. 

 

2.3. Eocene-Oligocene biochronology of the boreholes 

For biostratigraphy of the Paleogene formations in Hungary, the standard nannoplankton 

zonation of Martini (1970) was used (Báldi-Beke, 1972; 1977; 1984; Báldi et al., 1984; 

Nagymarosy and Báldi-Beke, 1988). In this study, either all of the species present or the more 

commonly occurring ones were considered for the definition of zone boundaries (see 

Supplementary material 1). The preservation of zonal marker species of EOT is generally 

good, but because of the rare occurrence of the tropical forms, some of the zonal markers of 

Martini (1970) need to be substituted with locally important species of the genera 

Sphenolithus, Ericsonia, Reticulofenestra and Helicosphaera. Due to their small size, 

coccoliths can be easily reworked but it does not affect their usefulness as age indicators in 

this study.  

The Buda Marl Formation represents the NP20 and lower part of the NP21 zone, whereas 

the overlying Tard Clay Formation represents the upper part of the NP21 zone and the NP22–

NP23 zones (see Supplementary material 1). Nyerges (2014) drew the boundary between 
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zones NP20 and NP21 at 427.7 m in the CSV-1 borehole (Fig. 3). In the KL-1 borehole, the 

Eocene-Oligocene boundary lies approximately at 90 m (Fig. 4), between the P17 and P18 

planktic foraminifera zones and within the NP21 nannozone (Báldi, 1984). The boundary 

between zones NP21 and NP22 was drawn at 391 m in the CSV-1 borehole (Fig. 3) and at 78 

m in the KL-1 borehole (Fig. 4). The ratified global Eocene/Oligocene boundary  was defined 

in the middle part of the NP21 zone, on the basis of the extinction of two planktic 

foraminifera genera (Hantkenina and Cribrohantkenina) at the boundary of P17 and P18 

planktic foraminifera zones (Premoli Silva and Jenkins, 1993). In the international 

nannoplankton zonation, NP21 straddles the Eocene-Oligocene boundary (Martini, 1971), but 

the exact position of the series boundary cannot be defined by nannoplankton data alone. Due 

to the absence of the late Eocene Hantkeninidae from the HPB, the Eocene/Oligocene 

boundary in the CSV-1 borehole was approximated by the last appearance (LAD) of 

Subbotina linaperta and the first appearance (FAD) of Pseudohastigerina naguewichiensis 

and Chiloguembelina gracillima within the middle part of NP21 (Báldi et al., 1984).  

3. Material and methods  

3.1. Sample preparation and benthic foraminifera assemblage analysis 

Approximately 250–300 g from each core sample was processed for the benthic 

foraminiferal studies. Samples were dried, weighed and disaggregated with 10 % H2O2 in an 

ultrasonic bath and washed with distilled water. No oxide coating was visible on any of the 

samples. The residues were washed through a 50-μm sieve and dried. Samples were divided 

into grain-size fractions of 50–500 μm and >500 μm. Faunal analysis was performed only on 

the 50–500 μm fraction. For faunal analysis, ~200–250 specimens were picked, unless their 

numbers were less than 200, in which case all specimens were picked. Species occurrence and 

abundance distribution data (Supplementary material 2) were used to calculate the Shannon-
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Wiener diversity H(S) index and to perform Q-mode (Varimax-rotated) principal factor 

analysis. The Shannon-Wiener diversity H(S) index was calculated in order to estimate the 

stability of benthic foraminiferal community (Buzas and Gibson, 1969). We distinguished 

foraminiferal associations by Q-mode principal factor analysis with subsequent Varimax 

rotation (for details see Vető et al., 2007). The statistics software package SYSTAT 13 was 

used for statistical calculations.  

3.2 Benthic foraminiferal oxygen index (BFOI) 

In the last decades, a number of studies documented that skeleton morphology of benthic 

foraminifers is strongly related to microhabitat preferences (e.g Corliss, 1991; Jorissen et al., 

1995; Vető et al., 2007). These different benthic environments are strongly controlled by 

organic carbon flux and dissolved oxygen content at the sediment–water interface and in the 

uppermost few centimeters of the sediment (e.g., Mackensen et al., 1985; Schmiedl et al., 

1997). We used the BFOI in order to estimate changes in bottom-water oxygenation. This 

index was calculated using Kaiho’s empirical equations for dissolved oxygen content in 

bottom water, on the basis of a global database of modern assemblages (Kaiho, 1994).The 

BFOI reflects the estimated dissolved oxygen levels in modern ocean waters, which is based 

on the proportion of forms with different microhabitat preference among the benthic 

foraminifera. As an extension of his method, Kaiho (1991) successfully used the dissimilarity 

of benthic foraminiferal test morphology to extrapolate relative amounts of dissolved oxygen 

in the world oceans from early Eocene to late Oligocene times.  

3.3. Stable oxygen and carbon isotopes   

Stable isotope analyses (δ18O, δ13C) were carried out on foraminifera tests and used 

together with quantitative paleontological methods for paleoecological and 

paleoceanographical inferences. Cibicidoides spp. (including its most abundant species, C. 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT
  

 10 

dutemplei) were chosen in all except for two samples, where their absence or poor 

preservation forced us to pick another species, Gyroidinoides soldanii (see Supplementary 

material 3 for details). Among planktic foraminifera, the same species of Globigerinida 

(Globigerinida sp. 2) were selected from both sites for stable isotope analysis. The tests of 

foraminifera were directly analyzed using a Gasbench II coupled to a Finnigan MAT Delta 

Plus XL mass spectrometer at the Stable Isotope Laboratory of the Institute of Earth Sciences 

at University of Lausanne, Switzerland. The methods used are described in detail in Spötl and 

Vennemann (2003). Every sample from the CSV-1 borehole was measured in duplicates, 

whereas single samples were measured from the KL-1 borehole. The analytical precision was 

better than ±0.1 ‰ for O and C isotopes. Oxygen and carbon isotope compositions are 

expressed in the -notation relative to VPDB (Vienna Pee Dee Belemnite).  

3.4. Assessing diagenetic effects on the foraminifera tests 

In order to assess possible diagenetic recrystallization, scanning electron microscopic 

images of the foraminifera tests were analyzed. A Hitachi S-2600N scanning electron 

microscope operated at 25 kV and 15–20 mm distance was used. To study the infill of the 

tests, 40-µm-thick equatorial thin sections were prepared and the polished sections were 

examined by a MAAS-Nuclide ELM-3 cold-cathode luminoscope at the Department of 

Physical and Applied Geology of the Eötvös Loránd University. 

3.5. Nannoplankton analysis 

The calcareous nannoplankton flora of the CSV-1 borehole was previously studied at a 

much lower resolution, with sample spacing of 6 m (Báldi et al., 1984). Here a sample 

spacing of 20 cm was used to obtain a total of 108 smear slides to study calcareous 

nannoplankton assemblages. Slide preparation followed the standard techniques (Bown, 
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1998), which are known to retain the original composition of the nannoplankton assemblages 

of the sediments. More than 57,000 specimens were determined at the species level whenever 

possible, by viewing at least 30 fields of view per slide and counting all the observed 

specimens (see Supplementary material 4). Following the identification, a quantitative 

analysis of the nannoplankton flora was performed using diversity indices and multivariate 

data analysis, including cluster analysis and detrended correspondence analysis (DCA), using 

the PAST software package (Hammer et al., 2001). 

4. Results 

4.1. Benthic foraminiferal analyses 

Investigation of the tests by stereomicroscope revealed that most of the foraminifera tests 

are frosty-opaque in appearance (Sexton et al., 2006), although glassy specimens were found 

as well. For stable isotope analysis the least frosty tests were selected. SEM analyses 

demonstrate that most of the shells are pristine in both investigated assemblages, and only 

very few have calcite overgrowths (Fig. 5A, B). Thin sections prepared from the tests show 

very finely to finely crystalline calcite cement (Fig. 5C) and/or pyrite filling the chambers. 

The calcite exhibits bright orange cathodoluminescence (CL) (Fig. 5D).  

The benthic foraminifera assemblages of both studied sections are dominated by 

epifaunal genera (e.g., Cibicidoides, Gyroidinoides) in the lower part (between 443.1 m and 

404.5 m at CSV-1 site and between 107.4 m and 96.6 m at KL-1 site). Upsection (between 

404.2 and 364.0 m in CSV-1 and between 96.2 m and 69.8 m in KL-1) the assemblage is 

characterized by shallow to deep infaunal genera (e.g., Lenticulina, Bulimina, Uvigerina, 

Dentalina).  

A total of 236 foraminifera species were identified in this study. The most characteristic 

taxa, i.e. those determined as dominant elements of the successive communities distinguished 
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on the basis of factor analysis (see 4.3.) are briefly described and illustrated in Supplementary 

material 3. 

 

4.2. Diversity H(S) 

Benthic foraminiferal diversity index values vary between 1.5 and 3.5 in both studied 

boreholes. The diversity is slightly increasing in the lower part of CSV-1 core (Fig. 6), 

whereas it exhibits more or less constant values in the KL-1 core (Fig. 7). A significant 

increase of diversity index values was observed in the middle part of CSV-1 core (between 

425 m and 380 m), whereas strong fluctuation of H(S) values (between 1 and 3) characterizes 

the middle part of KL-1 core (between 100 m and 80 m). The H(S) values show significant 

decrease in the upper part of both successions. 

4.3. Q-mode factor analysis 

Based on the Q-mode factor analysis, the late Eocene–early Oligocene benthic 

foraminiferal assemblages were grouped into five factor communities in both boreholes (Figs. 

6 and 7). In the CSV-1 core, the five factors explain 71.7 % of the total variance, whereas in 

the KL-1 core these factors explain 72.7 % of the total variance. Cibicidoides dutemplei is the 

dominant species (factor score 11.38 in CSV-1 core and 7.7 in KL-1 core) in the factor 

community 1 (FC-1) in both boreholes. Important associated species (i.e. factor score >1) of 

this fauna include Gyroidinoides soldanii (in both cores), Spiroplectammina carinata and 

Lenticulina arcuatostriata (in CSV-1 only). This community occurs between 443.1 m and 

404.5 m in the CSV-1 core and between 106.56 m and 96.6 m in the KL-1 core. The FC-2 

(Uvigerina cocoaensis jackonensis) together with FC-4 (Bathysiphon saidi associated with 

Clavulinoides szaboi, G. soldanii and Lenticulina inornata) show statistically significant 

factor loadings between 405 m and 388.7 m in the CSV-1 borehole. A similar community (C. 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT
  

 13 

szaboi, Dentalina budensis and B. saidi) is dominant in the KL-1 borehole between 96 m and 

92 m. Significant loadings of the FC-3 occur between 380 m and 370 m in the CSV-1 

borehole, where the dominant species is the infaunal Cyclammina acutidorsata. The FC-3 

(Glandulina reussi, Dorothia textilaroides, Anomalinoides alazanenisis), FC-5 (Bulimina 

spp.) and FC-2 (L. inornata) are dominant in the middle part (between 93 m and 79 m) of the 

KL-1 borehole. The uppermost part between 370 to 364 m is characterized by FC-5 (L. 

inornata, Cancris sp. and Spiroplectammina carinata) in CSV-1, and FC-2 (L. inornata) in 

KL-1 (between 77 m and 70 m). 

4.4. Benthic foraminiferal oxygen index (BFOI) 

The calculated BFOI values range between 0 and 85 in both boreholes, and changes in 

both curves are characterized by a gradual decrease upsection (Figs. 6-7). In the CSV-1 core, 

relatively high BFOI values (>50) were recorded in the lower part (443.1–409.9 m), similarly 

to the lower part (107–97 m) of the KL-1 core. The estimated O2 concentration in bottom-

water was higher than 3 ml/l at both sites during deposition of the lower part of the section, 

which is characterized by the epifaunal Cibicidoides dutemplei assemblage (FC-1) and 

associated epifaunal and shallow infaunal species (Gyroidinoides soldanii, Spiroplectammina 

carinata and Lenticulia arcuatostriata). In the middle part of both cores (~410–393 m in 

CSV-1 and ~96–78 m in KL-1), the BFOI values drop below 50 (15<BFOI<50), indicating 

decreasing oxygenation of the depositional environment (Figs. 6-7), where the estimated O2 

concentration of the bottom-water ranged between 1.5–3.0 ml/l. This interval is characterized 

by the infaunal Uvigerina cocoaensis jackonensis (FC-2) and Bathysiphon saidi (FC-4) 

assemblages, associated with shallow infaunal and epifaunal forms (Clavulinoides szaboi, 

Gyroidinoides soldanii and Lenticulina inornata) in CSV-1 core (Fig. 6). In the KL-1 core 

(~96–78 m) it is dominated by infaunal agglutinated foraminifera, C. szaboi (FC-4) and 

associated species (Dentalina budensis and B. saidi). This part is further characterized by the 
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Glandulina reussi (FC-3), Lenticulina inornata (FC-2) and Bulimina truncana assemblages 

(FC-5), which are dominated by shallow and deep infaunal species (Fig. 7). In the uppermost 

part of the cores (above 380 m in CSV-1 and 78 m in KL-1, see Figs. 6-7), the BFOI drops to 

the lowest values (0–15) within the entire investigated part of both boreholes, indicating 

suboxic conditions with ca. 0.3–1.5 ml/l dissolved oxygen content in the bottom-waters. This 

interval is characterized by Cyclammina acutidorsata (FC-3) and Lenticulina inornata 

assemblages (FC-5) with associated infaunal species (Fig. 6) in the CSV-1 core, and 

Lenticulina inornata assemblages (FC-2) in the KL-1 core (Fig. 7). 

 

4.5. Calcareous nannoplankton of CSV-1 core 

The distribution and association of nannoplankton species primarily depend on 

temperature, salinity and the availability of nutrients. Báldi-Beke (1984) was the first to 

distinguish groups in the Hungarian Eocene assemblages on the basis of similar ecological 

requirements. Following her studies, the principal works about coccolithophores by Bukry 

(1974), Perch-Nielsen (1985), Winter and Siesser, (1994), Bown (1998) and Thierstein and 

Young (2004), as well as comparative studies by Persico and Villa (2004), Dunkley Jones et 

al. (2008), Maravelis and Zelilidis (2012), and Violanti et al. (2013) are used here. 

Nannoplankton occurrence and abundance distribution in the CSV-1 borehole (Supplementary 

material 4) was analysed by constructing diversity curves and carrying out multivariate 

analyses (Nyerges 2014). On this basis, the following revised ecological groups are 

distinguished in the studied material.  

4.5.1. Pelagic, normal-salinity nannoplankton association 

Characteristic taxa include Discoaster barbadiensis, D. saipanensis, D. tani, Sphenolithus 

moriformis, S. predistentus. Others with similar ecological requirements are Reticulofenestra 

reticulata, R. hampdenensis, R. callida, and R. minuta. They are interpreted as open-marine, 
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oceanic forms, preferring mainly tropical-subtropical climate. In the Central Paratethys, they 

are typical in the Buda Marl Formation, which was deposited at times of fully open marine 

connection. The other assemblage from similar habitat shows lower diversity; its 

characteristic taxa include Reticulofenestra bisecta, Blackites tenuis, Coccolithus pelagicus, 

and C. floridanus. These taxa are also interpreted to occupy open-marine habitats, although 

preferring mainly temperate or cool climate.  

4.5.2. Nearshore nannoplankton association 

Dominant taxa include Helicosphaera euphratis, H. intermedia, Pontosphaera multipora 

and Transversopontis pulcher, preferring mainly cool climate. Also assigned to this subgroup 

is the association of the following taxa, which can be linked to the early Oligocene climate 

cooling: Lanternithus minutus, Zygrhablithus bijugatus, Ericsonia subdisticha and E. 

formosus. Multivariate statistical analyses suggest that Isthmolithus recurvus is also related to 

this group. Baarudosphaera bigelowii, Helicosphaera sp. and Transversopontis pulcher are 

additional typical species of the inferred nearshore habitat which are able to tolerate reduced 

salinity. Taxa adapted to warm climate became extinct or ceased to secrete calcareous test at 

the end of the NP19-20 zone. Upwards the cold-adapted species become dominant, marked by 

the acme of Lanternithus minutus, Zygrhablithus bijugatus, and Ericsonia subdisticha in the 

NP21 zone. At the boundary of NP21 and 22 zones the abundance of Helicosphaera increases 

further, showing a trend opposite to all other taxa. Helicosphaera is thought to tolerate 

decreasing salinity and increase in terrestrial influx (Thierstein and Young, 2004; Violanti et 

al., 2013). In the studied interval the abundance of calcareous nannoplankton is high whereas 

their preservation is moderate to good. Based on diversity indices (Shannon, Fisher-alpha, 

evenness, dominance), the nannoflora is highly diverse, rich in taxa, it has moderate evenness 

and more than one species show relatively high abundance (Fig. 8). The calcareous 
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nannoflora of KL-1 core was not restudied here, but it is known to range from the NP19-20 to 

NP23 zones (Báldi, 1984). 

4.6. Oxygen and carbon isotope analyses 

The δ18O values vary between –5.9 and –1.6 ‰ in the entire CSV-1 core, with clearly 

identifiable trends over time: in the late Eocene to early Oligocene (433.5–404.8 m) the δ18O 

curve shows a significant overall increase with stepped fluctuations (Fig. 9A). The first 

increase in benthic foraminiferal δ18O starts at 425.9 m, the next one at 419.5 m, and the most 

significant one at 404.8 m. The last step leads to the maximum value observed in the oxygen 

isotope curve (Fig. 9A). Above this interval, the δ18O values decrease to 385.3 m, whereas a 

significant scatter is observed in the uppermost part of the succession. In the KL-1 core, the 

benthic foraminifera δ18O signal (Fig. 9B) shows similar trends to that observed in CSV-1 

borehole. The δ18O values range from –5.4 to –0.9 ‰, with a gradual increase from the lower 

part of the section to 83 m where they reach the maximum values (Fig. 9B). The trend 

becomes negative upsection, although a reversal occurs at the uppermost part in KL-1.  

The planktic δ18O curves show a very similar trend to the δ18O curve of benthic 

foraminifera from both cores, although with more negative δ18O values ranging from –6.3 to –

3.8 ‰ in the CSV-1 core and –5.9 to –2.3 ‰ in KL-1. The average observed surface-to-

bottom gradient is about 1.6 ‰ during the EOT.  

The δ13C values of benthic foraminifera in the CSV-1 core range from –0.9 to 1.3 ‰ 

(Fig. 9A and Supplementary material 5). In the lower part of the NP21 zone, the carbon 

isotope values show a considerable decrease, followed by an increase from 422.8 to 406.8 m, 

then a significant decrease up to the top of the section. The δ13C values of planktic 

foraminifera range from –1.3 to 0.9 ‰ and exhibit a similar trend to the carbon isotope curve 

of the benthic tests, without significant fluctuations. The planktic carbon isotope curve has a 

distinct peak at 412.1 m, from there the values decrease gradually upsection (Fig. 9A). 
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The δ13C values of benthic foraminifera in the KL-1 core range from –0.4 to 1.2 ‰, the 

record shows a gradual increase with brief positive excursions in the middle part of the 

section. From 88.5 m to the top of the section, the values decrease by 0.5–0.7 ‰. A similar 

trend can be observed in the δ13C curve of planktic foraminifera, with slightly fluctuating 

values in the lower part of the section to 92.85 m, followed by a decrease of 0.5–0.7 ‰ 

upsection (Fig. 9B). 

 

5. Discussion 

5.1. Stable isotope records across EOT compared to global database 

5.1.1. Oxygen isotope values 

A fundamental question is whether our stable isotope geochemical data from the 

Paratethys show correlation with well-dated global isotopic and inferred paleoclimatic signals. 

It is well-established that a significant, 1.5 ‰ increase occurred in the global deep-sea δ18O 

record during the EOT (e.g., Zachos et al., 2001; Coxall et al., 2005; Lear et al., 2008). This 

event was linked to the initial continental ice growth in the Southern Polar region (Miller et 

al., 1991; Coxall et al., 2005; Lear et al., 2008; Galeotti et al., 2016). Well-dated, high-

resolution δ18O and δ13C isotope records derived from DSDP and ODP cores are available for 

the EOT (e.g., Zachos et al., 1994; 2001; Coxall et al., 2005; Katz et al., 2008; Miller et al., 

2009). The compiled data and the fitted isotope curves are plotted in Fig. 10. Three major 

isotope events can be recognized: (1) EOT-1 (abbreviation for "Eocene-Oligocene transition 

event 1"), associated with an increase of 0.9 ‰ in δ18O, (2) EOT-2 (Eocene-Oligocene 

transition event 2), associated with a ~0.8 ‰ δ18O increase (Miller et al., 2009), and (3) "Oi-1,  

"Zone (Oligocene isotope 1)", which was originally defined by Miller et al. (1991) and 
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discussed later in detail by Coxall and Pearson (2007) and Pearson (2015) as an isotope zone 

of over three million years in duration. However, most workers use the term Oi-1 to denote 

the maximum positive δ18O excursion during the early Oligocene, where δ18O reaches 

maximum values at 33.55 Ma (Zachos et al., 1996; Katz et al., 2008; Miller et al., 2009) or at 

33.65 Ma (Coxall and Wilson, 2011), in the records of DSDP Site 522 and ODP Sites 744 and 

1218. This maximum value is associated to a significant sea-level fall (Miller et al., 2005). 

Our two δ18O stable isotope curves show considerable similarity to the global curve 

throughout the investigated time interval, although the δ18O values measured from the CSV-1 

and KL-1 cores are systematically lower by 4 to 6 ‰ (Fig. 10). These very negative values 

would translate into unrealistically high seawater temperature during the EOT in the 

Paratethys, or they could imply that subsequent alteration affected the studied sections. 

Trends in δ18O values in the Oi-1 zone in the Paratethys mirror the global signal, 

although the magnitude of the ca. 2.5–3 ‰ increase is significantly higher than the 1.5±0.1 ‰ 

shift in the global average record (Fig. 10). The similarity seems to be more obvious after 

standardizing the data from the CSV-1 borehole (Fig. 11) and, although the resolution of the 

global curve is much better, the isotope trends parallel the early Oligocene positive excursion. 

This suggests that the measured isotope values track the primary global signal with different 

amplitude. 

The lower Oligocene record in the Paratethys shows elevated δ18O above the E-O 

boundary, as is typical of the global deep ocean (Fig. 10). These records provide the first 

evidence of globally synchronous change in δ18O representing EOT climatic change in the 

bathyal environment of the Paratethys, although direct estimates for the paleotemperature 

cannot be made. The results of the Q-mode factor analysis show that epifaunal C. dutemplei 

and associated forms (Factor 1, see Fig. 6) dominated around the EOT time in both 

investigated sections. This dominantly oligotrophic to mesotrophic fauna is a characteristic 

constituent of modern shelf and upper bathyal regions (e.g., Jorrisen, 1987; Schiebel, 1992; 
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Murray, 2006), where the effect of sea surface temperature (e.g., seasonal fluctuations) is 

negligible. Therefore we conclude that the detected increase in benthic δ18O might have been 

triggered when isotopically heavy and/or cool bottom-water appeared in different subbasins of 

the Paratethys. Following the maximum excursion of benthic δ18O (above 405 m in CSV-1 

and around 92 m in KL-1 borehole), a significant decrease (1.5–3 ‰) can be detected in the 

Paratethys, compared to 0.5–1 ‰ in the global average (Fig. 10). This more pronounced 

rebound in the Paratethys might record the progress of its first isolation from the surrounding 

open ocean (Báldi, 1984).  

Significantly fewer studies have concentrated on the stable isotope composition of 

planktic foraminifera during the EOT, because the δ18O composition of their tests is strongly 

influenced by regional water mass salinity changes. Planktic foraminifera live in a wide range 

of depth in the upper part of ocean column (0–500 m), where the temperature varies from ~30 

°C to 8 °C (Birch et al., 2013). The very high standard deviation of planktic foraminiferal 

δ18O signals in the global data set hints at a conspicuous north-south, near-surface oceanic 

temperature gradient during the EOT. In addition, any local environmental change such as 

seasonal fluctuations, enhanced river run-off and freshwater input might cause strong 

fluctuations in the planktic δ18O values. Planktic δ18O data range from –3.8 ‰ to 3 ‰ in the 

global database, compared to –6 ‰ to –3 ‰ in the Paratethys. Again, the apparently 

anomalous low isotope values would allow inference of unrealistically high SST for the 

Paratethys or, alternatively, the development of reduced-salinity surface water mass. 

Comparably low oxygen isotopic values were documented in sapropels deposited during a 

seasonal low-salinity interval in the eastern Mediterranean during the past 13,000 years (Tang 

and Stott, 1993). This condition extended throughout the fall and winter periods and it was 

most probably triggered by significant freshwater input into the basin, possibly associated 

with a pluvial period. Similar paleoceanographic conditions are assumed for the Slovenian 

Paleogene Basin (Fig. 1) during the Oligocene (Schmiedl et al., 2003) and for the Inneralpine 
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Molasse Basin (Fig. 2) during the late Oligocene (Scherbacher et al., 2001). In addition, the 

significant input of lower density freshwater probably caused stratification in the water 

column, which led to temporarily anoxic conditions in the deeper subbasins of Central 

Paratethys, and the formation of brackish conditions in the shallower, near-coastal areas 

within two million years. By comparing the planktic and benthic δ18O values, covariant offset 

can be observed in the δ18O signals. The planktic δ18O values are systematically lighter than 

their benthic counterparts in all samples (Fig. 9). The average observed surface-to-bottom 

gradient was about 1.6 ‰ during the EOT, indicating at least partial preservation of the 

expected ecological offset.  

5.1.2. Carbon isotope values 

The δ13C value of biogenic carbonate in foraminiferal test is primarily controlled by the 

δ13C value of ambient dissolved inorganic carbon (Mook, 1968). The global carbon curve 

shows a >1 ‰ δ13C increase (Fig. 10) during the EOT which is traceable in our δ13C curves 

(Fig. 10), although the values are ca. 1 ‰ lighter in the Paratethys than the global average. 

Various hypotheses have been put forward to explain the increase in global δ13C values during 

this period. One of them proposes that increased organic nutrient flux into oceanic basins 

caused increased Corg burial (e.g., Salamy and Zachos, 1999; Dunkley Jones et al., 2008; 

Coxall and Wilson, 2011). The second model (Merico et al., 2008) suggests enhanced 

inorganic input into oceanic basins by weathering of shelf carbonates associated to EOT-

related sea-level fall (e.g., Miller et al., 2005). The positive δ13C anomaly and the appearance 

of infaunal or shallow infaunal benthic foraminifera such as Uvigerina (Factor 2) and 

Bathysiphon (Factor 4) and associated species in the CSV-1 core (Fig. 6), and Clavulinoides 

(Factor 4), Glandulina (Factor 3) and Lenticulina (Factor 2) and associated species in the KL-

1 core suggest that high organic carbon flux characterizes the Hungarian Paleogene Basin 

from the middle part of NP21 nannozone (at 405 m in CSV-1 and around 92 m in KL-1 
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borehole). These infaunal or shallow infaunal benthic foraminifera are most abundant in the 

upper 5 cm of organic-rich sediments in modern outer shelf and bathyal regions (e.g., Gooday 

et al., 2002, Fontanier et al., 2002, Murray 2006). These forms usually occur in high 

productivity areas along with the oxygen minimum zone in deeper basins, as a number of 

studies documented them from similar environments, e.g., in the lower Oligocene of the 

Inneralpine Molasse Basin (Scherbacher et al., 2001) or in the upper Paleogene of the 

Slovenian Paleogene Basin (Schmiedl et al., 2002). The dominance of infaunal and shallow 

infaunal benthic foraminiferal species (inferred from significant loadings of the FC-2 to FC-5 

between 415 m and 370 m in the CSV-1 borehole and 95 m to 70 m in KL-1 borehole) is 

thought to represent a decrease in oxygen concentration of bottom water over the Eocene-

Oligocene boundary. Simultaneously, BFOI values show a gradual decrease in the CSV-1 

borehole from 405 m and generally low values from 92 m in the KL-1 borehole (Figs. 6-7, 

10), confirming the onset of eutrophic and oxygen-limited conditions in the Paratethyan area 

(Fig. 2). Above the Eocene/Oligocene boundary the δ13C values show an overall similar 

pattern to the global carbon curve, except for a more significant decrease above the EOT (Fig. 

10), where 1.0–1.2 ‰ lighter δ13C values are recorded. This confirms that carbon isotopic 

evolution of the Paratethys follows the global signal until the end of EOT, whereas the 

subsequent departure from the global signal is consistent with the hypothesis that the 

Paratethys became isolated from the surrounding open oceans after the Antarctic glaciation 

event and associated climatic cooling. 

5.2. Primary signal vs. diagenetic overprint 

Our stable isotope analyses of benthic and planktic foraminifera yielded δ18O values that 

are systematically lower than the global oxygen isotope data from the same interval (Fig. 10). 

The unexpectedly negative δ18O values may indicate subsequent alteration that affected the 
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foraminifer tests, and/or increased precipitation (e.g., monsoon effect) during the EOT in the 

Paratethyan area.  

5.2.1. Diagenesis 

Low δ18O values may imply diagenetic overprint that would hinder paleoenvironmental 

interpretation. SEM observations suggest that the shell structure is well-preserved and 

recrystallization was negligible (Fig. 5A, B), thus it could not account for a significant offset 

from the primary isotope values. This is further supported by the black CL pattern of the shell, 

indicating oxidative conditions during precipitation. In contrast, the chamber-filling calcite 

displays uniform, bright orange CL color (Fig. 5D) and implies precipitation from slightly 

reducing fluids.  

The unexpectedly low δ18O values are probably due to the calcite cement in the tests, 

which may have precipitated from either the pore fluids of elevated temperature during deep 

burial, or hydrothermal and/or meteoric fluids circulating through the pore space during uplift.  

Deep burial diagenetic cement precipitating from marine pore fluids of elevated 

temperature at greater depth would have depleted oxygen isotopic composition, proportional 

to the depth. However, it is unlikely that the tests remained unfilled at burial depth in excess 

of 1000 m. The bright CL of the calcite suggests only slightly reducing parent fluid that is in 

contrast to what is expected at such depth.  

The other scenario invokes precipitation of calcite cement from fluids with low δ18O 

values during uplift which started in the Miocene. Such fluids may have been sourced from 

hydrothermal fluids in the Paleogene basin (Poros et al., 2012). However, this process would 

require that the chambers of foraminifera remained unfilled for at least 20 Myr. Empty 

foraminifera tests were reported at ca. 400 m depth both from Eocene microporous limestone 

(Maliva et al., 2009) and Cretaceous chalk (Price et al., 1998). Although the lithology and 

diagenetic history of these rocks differ significantly from the those studied here, the 
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possibility remains (and its testing awaits further study) that the tests stayed open until calcite 

precipitated in the chambers from fluids with low δ18O values at elevated temperature, either 

during deep burial or subsequent uplift. 

5.2.2. Increased precipitation (monsoon effect) 

Increased freshwater input into the basin may represent another possible cause of 

deviation in δ18O values. In the modern Indian Ocean and eastern Mediterranean Sea, intense 

monsoon precipitation delivers large amounts of isotopically light freshwater through 

discharge of the Padma and Nile Rivers, respectively (Rossignol-Strick et al., 1982), recorded 

in low δ18O values of planktic foraminifera (Tang and Stott, 1993). By analogy, development 

of a surficial freshwater lens might have reduced the exchange between surface and deeper 

waters, leading to water column stratification and temporarily anoxic conditions in the deeper 

subbasins of the Central Paratethys (Schmiedl et al., 2002). Development of low-salinity 

surface water masses in the Central Paratethys is indicated by the appearance of mono- and 

duospecific calcareous nannoplankton assemblages from the late early Oligocene (NP23), 

leading to the disappearance of benthic communities within two million years. Stable isotopic 

composition of the tooth enamel of late Paleogene large terrestrial mammals from Europe 

reflects a significant increase in rainfall, especially from the NP23 zone (Kocsis et al., 2014). 

Paleobotanical analyses also suggest high humidity during the EOT in the terrestrial 

environment around the Hungarian Paleogene Basin (Erdei et al., 2012).  

 

6. Paleoclimatic and paleoceanographic changes in the Hungarian Paleogene Basin 

during the Eocene-Oligocene climate transition 

The largest global paleoclimatic event in the Cenozoic is closely associated with the 

establishment of the Antarctic ice cap (Shackleton and Kennett, 1975; Zachos et al., 1996, 
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2001; Salamy and Zachos, 1999; Coxall et al., 2005; Pearson et al., 2009; Galeotti et al., 

2016), and it is expected to have influenced the regional climate regime in the Central 

Paratethys area. Our micropaleontological record suggests significant changes during the EOT 

in both the bottom and surface-waters (Fig. 10). Benthic foraminiferal communities indicate 

dominantly oligotrophic to mesotrophic environment at the end of the late Eocene 

(Priabonian) and the earliest Oligocene (early Rupelian) (Fig. 12A). From the middle early 

Oligocene, eutrophication resulted in increasing flux of organic matter to the sea floor (Fig. 

12B). However, temporarily anoxic conditions did not develop before the late early 

Oligocene, when the dissolved oxygen content dropped below 1.5 ml/l. The positive δ13C 

anomaly and the appearance of infaunal and shallow infaunal benthic foraminiferal species 

over the Eocene-Oligocene boundary (where the BFOI shows gradual decrease in the 

investigated sections) also confirm the onset of eutrophic and oxygen-limited conditions in 

the Paratethys (Figs. 10 and 12C). This event coincides with increasing δ18O values of benthic 

foraminifera, which is reflects the development of continental ice sheet in Antarctica. The 

decrease of benthic foraminiferal diversity in the late early Oligocene with very low values of 

BFOI is congruent with these changes (Figs. 10 and 12D) and the isolation of Paratethys from 

the western Tethys Ocean after the EOT, as suggested by Báldi (1984).  

The presence of marine, tropical to subtropical nannoplankton associations in the late 

Eocene suggests a marine connection (Fig. 12A) to the surrounding open ocean of the 

Indopacific realm. The appearance of nearshore nannoplankton groups indicates that this 

marine connection became limited towards the Western Tethys during the EOT. The decrease 

in nannoplankton diversity and highest dominance of Helicosphaera indicate strong 

variability of salinity and enhanced terrestrial fluxes (Fig. 12B). Our stable isotope records 

show a significant decrease later, after the EOT (Fig. 10), which differs from the global trend, 

and it is probably related to the isolation of Paratethys from the Western Tethys and the 

Atlantic Ocean. The initial isolation process might have coincided with a second-order sea-
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level fall and the orogenic uplift of the Alpine-Carpathian-Dinaride chain (Fig. 12B-D). 

Subsequently, a major increase in freshwater input probably caused stratification of the water 

column, which led to the formation of temporarily anoxic bottom-waters in the deeper 

subbasins of the Central Paratethys, and the development of brackish conditions in the 

shallower, near-coastal areas within two million years, by the late early Oligocene.  

7. Conclusions 

New micropaleontological and stable isotope data from the Central Paratethys provide 

insight into the paleoclimatological, paleoceanographical and paleoenvironmental evolution in 

this epicontinental sea during the Eocene-Oligocene climate transition. The benthic 

foraminiferal faunas of both studied Eocene-Oligocene borehole sections in the Hungarian 

Paleogene Basin suggest relatively stable paleobathymetry from the late Eocene to early 

Oligocene. Benthic communities are characterized by epifaunal genera during the late Eocene 

and by shallow to deep infaunal genera during the early Oligocene. Benthic foraminiferal 

diversity is slightly increasing across the EOT, while a significant decrease can be observed in 

the late early Oligocene. 

The calculated BFOI values suggest higher than 3 ml/l O2 concentration at both sites 

during the late Eocene and a decrease across the EOT, indicating low oxic depositional 

environment. The estimated O2 concentration in bottom-water ranges between 1.5 and 3.0 

ml/l. The BFOI shows the lowest values after the EOT across the whole investigated time 

interval, indicating approximately 0.3 to 1.5 ml/l dissolved oxygen content. Based on 

multivariate statistical analyses of the nannoplankton flora, two ecological groups can be 

distinguished: a pelagic, normal-salinity nannoplankton association in the late Eocene, which 

indicates fully open marine connections, and a nearshore nannoplankton association during 

and after the EOT, with taxa which prefer cooler climate and are able to tolerate varying 

salinity and increase in terrestrial influx. 
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The stable isotope analyses of benthic and planktic foraminifera from the Paratethys 

reveal that the measured δ18O and δ13C values display the same trends but are systematically 

lower relative to global oxygen isotope data compiled for the investigated period. The positive 

δ18O shift at the EOT in the Paratethys coincides with the global trends in the signal, and it 

reflects the influence of this global climatic event in the Paratethys. The planktic δ18O values 

are systematically lower than their benthic counterparts, indicating at least partial preservation 

of expected ecological offset, thus providing further evidence that the stable isotope signals 

reported here are not completely masked by diagenetic alteration.  

The positive δ13C anomaly and the synchronous appearance of infaunal or shallow 

infaunal benthic foraminifera suggest that increasingly high organic carbon flux and burial 

rate characterized the Hungarian Paleogene Basin from the Eocene-Oligocene boundary. 

The δ18O and δ13C values show an overall similar pattern to the compiled global isotope 

curves during the EOT, although a more significant decrease can be observed after this global 

event. This deviation suggests that the Paratethys became completely isolated from the 

surrounding open oceans after the EOT.  

Supplementary material to this article can be found online at http://$$$ 
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Figure captions 

Fig. 1. Paleogene epicontinental and flysch basins in the Eastern Alpine–Carpathian–Northern 

Dinarides junction. Map showing the location of the Cserépváralja-1 (CSV-1) and Kiscell-1 

(KL-1) boreholes. Base map derived from the digital elevation model of the Pannonian Basin 

(Horváth et al., 2005)  

Fig. 2. Paleogeographic reconstruction of the Alpine–Carpathian–Dinarides junction for 

Eocene-Oligocene transition (NP19-NP21), based on paleogeographic maps of Ziegler 

(1990), Dercourt et al. (1993), Rögl (1998), Meulenkamp and Sissingh (2003) and Popov et 

al. (2004). The tectonic cross-section is based on Tari et al. (1993).   

Fig. 3. Stratigraphy, lithology, paleoecological characteristics and inferred paleoenvironments 

of the Eocene-Oligocene transition sequence in the Cserépváralja–1 (CSV-1) borehole (after 

Báldi et al., 1984).  

Fig. 4. Stratigraphy, lithology, paleoecological characteristics and inferred paleoenvironments 

of the Eocene-Oligocene transition sequence in the Kiscell-1 (KL-1) borehole (after Báldi, 

1984). (M = Magnetostratigraphy, NP = Nannoplankton stratigraphy, P = Planktonic 

foraminifera zonation after Blow (1969) in Báldi (1984))  

Fig. 5. A) SEM-SE images of a benthic foraminifera (Cibicidoides dutemplei, CSV-1 core, 

382.2 m), showing pristine shell structure, B) SEM-SE image of the test of a planktic 

foraminifera from the CSV-1 core, showing minimal calcite overgrowth, C) Photomicrograph 

of a benthic foraminifera (C. dutemplei) in thin section (plane-polarized light). Note the 

distinction between the test wall and the calcite cement filling of the chambers, D) 

Cathodoluminescence image of C. dutemplei, note bright orange CL of the calcite cement. 
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Fig. 6. Q-mode (Varimax-rotated) factor analysis, Diversity H(S) and benthic foraminiferal 

oxygen index (BFOI) vs. depth in the CSV-1 borehole. 

Fig. 7. Q-mode (Varimax-rotated) factor analysis, Diversity H(S) and benthic foraminiferal 

oxygen index (BFOI) vs. depth in the KL-1 borehole. 

Fig. 8. Calcareous nannoplankton dominance (Dominance_D), diversity (H(S)), evenness 

(Evenness_e H/S) and Fisher alpha index vs. depth in the CSV-1 borehole. 

 

Fig. 9. A. Benthic foraminifera (Cibicidoides spp.) and planktic foraminifera (Globigerinida 

sp.) oxygen and carbon isotope (per-mil VPDB) time series from the CSV-1 borehole plotted 

vs. age for the EOT. Age model based on nannoplankton stratigraphy (Berggren et al., 2012). 

B. Benthic foraminifera (Cibicidoides spp.) and planktic foraminifera (Globigerinida sp.) 

oxygen and carbon isotope (per-mil VPDB) time series from the KL-1 borehole plotted vs. 

age for the EOT. Age model based on nannoplankton stratigraphy (Berggren et al., 2012) 

Fig. 10. Oxygen isotope curves of benthic foraminifera from the CSV-1 and KL-1 boreholes 

and a composite global deep-sea oxygen isotope curve. Raw data for the global curve are 

based on benthic foraminifera from DSDP 77, DSDP 522, DSDP 529, DSDP 563, DSDP 574, 

ODP 689, ODP 744, ODP 748 and ODP 1218 sites (after Grossman, 2012). The average 

curve was smoothed using a 5-point running mean of data listed in Supplementary material 5. 

The shaded region represents the EOT, where the greenhouse-to-icehouse transition 

culminated in the earliest Oligocene.  
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Fig. 11. Comparison of the composite global deep-sea oxygen isotope curve (blue) and the 

standardized oxygen isotope values from the CSV-1 borehole (red). Calculation of standard 

scores (z) follows the equation zi = (xi-xm)/σ, where xm is the mean and σ is the standard 

deviation of the measured isotope values. 

Fig. 12. Paleogeographic reconstruction and paleoceanographic model for the HPB 

(Paratethys) during the EOT (NP22-NP23 zones). Paleogeographic map illustrate the isolation 

of Paratethys from the surrounding open oceans after the EOT. The presented 

paleogeographic reconstruction is based on paleogeographic maps of Ziegler (1990), Dercourt 

et al. (1993), Rögl (1998), Meulenkamp and Sissingh (2003) and Popov et al. (2004). 

Paleogeographic models: A. Oligotrophic to mesotrophic environment at the end of the late 

Eocene and earliest part of the early Oligocene with marine connections to the surrounding 

open ocean. B. Increasing flux of organic matter to the sea floor resulted in eutrophication 

from the middle early Oligocene. C. The initial isolation process might have coincided with a 

second-order sea-level drop (manifest in a lowstand systems tract) and the orogenic uplift of 

the Alpine-Carpathian-Dinaride chain. D. Freshwater input probably caused stratification of 

the water column, which led to the formation of suboxic conditions in the Central Paratethys.  
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Supplementary material 1. 

Summary of nannoplankton zonation of the Eocene-Oligocene transition as applied to the 

biostratigraphy of CSV-1 borehole. 

Supplementary material 2. 

Foraminifera occurrence data, calculated diversity indices and BFOI values in the samples 

from CSV-1 and KL-1 boreholes. 

Supplementary material 3. 

Brief taxonomic description and illustration of key taxa used in the characterization of benthic 

foraminifera communities from the CSV-1 and KL-1 boreholes. 

 

Supplementary material 4. 

Nannoplankton occurrence data from the CSV-1 and KL-1 boreholes. 

 

Supplementary material 5. 

Stable isotope data measured in the samples from CSV-1 and KL-1 boreholes. 
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Fig. 12 
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Highlights 

 New geochemical and paleontological proxy records of the Eocene-Oligocene transition 

 δ18O from both benthic and planktic foraminifera record in the Paratethys 

 Stable isotopic trends parallel the global record but exhibit regional differences 

 Changes in foraminiferal assemblages track decreasing bottom water oxygenation 

 Isolation of Paratethys and influence of Alpine orogeny overprint the global signals 


