Swarm Intelligence Meets
Rule-Based Design Space Exploration

Alexandra Anna S6lyom, Andrds Szabolcs Nagy
Department of Measurement and Information Systems,
Budapest University of Technology and Economics
Email: solyomalexandraanna@gmail.com, nagya@mit.bme.hu

Abstract—In model-driven development design artefacts (e.g.
source code and system configuration) are automatically gener-
ated from models. For example, a distributed computer system,
which consists of multiple different hardware and software
elements, can be effectively captured by an appropriate graph-
like model, which can be used to generate configuration. Sev-
eral modelling problems can be automatically traced back to
optimization problems, such as finding the most cost effective,
reliable or efficient allocation software components to hardware
components. However, finding optimal solution for such systems
is a major challenge, because (1) existing approaches usually
operates over vectors while the problem at hand is defined by
graphs; (2) besides the model, the configuration steps may also
have to be optimized; and (3) for the best results, optimization
techniques should be adapted to the actual domain. In this paper,
we propose to integrate the bee colony optimization technique
with rule-based design space exploration to solve multi-objective
optimization problems in a configurable and extensible way.

I. INTRODUCTION

Design Space Exploration (DSE) is a method for finding
various system designs at design or even at runtime, which
satisfy given structural and numerical constraints. Besides
satisfying these constraints, DSE searches for an optimal or
nearly optimal solution.

Model-Driven Rule-Based DSE operates over the model. It
starts from an initial model and evolves it in each iteration
with use of graph transformation rules, until it reaches one
or more constraints satisfying model states. One of the ad-
vantages of this approach is that it also provides a sequence
of transformations as a solution besides the design candidate
itself. Furthermore, this approach is easy to integrate with
model-driven development [1]].

Graph transformation rules consists of two main parts [2], a
graph pattern and an operation. The graph pattern defines lo-
cations of applicable transformations, through finding pattern-
matching parts of the graph, while the operation determines
the possible operations on these subgraphs, using previously
given schemas.

Model-driven rule-based DSE can solve multi-objective
optimization [3]] problems. Best solution of such problems is
often non-trivial. There can be more than one equally good
solutions, because we have more objectives, which could be
contradicting to each other. E.g. the optimization objectives of
safety and cost are often conflicting, as improving safety may
lead to an increased cost.

Swarm intelligence is an effective heuristic method, for
finding a good solution in reasonable time. It is an adaptation
of successful natural survival strategies, such as foraging
of ants, bees and birds while they are looking for food
sources. A common feature among swarm intelligent methods
is the simplicity of participating units and the communica-
tion between them. The most used swarm-intelligent-based
search algorithms are the Particle Swarm Optimization (PSO),
Ant Colony Optimization (ACO) and Bee Colony Algorithm
(BCA). We found the BCA the most promising candidate for
initial investigations as it is the most flexible from the three.

Section [[I] gives insight how the multi-objective rule-based
DSE works, and it also introduces the most important con-
cepts needed to understand DSE and Multi-Objective DSE
(MODSE). Section describes swarm-intelligence-based al-
gorithms especially the Bee Colony Algorithm. In section [IV]
we present our approach to solve DSE problems. Finally,
section [V] concludes the paper.

II. MULTI-OBJECTIVE DSE

Models have two main types, the metamodel and the in-
stance model. While metamodels describe the structure of
models, instance models give the exact description of them. In
our case, metamodels define the acceptable structures, which
in most cases enable a wide variety of models. DSE-used input
models belong to instance models, and they are defined in an
unambiguous way [4].

As an example, consider computers and processes in a
distributed system, where the metamodel defines the possible
elements — computers and processes — and possible con-
nections between them, while the instance model gives the
exact number of computers and processes and how they are
connected.

A graph transformation rule defines how an instance model
can be modified. A transformation rule consists of
two sides: left hand side (LHS) is a constraint, which defines
the condition and gives context to the rule while the right hand
side (RHS) specifies the operation on the model. Left hand
side is given by a graph pattern, which consists of constraints
on types, connectedness and attributes. A graph pattern has
a match, when a subgraph in the given graph has the exact
structure as the pattern. A graph pattern can have multiple
matches on a model [1].

As the graph pattern can have multiple matches, each
rule may have multiple activations, and in most cases it is
undefined, which rule should be applied. When an activation is
applied, the graph structure is modified by the transformation.

LHS RHS

‘ c1:Computer ‘ | c2:Computer ‘ ‘ cl:Computer | ‘ c2:Computer |

belongs 3¢ belongs
to to
v ¥
p:Process p:Process

Fig. 1. Graph transformation rule for process reallocation

Well-formedness (WF) constraints (also known as design
rules or consistency rules) complement metamodels with
additional restrictions that have to be satisfied by a valid
instance model (in our case, functional architecture model).
Such constraints can also be defined by query languages such
as graph patterns or OCL invariants. Ill-formedness constraints
capture ill-formed model structures and are disallowed to have
a match in a valid model.

For instance in there is a design rule, that every
process has to belong to a computer. In this case, in
there is a well-formed instance model (a) according to this
rule, while in (b) there is an instance model, that is ill-
formed. In the ill-formed model there is one match of the
ill-formedness constraint.

C:Computer C:Computer
belongsTo belongsTo
P:Process P:Process
NEG NEG
NEG
Ill-formedness Well-formedness
constraints constraints

Fig. 2. Structural constraints by graph patterns

A DSE problem requires three input parameters: 1) an initial
model, 2) a set of graph transformation rules and 3) a set of
goal constraints captured by graph patterns. A solution of a
DSE problem is a sequence of rule applications, which reaches
a goal model state that satisfies all the goal constraints. These
solutions are found by exploring the search space (or design
space), through executing graph transformations according to
an exploration strategy.

Multi-objective DSE (MODSE) incorporates objectives that
express the quality of a solution. Structural (well-formedness)
constraints can be also leveraged to an objective by measuring
the degree of constraint violation. These objectives are either
to minimize or maximize.

a) C1: Computer

belongsTo

C3: Computer

belongsTo belongsTo

’ P3: Process

C3: Computer

belongsTo

Fig. 3. Example of well-formed (a) and ill-formed instance model (b)

’ P1: Process ’ P2: Process

b)
C1: Computer

belongsTo

’ P1: Process ’ P2: Process

Objectives can be defined on both the trajectory or the model
itself. While trajectory objectives measure the quality of the
rule application sequence such as number or cost of operations,
model specific objectives usually incorporates extra-functional
objectives such as performance and reliability.

dominating — not dominating possibilities

A and B are solutions:
fitness values of A: x1, X2, X3
fitness values of B: y1, y2, y3

(2) A does not dominates B
B does not dominates A
X1=Y1
X2=Y2
X3=Y2

(1) A dominates B

X1>=Y1

(3) A does not dominates B
B does not dominates A

X1>=Yy1
X222y X2<=Y2
%>V X3>=Y>

Fig. 4. Domination details x and y values are the fitness values of the solutions

While in a single-objective context solutions are easy to
compare to each other, measuring and ranking (evaluating) in
multi objective setting is not always obvious. For instance,
if there is a computer system that has to be optimized, it is
unclear whether three times faster or two times cheaper com-
puters are the better option. It depends mostly on other aspects
(size of the company, exact task, etc.), so for the same problem
both can be good solutions. Therefore, the domination function
is used in our DSE implementation to distinguish between
solutions and find the best one. An example for domination
can be seen in There are two functions, which can
be the objective values of two solutions, e.g. cost, response
time or safety. A solution dominates another, if at least one
objective value (fitness value) is higher than the others and all
other values are higher or equal. As a consequence, ordering
is unambiguous, a single best solution usually cannot be
determined. Instead, a Pareto front is defined, which contains
all the “best” solutions. If a solution belongs to the Pareto
front, then none of it’s parameters can be increased without
decreasing other parameters. In consequence, all solutions in
the Pareto front dominate all other solutions, which are not

part of the Pareto front.

III. SWARM INTELLIGENCE BACKGROUND

Swarm intelligence algorithms are based on modelling liv-
ing groups, which successfully accomplish specific tasks, like
ants, wolves or bees [5]. In these situations, a lonely animal
could not survive on his own, though the whole group can.
These methods are always heuristic and not aiming to find
the best solution as the animals neither do it, but to find a
good-enough solution in a reasonable time. Common in these
packs is that an individual follows simple rules during the
procedure while communicating few information to others.
Such techniques can be often used for complex optimization
problems, because they have good scalability and flexibility
[6].

Some of the well-known swarm algorithms are the Particle
Swarm Optimization (PSO), Bee Colony Algorithm (BCA)
and Ant Colony Optimization (ACO). We have chosen the
BCA for our initial experiments as 1) PSO is originally
designed for continuous problem domains and rule-based DSE
is a discrete optimization problem, 2) BCA seemed more
flexible than ACO in terms of adapting guided local search
exploration strategies such as hill climbing.

Bee Colony Algorithm is an often used swarm-intelligence-
base algorithm, which attempts to reproduce nectar-searching
methods of bee colonies. Normally, bees look for nectar in two
phases. In the first phase they look for flower patches where
nectar can be found. If a bee founds a patch, it goes back and
performs the waggle-dance, which is a communication form
between bees. Waggle-dance describes the size of the found
patch and the route to it. Depending on the goodness (size,
available nectar) of found patches a number of bees go out to
look for the food on this patch. Then they come back and tell
again how much more nectar is there.

Input parameters of the bee algorithm are: 1) the search
space (problem representation, neighbourhood function), 2)
the stopping criteria and 3) the size of bee population (n).

The BCA depicted in[Figure 5|consists of three main phases:

« scouting phase,
« evaluation phase, and
« collection phase.

These n bees are divided into two groups. One group
(neighbourhood bees) explores the found patches and continue
to map them further, while the other group (scout bees) is
sent out to look for new ones. Neighbourhood bees can be
seen as a local search in possible optimum places while
scout bees help to skip from local minimum or maximum
places, and switch to a better surrounding. In the scouting
phase, the first population of bees is initialized and sent out
randomly to collect information. During scouting phase all n
bees are scout bees which means, that they randomly explore
the search space into different directions. In this phase it is
important to avoid generation of similar trajectories to sample
the search space in as many directions as possible. When
each bee has returned then comes the evaluation phase, when
patch ranking is determined, and stop condition is evaluated.

Patch ranking helps to decide that which patches are worth
for further exploration. If the stop criteria is fulfilled, then the
algorithm can be stopped, and the best patches are selected for
output. If the stop criteria is unsatisfied then we enter the loop
on the right side of In this loop, the best collected
patches are selected, and then the collection phase is started.
In the collection phase, neighbourhood bees are sent out to
the selected patches, and if there are more bees left (from the
initial n) then these are sent out as scout bees to search for
new patches.

The concrete ratio of scout and neighbourhood bees rely
mostly on measuring methods [7]]. In our approach, users can
select the exact number of bees.

_Bee algorithm

select worthable
patches

collect information determine patch

(waggle dance) size for each patch

Initialize population
for size n

\4

|

collect information

is stop criteria (waggle dance)

met?

Fig. 5. Algorithm of beestrategy

IV. THE PROPOSED APPROACH

The aim of our work is to use swarm-intelligence-based
algorithms (namely the bee colony algorithm) for multi-
objective design space exploration. While the basic challenges
such as solution encoding and objective encoding were solved
by Abdeen et al. in [3], adapting the bee algorithm has several
other challenges, such as:

1) What is the best strategy for scout bees?

2) What is the best strategy for selecting patches for the

next iteration (evaluation strategy)?

3) What is the best strategy for the neighbourhood bees?

Initialization state

Best solution

Fig. 6. A possible search space of the bee algorithm

A. Exploration Strategies for Scout Bees

The aim of the scout bees is to generate new solutions that
are far enough from each other as well as previously found
solutions to prevent the algorithm to stuck in local optimum.
Hence, scout bees should use relatively high randomness.

While traditional approaches represent solutions as integer
arrays and it is straightforward to generate such solutions, in
our approach, the solutions are represented as a sequence of
rule applications. We have two options for finding random
nodes. The first one is to search nodes from already found
patches. The advantage of this option is that it can cut down the
search time by some steps, though there are situations in which
scouts cannot reach every part of the graph and fail to improve
the solution. For example in if the exploration found
the three blue states with fitness values 18, 20 and 14, and the
scout bees only start from the best ones, 18 and 20, then the
exploration will miss the best solution depicted with green.

The other option is to search from the initial model, and
go randomly to patches. Then the algorithm is able to find
the green solution, though it needs more time. In this case
it is hard to reach patches that are further from the initial
model, and more likely to find solutions near to the initial
state. The good reason behind this is that we are looking for
sorted solutions. On the other hand, for scout bees it is hard to
decide which direction to follow, because in this situation to
reach some of the solutions they have to go through the blue
states as well. As a result, we have to search more, possibly all
states, which helps to find good solutions, but time-consuming.
Another problem is that we have to store quite many additional
data about each of the bees and their movements to avoid
infinite loops. For instance, which states were good, how many
times bees explored it, which other states were reached from
them. If we do not store this information, then the bees can
iterate through a loop, where each state is contained in the
same Pareto front.

B. Evaluation Strategies

The most important decision when choosing an evaluation
strategy is whether only the best or some of the worse patches
should remain, and to do it in every iteration, or they should
be set out only after a while. In some implementation, it
is possible to sort out the wrong patches, though in our
case it will not be a good idea, because the above-described
hill climbing effect would come into sight. We use non-
dominating sorting, which allows higher freedom for selecting
the correct solutions. Non-dominating sorting means, that the
algorithm separates solutions into groups according to their
domination levels (number of fronts, which dominate them). In
our approach, it is also modifiable how many worse solutions
should be taken into consideration.

C. Exploration Strategies for Neighbourhood Bees

Neighbourhood search can be seen as a local search, which
aims to discover the surrounding of a patch. It can be a hill
climbing style strategy, but it gives an upper limit to the
number of bees ordered to a patch. It can be a random strategy,

but it is really similar to the random search in the first phase,
so it has to be a combination of these two. In our approach,
there are more possible strategies from which bees can choose.
Some of them are similar to random search and some of them
are more like hill climbing strategies with little modifications.
However, each of them have some random factor to minimize
the possibility of parallel-running-bees collision, which would
not be a problem, but it involves unnecessary steps. Some of
the usable implementations are:

e Hill Climbing: first, it evaluates all the neighbourhood
states. Then, it finds dominating ones and randomly
selects one of them, if we have enough dominated state
in our list. If not, it can choose a non-dominating one
that helps to avoid local minimum.

o Simulated Annealing: initially it steps randomly, and as
time passes, the possibility of choosing a bad transforma-
tion decreases. At the end it acts like a the hill climbing
algorithm.

o Depth-First Search: it goes through all the states till a
given depth. It searches the solutions semi-randomly.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed to integrate the bee colony opti-
mization strategy as an exploration strategy with constrained
multi-objective rule-based design space exploration. We also
analysed the advantages and disadvantages of using different
algorithmic configurations of the bee exploration strategy.

As for future work, we would like to measure and evaluate
the effectiveness of the approach on a wide range of configu-
rations and compare it with other exploration strategies, such
as genetic algorithm and guided local search.

ACKNOWLEDGMENT

This work was partially supported by the MTA-BME
Lendiilet 2015 Research Group on Cyber-Physical Systems.

REFERENCES

[1] A. Hegediis, A. Horvath, and D. Varrd, “A model-driven framework for
guided design space exploration,” Automated Software Engineering, pp.
1-38, 2014.

[2] G. Bergmann, I. Rath, T. Szabd, P. Torrini, and D. Varrd, “Incremental
pattern matching for the efficient computation of transitive closures,” in
sinternational Conference on Graph Transformation, 2012.

[3] H. Abdeen, D. Varr6, H. Sahraoui, A. S. Nagy, A. Hegediis, A. Horvath,
and C. Debreceni, “Multi-objective optimization in rule-based design
space exploration,” in International Conference on Automated Software
Engineering (ASE), 2014.

[4] O. Semerdth, A. Barta, A. Horvath, Z. Szatméri, and D. Varr6, “Formal

validation of domain-specific languages with derived features and well-

formedness constraints,” Software & Systems Modeling, pp. 1-36, 2015.

D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, “A compre-

hensive survey: artificial bee colony (abc) algorithm and applications,”

Artificial Intelligence Review, vol. 42, no. 1, pp. 21-57, 2014.

[6] D. Karaboga and B. Akay, “A comparative study of artificial bee colony

algorithm,” Applied Mathematics and Computation, vol. 214, no. 1, pp.

108-132, 2009.

D. Pham and A. Ghanbarzadeh, “Multi-objective optimisation using the

bees algorithm,” in Proceedings of IPROMS, 2007.

[5

—

[7

—

	Introduction
	Multi-Objective DSE
	Swarm Intelligence Background
	The proposed approach
	Exploration Strategies for Scout Bees
	Evaluation Strategies
	Exploration Strategies for Neighbourhood Bees

	Conclusion and Future Work
	References

