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Email: peter.pausits@irob.uni-obuda.hu

Abstract—Controller design based on Linear Parameter Vary-
ing (LPV) and Linear Matrix Inequality (LMI) combination
can be extremely useful in modeling and controller design
for patient specific physiological systems, which are generally
nonlinear, time varying systems. These methods allow us the
usage of considerations which come from the linear controller
design theorems, but require advanced mathematics and high
computational capacity also. In this research we exhibit the
usage of the Tensor Product (TP) model transformation regarding
diabetes researches as a means to realize a Tensor Product based
Type 1 Diabetes Mellitus model, whose basis is a control oriented,
deviation based qLPV model.

Our primary goal is to realize all possible TP models, derived
by choosing different combination of parameters for the qLPV
model, and to validate all of them, confirming that all the
derived TP models approximately mimic the behavior of the
original, nonlinear system having only numeric error.

Keywords: Type 1 Diabetes Mellitus, LPV model, TP model,
Validation

I. INTRODUCTION

Given the availability of increased computational capacity,

one ”mainstream” direction of control theory focuses on the

usage of design methodologies combining LPV- and LMI-

based controllers. One of these is the TP kind modeling and

control, whose ideology successfully matches the LPV and

LMI disciplines, so much so that the realized TP models can

be used directly in design based on LMI, and the TP model and

TP controller are strongly connected via the calculated core

tensor and convex weight functions. In this study, we focused

on developing such a TP model, which is physiologically valid

and approximates well the original nonlinear model. This is

only the first, but necessary step on a longer research path,

the next step being the realization of a TP based controller for

the established TP model. This paper is structured as follows:
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funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement
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first, we provide a summarized, necessary knowledge about

the TP model transformation. After that, we present the used

T1DM model and define the used parameters of it. Fourth, we

show every possible qLPV models and the realized, matching

TP models of them. After this, we demonstrate the validation

for each of the realized TP models. Finally, we summarize the

reached results and conclude our work.

II. TENSOR PRODUCT MODEL TRANSFORMATION

OF QLPV MODELS

The TP model transformation can grant the TP model

functions of given functions [1], [2]. It is possible to use the

TP model transformation in such a way that it provides us

the TP type qLPV model because each qLPV model can be

described with qLPV functions. [3]. The resulting TP model

can accurately approximate the original qLPV model.

Definition 1 - qLPV model in SS form: Consider a qLPV

model described in its SS representation, the compact form of

it:

ẋ(t) = A(p(t))x(t) +B(p(t))u(t) +E(p(t))r(t)
y(t) = C(p(t))x(t) +D(p(t))u(t) +D2(p(t))u(t)

(1a)

S(p(t)) =

(

A(p(t)) B(p(t)) E(p(t))
C(p(t)) D(p(t)) D2(p(t))

)

, (1b)

where A(p(t)) ∈ R
k×k is the state matrix, B(p(t)) ∈ R

k×m

is the control input matrix, E(p(t)) ∈ R
k×h is the distur-

bance input matrix, C(p(t)) ∈ R
l×k is the output matrix,

D(p(t)) ∈ R
l×m is the control input forward matrix and

D2(p(t)) ∈ R
l×h disturbance input forward matrix. Addition-

ally, u(t) ∈ R
m, r(t) ∈ R

h , y(t) ∈ R
l and x(t) ∈ R

k vectors

are the control and disturbance inputs, output and state vector,

respectively. S(p(t)) ∈ R
(k+l)×(k+m+h) is the parameter

dependent system matrix, which equivocally determines the

qLPV system. Furthermore, the p(t) ∈ Ω ∈ R
N is the time

dependent parameter vector.

Definition 2 - Transformational space Ω: the confined

(closed) N dimensional hyperspace (hypercube), which is
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determined by the minimum and maximum values of the

scheduling parameters, as the elements of the parameter

vector p(t): Ω = [p1,min, p1,max] × [p2,min, p2,max] × ... ×
[pN,min, pN,max] ∈ R

N .

Definition 3 - Finite element convex polytopic model: it

describes the actual model S(t) as the convex combination

of the Sr ∈ R
(k+l)×(k+m+h) LTI vertex system inside the Ω

(p(t) ∈ Ω):

S(p(t)) =

R
∑

r=1

wr(p(t))Sr , (2)

where the convexity requires that wr(p(t)) ∈ [0, 1] and R are

confined.

Definition 4 - A TP type convex polytopic model with finite

elements : describing the actual model S(t) as the convex

combination of the Sr ∈ R
(k+l)×(k+m+h) LTI vertex system

inside the Ω (p(t) ∈ Ω):

S(p(t)) =

I1
∑

i1=1

I2
∑

i2=1

...

IN
∑

iN=1

N
∏

n=1

wn,in(pn(t))Si1,i2,...,iN .

(3)

The compact notation of (3) based on [3]:

S(p(t)) = S
N

⊠
n=1

wn(pn(t)) , (4)

where the coefficient tensor S ∈ R
I1×I2×...×IN×(k+l)×(k+m)

is derived from the Si1,i2,...,iN LTI vertex system and the

row vector wn(pn(t)) consists of wn,in(pn(t)) (in = 1...IN )
continuous weighting functions having a single variable.

Definition 5 - The TP model transformation: given a qLPV

model of (1a) the TP model transformation grants us an

effective numerical method that transforms given model into a

TP model form of (4). This way, several LMI based controller

design methodologies can be applied directly on the given

TP model. The TP model transformation also allows the

use of convex hull manipulation amid the transformation.

The number of used LTI vertexes and the properties of the

applied HOSVD process and the used TP function influence

the accuracy of the resulting TP model. Detailed description

with examples can be found in [3].

Definition 6 - The canonical form of qLPV models based on

HOSVD method: without the manipulation of the convex hull

and the reduction in complexity, the result of the TP model

transformation is the numerical reconstruction of the given

qLPV model. Here, because of the HOSVD is used on qLPV

models (matrix functions), the resulting HOSVD canonical

form consists of singular functions in orthonormal structure

and a core tensor, which contains system vertices assigned

to the higher order singular values. For further details and

description see [3], [4].

Definition 7 - Convex TP model: a model resulting after TP

transformation is convex, if the following criteria regarding the

weighting functions are satisfied:

∀n, i, pn(t) : wn,in(pn(t)) ∈ [0, 1]

∀n, pn(t) :
In
∑

i=1

wn,in(pn(t)) = 1
. (5)

Depending on the type of the application (qLPV model) and

the required properties, several convex hulls can be applied on

the parameter space [3]. The Minimal Volume Simplex (MVS)

type hull is a tight convex hull – includes only that volume

wherein the system can be found during operation –, which is

applied in this study.

Definition 8 - MVS-type convex TP model: the following

TP model

S(p) = S
N

⊠
n=1

w(n)(pn) , (6)

is a MVS-type convex model, if the (S)jn=j n-mode sub-

tensors develop a minimal volume bounding simplex for

S ×n w
(n)
jn (pn) trajectory over n = 1..N for the S ∈

S
J1×...×JN core tensor, which is realized from the Sj1,...,jN

matrices.Additional derivations, explanations and case studies

can be found in [3], [5]–[9]. We this study we utilized the TP

Toolbox R©. The toolbox is a MATLAB based tool and is a

means to a convenient and effective possibility to realize the

TP based approached. The TP toolbox is available under [10].

III. T1DM MODEL

In this study we used a modified version of the Hovorka-

model, which is a well known and widely used higher order

T1DM model originally developed by Hovorka et al in [11]

and modified by Naerum in [12]. The equations of the model

are the following:

Ḋ1(t) = AGD(t)−
D1(t)

τD
, (7a)

Ḋ2(t) =
D1(t)

τD
−

D2(t)

τD
, (7b)

Ṡ1(t) = u(t)−
S1(t)

τS
, (7c)

Ṡ2(t) =
S1(t)

τS
−

S2(t)

τS
, (7d)

Q̇1(t) =
D2(t)

τD
− F01,c − FR(t)− x1(t)Q1(t)

+k12Q2(t) + EGP0(1− x3(t))
, (7e)

Q̇2(t) = x1(t)Q1(t)− (k12 + x2(t))Q2(t) , (7f)

İ(t) =
S2(t)

τSVI

− keI(t) , (7g)

ẋ1(t) = −ka1x1(t) + kb1I(t) , (7h)

ẋ2(t) = −ka2x2(t) + kb2I(t) , (7i)

ẋ3(t) = −ka3x3(t) + kb3I(t) . (7j)

000260

Gy. Eigner et al. • Investigation of the TP Modeling Possibilities of the Hovorka T1DM Model



The model consist of four main submodels, assigned to the

state variables. The CHO absorption submodel (D1, D2 states

measured in mmol) represents the glucose absorption; the

nonlinear glucose-insulin core model (Q1, Q2 states measured

in mmol) describes the glucose-insulin dynamics and cross

effects; the insulin absorption submodel (S1, S2 states mea-

sured in mU) realizes the subcutaneous insulin absorption and

the insulin kinematic submodel (I , x1−3 states) represents the

insulinaemia and insulin effects. d(t) g/min and u(t) mU/min

are the CHO and insulin intakes, respectively. The equations

are completed with other functions, as well:

D(t) =
1000 · d(t)

MwG

, (8a)

G(t) =
Q1(t)

VG

, (8b)

FR =

{

0.003(G(t)− 9)VG G(t) ≥ 9mmol/L
0 otherwise

, (8c)

F01,c =

{

F01 G(t) ≥ 4.5mmol/L
F01G(t)

4.5
otherwise

, (8d)

where D(t) is the CHO input in mmol/min, G(t) is the output

of the model and F01,c, FR are the output related saturations

(nonlinearities).

In this study we used the following parameter set: BW =
70 kg, MwG = 180.15588 g/mol, k12 = 0.066 1/min,

ka1 = 0.006 1/min, ka2 = 0.06 1/min, ka3 = 0.03
1/min, ke = 0.138 1/min, τD = 40 min, τS = 55 min,

AG = 0.8, VI/BW = 0.12 L/kg, VI/BW = 0.16 L/kg,

EGP0/BW = 0.0161 Lkg−1min−1, F01/BW = 0.00097
Lkg−1min−1, SIT = 51.2 10−4 L/mU , SID = 8.2 10−4
L/mU , SIE = 520 10−4 L/mU . Exact description of the

meaning of the parameters can be found in [11], [12].

IV. DERIVATION OF THE POSSIBLE QLPV MODELS

A. GENERAL CONSIDERATIONS

Definition 9 - The qLPV model function: a given, parameter

dependent qLPV model is determined by its compact form

presented in (1b). This qLPV model form can be directly used

in regards to the TP model transformation.

Definition 10 - Control oriented, deviation based qLPV

model: these kind of qLPV models depict the state differ-

ences, that is relative to the target equilibrium: ∆x(t) =
x(t) − xequilibrium . Furthermore, such kind of qLPV models

are able to portray the error dynamics of the given qLPV

model and this dynamics relates to the deviation of the states

of the model from the given model equilibrium: ∆ẋ(t) =
ẋ(t)− ẋequilibrium = ẋ(t)− 0. Here, x(t) is the state vector,

∆x(t) is the state deviation from the xequilibrium , where the

latter is the desired operating state vector. The goal of the

control here is to eliminate the deviation (state error) over

time.

B. qLPV MODEL OF THE USED T1DM MODEL

In this section, we derived each of the possible qLPV

models from the original Hovorka model, which can serve as

basis for our later investigations regarding to controller design.

Since, there are several possible model equilibriums and the

mathematical tools allow several algebraic transformations,

more than one viable qLPV model exists. It should be noted

that only those state equations that contain nonlinearity (7e)-

(7f) have more than one possible transformed form and each

of the other equations have only one possible transformation.

According to the previous general considerations sub-chapter,

firstly, the investigation of the possible steady states is re-

quired.

Notation 1 - We consequently use the short xd term instead

the long xequilibrium in order to mark the state equilibrium in

the latter part of the article.

C. STEADY STATES CALCULATIONS

We started from the following consideration: if, the Q1,d

and ud are acknowledged as known, each steady state value

of the states can be determined by the rearrangement of the

model equations. Basically, if Q1d and ud are given, the steady

states (equilibriums) are:

S1d = udτS
S2d = S1d

, (9a)

Id =
1

τSVIke
S2d , (9b)

x1d = kb1/ka1Id , (9c)

x2d = kb2/ka2Id , (9d)

x3d = kb3/ka3Id , (9e)

Q2d = x1dQ1d/(k12 + x2d) , (9f)

D2d = (F01,c,d + FRd + x1dQ1d − k12Q2d−
EGP0(1 + x3d))

D1d = D2d

, (9g)

dd = D1dMwG/(1000AGτD) . (9h)

D. qLPV MODEL DERIVATION

Subsequently, we will follow the following steps: i) -

demonstration of the transformation on one state; ii) - descrip-

tion each transformed states, which only have one possible

transformed form; iii) - investigation of the ”critical states”.

For the algebraic transformation of (7a), we used the direct

substitution of (8a), as well:

∆Ḋ1(t) = Ḋ1(t)− 0 =

=
1000AG

MwG
d(t)−

1

τD
D1(t)−

[

1000AG

MwG
∆dd −

1

τD
D1d

]

=

1000AG

MwG
(d(t)− dd)−

1

τD
(D1(t)−D1d)

∆Ḋ1(t) =
1000AG

MwG
∆d(t)−

1

τD
∆D1(t)

. (10)
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We derived the resulting state variables similar to (10), except

Q1 and Q2:

∆Ḋ2(t) =
1

τD
∆D1(t)−

1

τD
∆D2(t) . (11)

∆Ṡ1(t) = ∆u(t)−
1

τS
∆S1(t) . (12)

∆Ṡ2(t) =
1

τS
∆S1(t)−

1

τS
∆S2(t) . (13)

∆İ(t) =
1

τSVI

∆S2(t)− ke∆I(t) . (14)

∆ẋ1(t) = −ka1∆x1(t) + kb1∆I(t) . (15)

∆ẋ2(t) = −ka2∆x2(t) + kb2∆I(t) . (16)

∆ẋ3(t) = −ka3∆x3(t) + kb3∆I(t) . (17)

In case of Q1 and Q2, more than one nonlinearity causing

terms need to be considered: the numerous multiplication of

time functions and the ramp type saturations belong to F01,c

and FR. The two saturations can be merged into one term,

if we use directly the term G(t) = Q1(t)/VG from (8b), as

follows:

∆F (Q1) = F (Q1)− F (Q1,d) =

=











































0.003

(

Q1

VG

− 9

)

VG if 9 ≤
Q1(t)

VG

0 if 4.5 ≤
Q1(t)

VG

< 9

F01

(

Q1

4.5VG

− 1

)

if
Q1(t)

VG

< 4.5

. (18)

Essentially, ∆Q1(t) will not be zero at any time. Hence, the
limits of the saturation guarantees that the involvement of
∆Q1(t) term into the (17) as a multiplication by 1 cannot
cause critical singularity at any time, so:

∆F (Q1)

∆Q1(t)
∆Q1(t) =

=



























































0.003

(

Q1

VG

− 9

)

VG

∆Q1(t)
∆Q1(t) if 9 ≤

Q1(t)

VG

0

∆Q1(t)
∆Q1(t) if 4.5 ≤

Q1(t)

VG

< 9

F01

(

Q1

4.5VG

− 1

)

∆Q1(t)
∆Q1(t) if

Q1(t)

VG

< 4.5

, (19)

term can be used in order to associate the saturation to

the ∆Q1(t) state, which makes the accurate mathematical

transformation achievable. It should be noted that more than

one possible transformed form can be derived from (7e) and

(7f).

Nevertheless, that one is the most useful, where the param-

eter vector is p = [Q1(t), Q2(t)]
T , which means, only the

Q1(t) and Q2(t) states (BG related states) are the scheduling

variables. However, the goal of this paper is to confirm, that it

does not matter what we choose as parameters for the qLPV

model, all of them will approximately mimic the behavior of

the original system and the realized TP models can be used in

our further research. ∆ ˙Q1(t) can be expressed in two ways,

the parameter being either Q1(t) or x1(t):

∆Q̇1(t) =
∆D2(t)

τDVG

−
∆F (Q1)

∆Q1(t)
∆Q1(t) + k12∆Q2(t)

−EGP0∆x3(t)− x1d∆Q1(t)−Q1(t)∆x1(t)
(20a)

∆Q̇1(t) =
∆D2(t)

τDVG

−
∆F (Q1)

∆Q1(t)
∆Q1(t) + k12∆Q2(t)

−EGP0∆x3(t)− x1(t)∆Q1(t)−Q1d∆x1(t)

.

(20b)

Similar to this, ∆Q̇2(t) can be expressed in four ways, where

chosen parameters are: p(t) = [x1(t), x2(t)]
T in case of

(21a); p(t) = [x1(t), Q2(t)]
T in case of (21b), p(t) =

[Q1(t), x2(t)]
T in case of (21c) or p(t) = [Q1(t), Q2(t)]

T

in case of (21d).

∆Q̇2(t) = −k12∆Q2(t) + x1(t)∆Q1(t)+
Q1d∆x1(t)− x2(t)∆Q2(t)−Q2d∆x2(t)

(21a)

∆Q̇2(t) = −k12∆Q2(t) + x1(t)∆Q1(t)+
Q1d∆x1(t)− x2d∆Q2(t)−Q2(t)∆x2(t)

(21b)

∆Q̇2(t) = −k12∆Q2(t) + x1d∆Q1(t)+
Q1(t)∆x1(t)− x2(t)∆Q2(t)−Q2d∆x2(t)

(21c)

∆Q̇2(t) = −k12∆Q2(t) + x1d∆Q1(t)+
Q1(t)∆x1(t)− x2d∆Q2(t)−Q2(t)∆x2(t)

(21d)

As mentioned before, Q1(t) must be part of the p(t) param-

eter vector because the saturation guarantees, that singularity

can not occur. Six p(t) parameter vectors can be assigned,

resulting in six different models:

• p1 = [Q1(t), Q2(t)]
T using (20a) and (21d),

T1 = x1d, T2 = x1d, T3 = −(k12 + x2d), T4 =
−Q1(t), T5 = Q1(t), T6 = −Q2(t)

• p2 = [Q1(t), x2(t)]
T using (20a) and (21c),

T1 = x1d, T2 = x1d, T3 = −(k12 + x2(t)), T4 =
−Q1(t), T5 = Q1(t), T6 = −Q2d

• p3 = [Q1(t), Q2(t), x1(t)]
T using (20a) and (21b),

T1 = x1d, T2 = x1(t), T3 = −(k12 + x2d), T4 =
−Q1(t), T5 = Q1d, T6 = Q2(t)

• p4 = [Q1(t), Q2(t), x1(t)]
T using (20b) and (21d),

T1 = x1(t), T2 = x1d, T3 = −(k12 + x2d), T4 =
−Q1d, T5 = Q1(t), T6 = −Q2(t)

• p5 = [Q1(t), x1(t), x2(t)]
T using (20a) and (21a),

T1 = x1d, T2 = x1(t), T3 = −(k12 + x2(t), T4 =
−Q1(t), T5 = Q1d, T6 = −Q2d

• p6 = [Q1(t), x1(t), x2(t)]
T using (20b) and (21d),

T1 = x1(t), T2 = x1d, T3 = −(k12 + x2d), T4 =
−Q1d, T5 = Q1(t), T6 = −Q2(t)

T = [T1, T2, T3, T4, T5, T6] is a vector representing the

changes that occur in the state space on specific spots, as

displayed on (22). The six assembled models differ from
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each other based on which equations we choose to describe

∆Q1 and ∆Q2. We used the qLPV model in form of (1b),

the derived equations (10)-(19), if the state variables are

∆x = [∆D1,∆D2,∆Q1,∆Q2,∆S1,∆S2,∆I,∆x1,∆x2,
∆x3]

T .

V. TP MODEL

After the derivation of the proper qLPV models in conve-

nient state space form (22), TP model transformation can be

executed on them. This process was also done six times with

different state space forms. The definitions in Sec. II describe

the details of the process of TP model transformation, however,

further details, with examples can be found in [3], [5]–[7].

Broadly, the p(t) dependent qLPV model of 22 were sampled

over the domains of Q1(t) and Q2(t) between 34..185 mmol

with 151 grid points at each dimensions. The sampling domain

for x1(t) and x2(t) was 0...55 with each having 55 grid points

at each dimensions. The application of the compact HOSVD

algorithm [3] provided the compact S core tensor and the

MVS-type weighting functions - which can be seen on Figs.

1–3 – were used to realize the TP model in the form of (6).

In this way, the occurred TP models can be expressed by one

of the following, depending on the p(t) parameter vector:

for p1 : S(Q1(t), Q2(t)) = S
2

⊠
n=1

w(n)(pn)

= S ×1 w1(Q1(t)) ×2 w2(Q2(t))
. (23a)

for p2 : S(Q1(t), x2(t)) = S
2

⊠
n=1

w(n)(pn)

= S ×1 w1(Q1(t))×2 w2(x2(t))
. (23b)

for p3 and p4 : S(Q1(t), Q2(t), x1(t)) = S
3

⊠
n=1

w(n)(pn)

= S ×1 w1(Q1(t))×2 w2(Q2(t))×3 w2(x1(t))
.

(23c)

for p5 and p6 : S(Q1(t), x1(t), x2(t)) = S
3

⊠
n=1

w(n)(pn)

= S ×1 w1(Q1(t))×2 w2(x1(t))×3 w2(x2(t))
.

(23d)
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Figure 1: Weighting functions belong to (23a) (left) (23b)
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Figure 2: Weighting functions belong to (23c)
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Figure 3: Weighting functions belong to (23d)

VI. VALIDATION

The ”performance” had to be compared for each of our six

new TP models to the original nonlinear model. Dense impulse

functions were used for the applied CHO and insulin intakes

(a10 s10 w5). We aimed to demonstrate that all the realized

TP models can approximate the original model even under

these unfavorable circumstances, as well. The comparison is

based on the L2 norm of the difference of every TP state

vectors xTP,i(t)|pi,i:1,..,6 and the corresponding original state

vector x(t)orig: ||x(t)orig − xTP,i(t)|pi,i:1,..,6||2. Our goal

was to realize all possible TP model variations, which can

appropriately mimic the original model. The simple error

based comparison for the TP model transformed from the state

space form described in (22), where the elements of T can be

seen at the list of possible models enumerated in IV-D.

On Fig. 4 we can see each of the six models compared to

the original nonlinear model – the belonging curves totally

overlapping with each other. The maximum differences were

occurred as the Q1 and Q2 states which are loaded with high

saturations. The error is around 10−4, which means almost

only numerical difference occurred between the realized TP

models and the original nonlinear model, respectively. The

results are satisfying, concluding that they all TP models rep-

resent and approximately mimic the behavior of the original,

nonlinear system having moderated error.

VII. CONCLUSION

The study summarized the realization of six TP kind convex

polytopic T1DM models via the utilization of the recently

developed TP model transformation tool. Some of them have
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Figure 4: Validation of the TP model

two, others three scheduling parameters (the elements of the

parameter vector of the qLPV model). The TP model transfor-

mation was executed on every qLPV model. The resulting TP

models were separately compared with the original numerical

model. In most of the states almost only numerical errors ap-

peared. However, the ”core patient model” part contains higher

error, which refers rougher approximation. Nevertheless, the

order of these errors is around 10−4. Hence, the developed TP

model appropriately mimics the original model.
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