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bEötvös Loránd University, Department of Computer Science.
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Abstract

Suppose we are given a set of n balls {b1, . . . , bn} each colored either red or blue in some
way unknown to us. To find out some information about the colors, we can query any triple
of balls {bi1 , bi2 , bi3}. As an answer to such a query we obtain (the index of) a majority ball,
that is, a ball whose color is the same as the color of another ball from the triple. Our goal
is to find a non-minority ball, that is, a ball whose color occurs at least n

2
times among the

n balls. We show that the minimum number of queries needed to solve this problem is Θ(n)
in the adaptive case and Θ(n3) in the non-adaptive case. We also consider some related
problems.
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1. Introduction

This paper deals with search problems where the input is a set of n balls, each colored
in some way unknown to us and we have to find a ball possesing a certain property (or
show that such a ball does not exist) by asking certain queries. Our goal is to determine
the minimum number of queries needed in the worst case. It is possible that the queries are
all fixed beforehand (in which case we speak of non-adaptive search) or each query might
depend on the answers to the earlier queries (in which case we speak of adaptive search).

We say that a ball b is a majority ball of a set A if there are more than |A|
2

balls in the set
that have the same color as b. Similarly, a ball b is a non-minority ball of a set A if there
are at least |A|

2
balls in the set that have the same color as b. Note that these two notions

are different if and only if n is even and |A|
2

balls are colored of the same color, in which
case each of these balls is a non-minority ball and there are no majority balls (moreover, if

there are only two colors, then the size of the other color class is also |A|
2
, thus every ball is

a non-minority ball). For more than two colors it is possible that even non-minority balls
do not exist. A ball b is said to be a plurality ball of a set A if the number of balls in the set
with the same color as b is greater than the number of balls with any of the other colors. In
this paper we focus on the case of just two colors.

The most natural non-trivial question is the so-called majority problem which has at-
tracted the attention of many researchers. In this problem our goal is to find a majority
ball (or show that none exists), such that the possible queries are pairs of balls {b1, b2} and
the answer tells us whether b1 and b2 have the same color or not. In the adaptive model,
Fisher and Salzberg [9] proved that ⌊3n/2⌋ − 2 queries are necessary and sufficient for any
number of colors, while Saks and Werman [15] showed that if the number of colors is known
to be two, then the minimum number of queries is n− b(n), where b(n) is the number of 1’s
in the binary representation of n (simplified proofs of the latter result were later found, see
[2, 12, 16]). In the non-adaptive model with two colors, it is easy to see that the minimum
number of queries needed is n− 1 if n is even and n− 2 if n is odd.

There are several variants of the majority problem [1]. The plurality problem, where we
have to find a plurality ball (or show that none exists) was considered, among others, in
[1, 8, 10]. Another possible direction is to use sets of size greater than two as queries [6, 5].

The main model studied in this paper is the following. In the original comparison model
the answer to the query {b1, b2} can be interpreted as the answer to the question whether
there is a majority ball in the subset {b1, b2}. If the answer is yes, then obviously both b1
and b2 are majority balls. Therefore we obtain a generalization of the comparison model if
for any query that is a subset of the balls the answer is either (the index of) a majority ball,
or that there is no majority ball in the given subset (which cannot be the case if the size of
the subset is odd and there are only two colors). We study this model in case of two colors,
and mostly when only queries of size three are allowed, although we also prove some results
for greater query sizes.
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Unfortunately, even asking all triples cannot guarantee that we can solve the majority
problem for two colors. Suppose we have an even number of balls that are partitioned into
two sets of the same size, X and Y , and suppose that the answer for any triple T is a ball
from T ∩X if and only if |T ∩X| ≥ 2. In this case we cannot decide whether all balls have
the same color or all balls in X are red, but all balls in Y are blue. In the former case all
balls are majority balls, while in the latter there exists no majority ball.

Because of this, our aim will be to show a non-minority ball (which always exists if there
are only two colors). Let us assume the balls are all red or blue and all queries are of size q.
We will denote the minimum number of queries needed (in the worst case) to determine a
non-minority ball by Aq(n) in the adaptive model and by Nq(n) in the non-adaptive model.

At first sight the model we have just introduced seems to be rather artificial. Let us,
however, state a more natural problem that is equivalent to this model.

Suppose that our input is a binary sequence of length n, i.e., n numbers such that each
is either 0 or 1. Our task is to find a median element, such that the queries are odd subsets
of the input elements and the answer is one of the median elements of the subset. Let us
assume queries are of size q. Denote the the minimum number of queries needed in the worst
case to determine a median element by Amed

q (n) in the adaptive model and by Nmed
q (n) in

the non-adaptive model.

Proposition 1. A2l+1(n) = Amed
2l+1(n) and N2l+1(n) = Nmed

2l+1(n).

Proof. If we replace 0 and 1 by red and blue, then the median elements of any set are exactly
the non-minority balls of the set.

We obtain a natural generalization that also works for even sized subsets if the answer
is the tth element for some fixed t. More precisely, for a query Q, the answer may be a if
and only if there exist t − 1 elements e ∈ Q \ {a}, such that e ≥ a and |Q| − t elements
e′ ∈ Q \ {a}, such that e′ ≤ a. Note that in this model there might be more than one valid
answer to a given query. This can be outruled by assuming that all elements are different
(in which case we do not deal with just the numbers 0 and 1, obviously). This approach was
proposed by G. O.H. Katona and studied by Johnson and Mészáros [13]. They have shown
that if all elements are different, then they can be almost completely sorted8 using O(n logn)
queries in the adaptive model and O(nq−t+1) queries in the non-adaptive model and both
results are sharp. However, their algorithms fail if not all elements are different. Our results
imply that the same bound holds in the adaptive model with no restriction. However, the
bound in the non-adaptive model cannot be extended to the general case. We discuss our
related results in Section 4.

8 Note that the t − 1 largest and the q − t smallest elements cannot ever be differentiated with such
questions, so we only want to determine these and sort the rest.
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To state our results concerning A3(n) and N3(n) we introduce the following notations.
We write [n] = {1, 2, . . . , n} for the set of the first n positive integers and the set of balls is
denoted by B = [n]. For a set S, the set of its k-subsets will be denoted by

(

S
k

)

. Let Q ⊆
(

B
3

)

be a query set. Then for any ball b ∈ B let dQ(b) = |{Q | b ∈ Q ∈ Q}| denote the degree
of b in Q and for any two balls bi, bj ∈ B let dQ(bi, bj) = |{Q | {bi, bj} ⊂ Q ∈ Q}| denote
the co-degree of bi and bj in Q. Furthermore, let us write δ(Q) = min{dQ(b) | b ∈ B} and
δ2(Q) = min{dQ(bi, bj) | bi, bj ∈ B}.

Throughout the paper we use the following standard notation to compare the asymptotic
behavior of two functions f(n) and g(n). We write f(n) = o(g(n)) if limn

f(n)
g(n)

= 0 holds.

We write f(n) = O(g(n)) (f(n) = Ω(g(n))) if there exists a positive constant C such that
f(n) ≤ Cg(n) (f(n) ≥ Cg(n)) holds for all values of n and we write f(n) = Θ(g(n)) if
both f(n) = O(g(n)) and f(n) = Ω(g(n)) hold. Sometimes, the function f might have two
variables k and n. Then f(k, n) = Ok(g(n)) means that for every k there exists a constant
Ck such that f(k, n) ≤ Ckg(n) holds for all values of n. Finally, we write f(n) = Õ(g(n)) if
there exist positive constants C and k such that f(n) ≤ Cg(n) logk n holds.

Theorem 2. A3(n) = O(n).

Before stating our results on N3(n) we state a theorem on the structure of query sets
that do not determine non-minority balls.

Theorem 3. (i) If |B| is odd and Q ⊆
(

B
3

)

is a set of non-adaptive queries with δ2(Q) < n−2
2
,

i.e., there is a pair of balls x, y with dQ(x, y) <
n−2
2
, then Q cannot determine a non-minority

ball.
(ii) For every n there exists a non-adaptive query set Q ⊆

(

B
3

)

with δ2(Q) = ⌊n/2⌋ + 1
that determines a non-minority ball.

(iii) If |B| is even and Q ⊆
(

B
3

)

is a set of non-adaptive queries, such that there exist
four balls x, y, u, v with dQ(x, u) + dQ(x, v) + dQ(y, u) + dQ(y, v) ≤ n/2 − 3, then Q cannot
determine a non-minority ball.

(iv) Any non-adaptive query set Q ⊆
(

B
3

)

with δ2(Q) > 5n
6

determines a non-minority
ball.

(v) There exists a non-adaptive query set Q ⊆
(

B
3

)

with δ2(Q) = 5n
6
− 3 that does not

determine a non-minority ball.

With the help of Theorem 3 we will give bounds on N3(n).

Theorem 4. (i) If n is odd, then N3(n) ≥
1
2

(

n
3

)

.

(ii) If n is even, then N3(n) ≥
1
8

(

n−2
3

)

.

(iii) N3(n) ≤ (5
6
+ o(1))

(

n
3

)

.

Concerning large query sizes we prove the following results:
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Theorem 5. We have N2l+1(n) = Ωl(n
3) and A2l+1(n) = Ol(n

2).

Theorem 6. We have N2l(n) ≤ n(n− 2l) and A2l(n) ≤ n− 2l + 1.

The rest of the paper is organized as follows: in Section 2 we examine some generalizations
of the well-known median of medians algorithm of Blum, Floyd, Pratt, Rivest, and Tarjan
[3]. Using the facts shown in Section 2, we prove Theorem 2, Theorem 3 and Theorem 4 in
Section 3. Section 4 contains the proof of Theorem 5 and Theorem 6, we introduce some
new models and some open problems. We postpone some proofs and the analysis of a related
model to the Appendix.

2. Algorithms

In this section we gather most of the building blocks of the algorithms we will use in
Section 3 to prove our main results. We start with an easy algorithm that finds two balls of
different colors unless all balls have the same color.

Algorithm 2DB (Two Different Balls)

Input: a subset S = {b1, b2, . . . , bm} of the balls colored with two colors.

Query: a triple T = {a, b, c} of balls.

Answer: a majority ball in T (that we will call answer ball).

Output: two balls bi, bj ∈ S with the property that either they are of different colors or
all balls in S have the same color.

Description of Algorithm 2DB
We start with an arbitrary query, then remove the answer ball, keep the other two

elements and add a new element to obtain the second query. Then we repeat this procedure,
always replacing the answer ball by a ball that has not appeared in any earlier query. After
m− 2 questions, we have removed m− 2 balls, and thus we cannot continue this procedure
and the algorithm outputs the remaining two balls. If these balls bi, bj are of the same color,
then it is easy to see that all balls in S have the same color.

Remark: Algorithm 2DB is clearly adaptive, but if a non-adaptive query set Q contains
all queries from a subset S of B, then Algorithm 2DB can be used. We will do so in Section 3.

From now on for a coloring c and a ball a we denote the color of a by c(a).

Observation 7. Suppose the balls are colored with 0 and 1, and we know that the color of
a1 is 0 and the color of a2 is 1. If we query {a1, b1, b2} and {a2, b1, b2}, then we can conclude
one of the following.

5



• c(b1) 6= c(b2),

• c(b1) ≤ c(b2),

• c(b1) ≥ c(b2).

Proof. If the answers to the queries {a1, b1, b2} and {a2, b1, b2} are, respectively, a1 and a2,
then b1 and b2 are of different colors. Otherwise, either the answer to {a1, b1, b2} is bi, in
which case c(bi) ≤ c(b3−i) holds, or the answer to {a2, b1, b2} is bi, in which case c(bi) ≥ c(b3−i)
holds.

Proposition 1 showed the connection between the non-minority problem and finding a
median element among 0− 1 entries. Algorithm 2DB and Observation 7 tell us that we can
almost imitate comparison based algorithms to find the median with triple queries. Therefore
it is natural to think that some of the comparison based median finding algorithms can be
altered in a way that can be useful for our purposes. In the remainder of this section, we
show two variants of the well-known median of medians (MoM) algorithm by Blum, Floyd,
Pratt, Rivest, and Tarjan [3]. The first variant (MoM2) is a very natural generalization and
is of independent interest: entries are not necessarily distinct integers, the answer to a query
{a, b} is either a ≤ b or b ≤ a and the Adversary has the right to answer any of a ≤ b and
b ≤ a if a and b are equal. (Using the well-known Adversary method.) The second variant
(MoM3) is much less natural, but is based on Observation 7: entries are 0’s and 1’s and
apart from the previous possibilities the Adversary has the right to answer a 6= b if that is
the case.

As in both models an element may appear more than once, therefore we need the following
definitions in order to state our results.

Let X be an n-element multiset of integers. We call an element x of X a kth largest
element if there exists a partition of X \ {x} = S ∪ L, such that |L| = k − 1, |S| = n − k,
such that each element in L is at least x and each element in S is at most x. A median is a
(⌊n

2
⌋+ 1)st largest element of an n-element set.
A decreasing enumeration of an n element multiset X is a permutation σ ∈ Sn with

xσ(1) ≥ xσ(2) ≥ · · · ≥ xσ(n). Clearly, if all elements of X are distinct, then X has only one
decreasing enumeration, while if in a multiset of integers the multiplicities are k1, k2, . . . , kl,
then the number of decreasing enumerations is

∏l
i=1 ki!. We say that a multiset X is com-

pletely sorted, if we fix one of its decreasing enumerations.

Observation 8. If for all i, j ∈ [n] we know xi ≤ xj or xi ≥ xj, then we know a decreasing
enumeration of X.

Proof. Consider the directed graph D on vertex set [n] with (i, j) ∈ E(D) if and only if
xi ≤ xj . If D is a DAG (directed acyclic graph), then D is a transitive tournament and we
are done. If D contains some directed cycles, then the integers in X corresponding to all
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elements of such a directed cycle are equal. Therefore we can contract all the vertices of
the cycle into one vertex. At some point no directed cycles will remain and we obtain the
desired decreasing enumeration.

The next algorithm shows that instead of asking all
(

n
2

)

pairs, the problem of finding a
kth largest element can be solved adaptively in linear time.

Algorithm MoM2

Input: an n element multiset X of integers and an integer k with 1 ≤ k ≤ n.

Goal: find one of the kth largest elements of the input multiset.

Query: a pair {a, b}.

Answer: either a ≤ b or b ≤ a (in case a = b, both answers are possible).

Output of Algorithm MoM2: (x, S, L), a partition of the input multiset, where:

◦ x is one of the kth largest elements,

◦ L is a set of k − 1 elements that are at least x, and

◦ S is a set of n− k elements that are at most x.

Description of Algorithm MoM2

The Algorithm MoM2 consists of 4 phases. For each phase we will write in teletype style
what the algorithm does, and our analysis will be in normal typestyle.

In the description of the algorithm we will introduce two sets: S ′ and L′, change them
dynamically during the phases and finally use them to define S and L of the output. (For
the sake of simplicity we will use the term set instead of multiset in the description of the
algorithm.)

To count the queries used by the recursive calls, we denote by f(n) the worst case running
time of Algorithm MoM2 on n elements for any k.

Phase 1: We divide the elements of the n-element input set into groups of five except at
most four elements and sort each group.

Observation 8 shows that this can be done with 10 comparisons in each group, but
a simple case analysis shows that adaptively 7 queries are enough. Therefore this phase
requires 7 · ⌊0.2n⌋ queries. Take a median from each group to form M of size ⌊0.2n⌋.

Phase 2: By recursion we can find a median p of M , called the pivot, and a partition of the
rest of the elements of M into two almost equal subsets, S ′ and L′, such that each element of
S ′ is at most as large as the pivot and each element of L′ is at least as large as the pivot.
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Then we put into S ′ the elements that were smaller than or equal to some s ∈ S ′ ∪ {p} in
their (completely sorted) group and we put into L′ the elements which were larger than or equal
to ℓ ∈ L′ ∪ {p} in their (completely sorted) group.

We use f(⌊0.2n⌋) queries during this phase. Note also that at the end of this phase we
have

|L′|, |S ′| ≥ ⌊0.3(n− 4)⌋ − 1.

Phase 3: We compare each element e in the complement of S ′∪L′ ∪{p} to the pivot and
if the answer is e ≤ p, we put e in S ′, if the answer is p ≤ e, we put e in L′.

This phase requires at most ⌈0.4(n− 4)⌉+ 6 queries. At the end of this phase we have

⌊0.3(n− 4)⌋ − 1 ≤ |S ′|, |L′| ≤ ⌈0.7(n + 4)⌉+ 2.

Phase 4:

Case 1: If |L′| = k − 1 (i.e., the pivot is a kth largest element), then the output of the
algorithm is (p, S ′, L′).

Case 2: If |L′| > k − 1, then by a recursive call on L′, whose output is (x, S ′′, L′′), we
find x, a kth element of L′ and a partition of L′ \ {x} = S ′′ ∪ L′′ such that |L′′| = k − 1 and
|S ′′| = |L′| − k. In this case the output of the algorithm is (x, S ′ ∪ {p} ∪ S ′′, L′′).

Case 3: If |L′| < k − 1, then by a recursive call on S ′ we find x, a (k− |L′| − 1)th element
of S ′ and a partition of S ′ \ {x} = S ′′ ∪L′′ such that |L′′| = (k− |L′| − 1)− 1. In this case the
output of the algorithm is (x, S ′′, L′ ∪ {p} ∪ L′′).

In each cases of Phase 4 we find the respective element, using at most

f(max(|S|; |L|)) ≤ f(⌈0.7(n+ 4)⌉+ 2)

queries. During the algorithm altogether we have used

f(n) ≤ 7 · ⌊0.2n⌋ + f(⌈0.2n⌉) + ⌈0.4(n− 4)⌉+ 6 + f(⌈0.7(n+ 4)⌉+ 2)

queries. Now by induction f(n) ≤ 18n + 7. It is worth mentioning, that this is somewhat
better than the well-known 22n bound for all different numbers using the original algorithm.
(Note that the best bound for finding the median is between 2n and 3n, see [7].)

Let us now consider the second model, that is, where the input is restricted to binary
sequences, but the Adversary can answer a ≤ b, b ≤ a or a 6= b. In this model for any k
there is a strategy of the Adversary, such that even asking all possible queries we can not
find any of the kth largest elements. Indeed, let us partition X into two sets of equal size
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X1 and X2. If the Adversary answers x1 6= x2 whenever x1 ∈ X1 and x2 ∈ X2, then all we
know is that there are the same number of 0’s and 1’s in X and the two classes are X1 and
X2, but we cannot tell which one is which, therefore we cannot solve the problem.

On the other hand, using Algorithm 2DB, for balls we can suppose that a 0 and a 1 is in
X = {x1, x2, . . . , xn}, provided not all elements of X are the same. Still, a similar strategy
of the Adversary shows that even after querying all pairs, we cannot sort all the elements.
However, we can show a kth largest element for any k.

Observation 9. If the Adversary answers all possible queries, then
(i) we can partition X = O ∪ R such that O is completely sorted and |R| = 2r contains

exactly r many 0’s and 1’s. In particular, if n is odd then we can find a median element.
(ii) We can determine a kth largest element provided x1 = 0, x2 = 1 hold.

Proof. We can check if there exists an n element multiset satisfying all answers of the Ad-
versary. If not, then we are done, as we revealed a contradiction in his answers. However if
there is an n element multiset X satisfying Adversary’s answers, then let us remove a subset
R ⊆ X in the following way: let R0 = ∅ and as long as there exists a pair xi, xj ∈ X \ Rt

with the answer xi 6= xj , let us put Rt+1 = Rt ∪ {xi, xj}. If there is no such pair, then we
stop and write R = Rt. As removed elements come in pairs, we obtain that |R| = 2r for
some r and R contains exactly r 0’s and 1’s. If k ≤ r, then a kth largest element must be
1, thus we can output x2 = 1. Similarly, if k ≥ n − r + 1, then a kth largest element must
be 0 and we can output x1 = 0. Finally, if r < k < n − r holds, then by Observation 8 we
can sort O = X \R and output a (k − r)th element of X \R. To see the second part of (i),
note that if n is odd, then r < n+1

2
< n− r always holds.

Algorithm MoM3

Input: an n-element multiset X = {x1, x2, x3 . . . , xn} containing 0’s and 1’s (and we will
use 0 instead of x1 and 1 instead of x2) and an integer k with 1 ≤ k ≤ n.

Goal: find one of the kth largest elements of the input multiset.

Query: a pair {a, b}.

Answer: either a ≤ b, b ≤ a or a 6= b.

Output of Algorithm MoM3: (x,R, S, L), a partition of the input multiset where:

◦ x is one of the kth largest elements of X .

◦ |R| = 2r such that r of them are 0’s and r of them are 1’s. Moreover, the output also
contains a bijection among the 0’s and 1’s of R. Using this bijection, we will talk about the
pair of an element of R.

9



◦ S ∪ L, a partition of X \ ({x} ∪ R) such that each element in S is at most and each

element of L is at least as large as x with |R|
2
+ |L| = k − 1 if |R|

2
≤ min{n− k, k − 1}.

If |R|
2

> k − 1 we output (1, R,X \ (1 ∪ R), ∅) and we output (0, R, ∅, X \ (0 ∪ R)) if
|R|
2

> n− k. (Note that |R|
2

> max{n− k, k − 1} cannot happen.)

Description of Algorithm MoM3

Algorithm MoM3 consists of 5 phases. For each phase we will write in teletype style what
the algorithm does, and our analysis will be in normal typestyle.

In the description of the algorithm we will introduce three sets: R′, S ′ and L′, change
them dynamically during the phases and finally use them to define R, S and L of the output.
We make sure that at any moment of the algorithm R′ consists of pairs of 0’s and 1’s. (Again,
for the sake of simplicity we will use the term set instead of multiset.)

To count the queries used by the recursive calls, we denote by g(n) the worst running
time of Algorithm MoM3 on n elements for any k. For the sake of simplicity during the
computation we omit the additive constants, floor and ceiling signs.

Phase 1: We divide the elements of X \ {0, 1} into groups of five (with the exception of at
most four elements) and execute all possible queries within all groups. Applying Observation 9
(i) we obtain a median element in each of the groups.

Let M denote the set of medians, then |M | = 0.2n. For any m ∈ M , let Gm denote its
five element group, and let Om and Rm be the partition of Gm we obtain by Observation 9.
We put R′ = ∪m∈MRm and note that Om has size 1, 3, or 5 for all m ∈ M .

This phase requires
(

5
2

)

· 0.2n queries.

Phase 2: By a recursive call on M ∪{0, 1}, we find a median p of M , called the pivot, a set
of pairs R1 (we do not put these elements into R′), and a partition of the rest of the elements
into two subsets, S ′ and L′ with 0 ≤ |S ′| − |L′| ≤ 1, such that each element of S ′ is at most
as large as the pivot and each element of L′ is at least as large as the pivot. For all s ∈ S ′ we
put all elements of the sorted Os not larger than s into S ′ and for all elements ℓ ∈ L′ we put all
elements of the sorted Oℓ not smaller than ℓ into L′.

Note that both L′ and S ′ can contain 0′s and 1′s.

This phase requires g(0.2n) queries.

Phase 3: For every pair a, b ∈ R1 ⊂ M we query all pairs {c, d} with c ∈ Ga, d ∈ Gb. Using
the fact that one of a and b is 0, the other one is 1, we can apply Observation 9 (i) to Ga ∪Gb

and obtain the partition Ga ∪Gb = Oa,b ∪ Ra,b with a, b ∈ Ra,b.
• If |Ra,b| ≥ 6, we put its elements into R′,
• if not, then we can still deduce that some elements of Ga and Gb are 0 and 1 using that
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a 6= b are median elements of Ga and Gb. Therefore we can pair the first one and the last one
(if |Ra,b| = 4) or the first two and the last two (if |Ra,b| = 2) elements of the order of Oa,b and
put them into R′ along with a and b.

Note that at this moment by Phase 2 for every m ∈ M \R1 we have at least 3 elements
of Gm in S ′ ∪ L′ ∪ R′ and by Phase 3 for every pair a, b ∈ R1 we have at least 6 elements
of Ga ∪ Gb in R′. Thus |S ′ ∪ L′ ∪ R′| ≥ 0.6n holds. Observe that at this moment we have
|S ′|, |L′| ≤ 0.3n as half of the groups Gx, x ∈ M \ R1, contributed at most 3 elements to
S ′ and the other half of such groups contributed at most 3 elements to L′, while groups Gx

with x ∈ R1 contributed only to R′. Let Z = X \ (S ′ ∪ L′ ∪ R′).

This phase requires 52 · |R1|
2

≤ 2.5n queries.

Phase 4: For every element x ∈ Z we query the pair {x, p}. If the answer is x ≤ p, then
we put x into S ′, if the answer is x ≥ p, then we put x into L′.

Observe that new elements to S ′ and L′ came from Z, thus at this moment their size is
not more than 0.7n. Let T be the set of those elements, when the answer is x 6= p. Note
that all elements of T have the same color (the opposite of that of p) and as T ⊆ Z, we have
|T | ≤ 0.4n.

By the above observation, we use at most 0.4n queries.

Phase 5: In this phase, we compare every element of S ′ ∪ L′ to one element of T . We
proceed in the following way:

• if the answer to query {x, t} with x ∈ S ′∪L′, t ∈ T is x 6= t, then we put x and t as a pair
to R′ and the remaining elements of S ′ ∪ L′ should be compared to a remaining element of T ,

• if the answer is x ≤ t or t ≤ x, then we just move on to the next element of S ′ ∪ L′.

We use at most |S ′|+ |L′| ≤ n queries.

The following can occur during Phase 5:

If in any of the following cases |R′|
2

> k − 1 happens, we output (1, R′, L′ ∪ S ′ ∪ {0}, ∅) and

if |R′|
2

> n− k happens, we output (0, R′, ∅, L′ ∪ S ′ ∪ {1}).

Case 1: T becomes empty as all its elements are moved to R′.

In this case X is partitioned into p, S ′, L′, and R′. By the above case we are not done
if |R′|

2
< k − 1 < n − |R′|

2
− 1, but then observe that the kth largest element out of the n

original elements is the same as the (k − |R′|
2
)th element from S ′ ∪ L′ ∪ {p}. We know that

s ≤ p ≤ ℓ for all s ∈ S ′, ℓ ∈ L′.

Therefore we can make a recursive call to either L′ ∪ {0, 1} with k′ = k− |R′|
2

or S ′ ∪ {0, 1}

with k′ = k − |R′|
2

− |L′| − 1 depending on whether k − |R′|
2

≤ |L′| or k − |R′|
2

> |L′| + 1 (if

11



k− |R′|
2

= |L′|+1, then p is a kth largest element of X and we can output (p, R′, S ′∪0, L′∪1)).
If the recursive call on L′ ∪ {0, 1} outputs (ℓ, R′′, S ′′, L′′), then our final output is (ℓ, R′ ∪

R′′, S ′ ∪ S ′′, L′′). The case when we make the recursive call to S ′ ∪ {0, 1} is similar.

As |S ′|, |L′| < 0.7n, this requires at most g(0.7n) queries.

Case 2: We obtain an answer t ≤ s for some t ∈ T and s ∈ S ′.

In this case the value of the pivot is 1, all elements of T are 0 and all elements of L′ are
1. Indeed, supposing that the value of the pivot is 0, then as for all t ∈ T we have t 6= p, we
obtain 1 = t ≤ s ≤ p = 0, a contradiction. As the value of the pivot is 1, so are the values
of all ℓ ∈ L′. Thus

• if k ≤ |R′|
2

+ |L′| + 1, then we can output (1, R′, T ∪ S ′ ∪ L−− ∪ 0, L−), where L− is an

arbitrary subset of L′ of size k − |R′|
2

− 1 and L−− = L′ \ L−,

• if k > n− |R′|
2

− |T |, we can output (0, R′, S− ∪ T, S−− ∪L′ ∪ 1), where S− is a subset of

S ′ of size n− |R′|
2

−|T |−k and S−− = S ′ \S−, since half of the elements in R′ and all elements
in T are 0,

• if |R′|
2

+ |L′|+1 < k ≤ n− |R′|
2

− |T |, then a (k− ( |R
′|
2

+ |L′|+1))st element of S ′ is a kth

element of X . We make a recursive call to S ′∪{0, 1} with k′ = k−( |R
′|
2
+ |L′|+1). If the output

of the recursive call is (x,R′′, S ′′, L′′), then our final output is (x,R′∪R′′, T ∪S ′′, L′∪L′′∪{p}).

This case uses at most g(|S ′|+ 2) ≤ g(0.7n) queries.

Case 3: We obtain an answer ℓ ≤ t for some t ∈ T and ℓ ∈ L′.

In this case the value of the pivot is 0, all elements of T are 1 and all elements of S ′ are
0 and we proceed analogously to the previous case.

Case 4: We have s ≤ t and t ≤ ℓ for all t ∈ T , s ∈ S ′, ℓ ∈ L′.

In this case all elements of S ′ have value 0 and all elements of L′ have value 1. Indeed,
we have 0 ≤ s ≤ p ≤ ℓ ≤ 1, 0 ≤ s ≤ t ≤ ℓ ≤ 1 and t 6= p.

We put one element t ∈ T and p to R′ as a pair and

• if k − 1 ≤ |R′|
2

+ |L′|, then we can output (1, R′, S ′ ∪ (T \ {t}) ∪L−−, L−), where L− is a

subset of L′ of size k − |R′|
2

− 1 and L−− = L′ \ L−,

• if k ≥ n − |R′|
2

− |S ′|, then we output (0, R′, S−, S−− ∪ (T \ {t}) ∪ L′), where S− is a

subset of S ′ of size n− |R′|
2

− k and S−− = S ′ \ S−,

• if |R′|
2

+ |L′| + 1 < k < n − |R′|
2

− |S ′|, then we output (t′, R′, S ′ ∪ T−−, T− ∪ L′), where

t′ ∈ T \ {t}, T− ⊆ T \ {t, t′} with |T−| = k − 1− |R′|
2

− |L′| and T−− = (T \ {t, t′}) \ T−.

In all cases of the final case analysis we used at most g(0.7n) queries. Therefore we obtain
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that the running time g(n) satisfies

g(n) ≤ 2n+ g(0.2n) + 2.5n + 0.4n+ n+ g(0.7n).

Solving this we obtain a linear bound g(n) ≤ 59n+O(1).

3. Proofs of the main theorems

In this section we prove Theorems 2, 3 and 4, and to make the presentation more follow-
able we restate them before their proof.

First we put together the pieces from Section 2 to obtain a proof of Theorem 2.

Theorem 2. A3(n) = O(n).

Proof of Theorem 2. Let us start by executing Algorithm 2DB. If the two balls of the output
have the same color, then no matter which ball we output, it will be a non-minority ball.
Thus, from now on we assume that the two remaining balls are of different colors. We call
the color of one of them 0, the other 1, and denote the respective balls by 0 and 1. To every
ball we assign the number of its color, e.g., for two balls a ≤ b means that if a has color 1,
then so does b. By Observation 7, we know that after obtaining the answers to the queries
{0, a, b} and {a, b, 1} we know if a ≤ b, b ≤ a or a 6= b hold.

Therefore, we can run in linear time the queries that correspond to the queries of Algo-
rithm MoM3 to find a median, which is, by Proposition 1, a non-minority ball.

Now we turn our attention to non-adaptive problems. We start with a definition and a
simple observation that we will use in many of our proofs.

Definition 10. Let Q be a non-adaptive query set and (x1, x2, . . . , xs) (xi ∈ Qi) a possible
sequence of answers. We say that c : B → {0, 1} is a legal coloring of the ball set B if for
every 1 ≤ i ≤ s xi is a majority ball in Qi. The minority set Mc of a coloring c : B → {0, 1}
is the set of all balls that are not non-minority balls.

Observation 11. A non-adaptive query set Q = {Q1, Q2, . . . , Qs} does not determine a
non-minority ball if and only if there exists a sequence (x1, x2, . . . , xs) (xi ∈ Qi) of answers
for which the minority sets of all legal colorings cover the ball set, i.e., B = ∪c∈CMc where
C denotes the set of all legal colorings.

Using the above simple observation, we can prove Theorem 3 that we restate here.

Theorem 3.

(i) If |B| is odd and Q ⊆
(

B
3

)

is a set of non-adaptive queries with δ2(Q) < n−2
2
, i.e.,

there is a pair of balls x, y with dQ(x, y) < n−2
2
, then Q cannot determine a non-minority

ball.
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(ii) For every n there exists a non-adaptive query set Q ⊆
(

B
3

)

with δ2(Q) = ⌊n/2⌋ + 1
that determines a non-minority ball.

(iii) If |B| is even and Q ⊆
(

B
3

)

is a set of non-adaptive queries, such that there exist
four balls x, y, u, v with dQ(x, u) + dQ(x, v) + dQ(y, u) + dQ(y, v) ≤ n/2 − 3, then Q cannot
determine a non-minority ball.

(iv) Any non-adaptive query set Q ⊆
(

B
3

)

with δ2(Q) > 5n
6

determines a non-minority
ball.

(v) There exists a non-adaptive query set Q ⊆
(

B
3

)

with δ2(Q) = 5n
6
− 3 that does not

determine a non-minority ball.

Proof of Theorem 3. First we prove (i). Let |B| = 2k + 1 and assume that for a query set
Q and a pair of balls x, y ∈ B we have dQ(x, y) < k. We have to show that we cannot
determine a non-minority ball. Let us partition B \ {x, y} into two sets B1 and B2 such that
|B1| = k, B2 = k − 1, and {b ∈ B : {x, y, b} ∈ Q} ⊆ B2. To prove (i) we will show how to
answer queries of Q such that the conditions of Observation 11 are met. Let Q ∈ Q be an
arbitrary query.

1. if |Q ∩ Bi| ≥ 2 for some i, then the answer to Q is a ball from Q ∩ Bi,

2. if |Q ∩ Bi| = 1 for i = 1, 2, then we answer the ball from Q ∩ {x, y},

3. if {x, y} ⊂ Q, then by the assumption on the partition we know that the third ball in
Q belongs to B2, and the answer is this third ball.

Note that the above answers are all possible if we assume that balls in B1 are blue and
balls in B2 are red. Furthermore, (3) assures that at least one of x and y is also red. Thus
the three different colorings c1, c2, c3 for which B1 is blue, B2 is red and at least one of x, y
is red, with respective minority sets M1 = B1,M2 = B2 ∪ {x},M3 = B2 ∪ {y}, are all legal
with respect to the above answers. Therefore by Observation 11 Q does not determine a
non-minority ball.

To prove (ii) we construct a query set Q ⊆
(

B
3

)

with δ2(Q) = ⌊n/2⌋ + 1 that determines
a non-minority ball. Let S ⊆ B be a subset of the balls with |S| = ⌊n/2⌋ + 1 and let
Q =

(

B
3

)

\
(

B\S
3

)

. In proving that Q does indeed determine a non-minority ball we will apply
our results concerning the adaptive algorithms from Section 2.

We start by executing Algorithm 2DB on S (we can do that as
(

S
3

)

⊆ Q). We obtain two
balls a and b that have different colors unless all balls in S have the same color. If a and b
are of the same color, then that color is the majority color (and hence non-minority), and if
some x is colored with the other color, x cannot be in S, therefore the answer to the query
{a, x, b} cannot be x. We look at the queries of the form {a, x, b} for all x 6∈ S, and define
R to be the set of those balls x ∈ B \ S, for which the answer to the query {a, x, b} is a or
b. We will make sure that our final output will be a ball in B \ R. This guarantees that
if the colors of a and b are the same, then we will output a non-minority ball. Therefore,
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we can assume that the color of a is 0 and the color of b is 1. If the answer to the query
{a, x, b} is a, then the color of x is 0, if the answer is b, then the color of x is 1. Let n1 denote
the number of balls x of the latter type. We remove the balls in R, and then the median
is the kth largest among the remaining balls for k = ⌈n/2⌉ − n1 (this is always positive as
|S| = ⌊n/2⌋ + 1), and we can find it using Algorithm MoM3. All these queries are in Q, as
they contain a ∈ S or b ∈ S.

For (iii), we have to show that if n = |B| is even and Q ⊆
(

B
3

)

is a set of non-adaptive
queries such that there exist four balls x, y, u, v with dQ(x, u)+dQ(x, v)+dQ(y, u)+dQ(y, v) ≤
n/2 − 3, then Q cannot determine a non-minority ball. Take the set of balls that are in a
query with one of {x, y} and one of {u, v}, e.g., {bxu}, and add some further balls to them,
if necessary, to form a set B1 of size n/2−3. Let B2 = B \ (B1∪{x, y, u, v}) be the set of the
remaining n/2 − 1 balls. We answer the queries such that all colorings are valid for which
B1, B2, {x, y} and {u, v} are all monochromatic sets, B1 and B2 are colored differently and
either x and y, or u and v (possibly all four) have the same color as the balls in B1.

• If a query Q meets one of the four sets above in at least two balls, then the answer is
one of those balls,

• the answer to a query {ξ, ν, b} with ξ ∈ {x, y}, ν ∈ {u, v}, b ∈ B1 is b,

• the answer to a query {b1, b2, z} with b1 ∈ B1, b2 ∈ B2, z ∈ {x, y, u, v} is z.

By the definition of the partition B1, B2, there are no other possible queries, and one can
easily check that the sets B2, B1∪{x, u} and B1∪{y, v} are all minority sets of legal colorings
and thus we are done by Observation 11.

We prove (iv) by contradiction. Assume Q is a query set with δ2(Q) ≥ 5n
6
that does not

determine a non-minority ball. Then by Observation 11 there exists a set of answers for which
the minority sets of all legal colorings cover the ball set B. Let C be a minimal set of legal
colorings for which B = ∪c∈CMc holds. Note that |C| ≥ 3 as |Mc| < n/2 for any legal coloring
c. Let us consider three legal colorings c1, c2, c3 ∈ C and the corresponding minority sets
M1,M2,M3. By the minimality of C, there exist balls bi i = 1, 2, 3 with bi ∈ Mi \∪c∈C,c 6=ciMc.
We will use the following simple observation, that we include here without proof:

Observation 12. If A1, A2, A3 ⊆ [n] with |Ai| < n/2, then for some i 6= j |Ai∪Aj | < 5n/6.

Applying Observation 12 to the sets M1,M2,M3, we obtain without loss of generality
that the set T := B \ (M1 ∪ M2) has size strictly larger than n/6. We claim that Qt :=
{b1, b2, t} /∈ Q for any t ∈ T . Indeed, if Qt ∈ Q, then the answer to Qt cannot be b1 as c1 is
a legal coloring and b1 ∈ M1, while b2, t /∈ M1. Similarly, b2 cannot be the answer to Qt as
c2 is a legal coloring and b2 ∈ M2, while b1, t /∈ M2. Finally, t cannot be the answer to Qt as
t ∈ T and thus there is a legal coloring c ∈ C such that t ∈ Mc and by the choice of b1 and
b2 we have b1, b2 /∈ Mc. This shows that dQ(b1, b2) ≤ n− 2− |T | ≤ 5n

6
− 2, a contradiction.
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To prove (v), we need a construction. First let us assume that n is divisible by six. Let
A1, A2, A3, A4, A5, A6 be six pairwise disjoint subsets of [n] with |A1| = |A3| = |A5| = n/6−1
and |A2| = |A4| = |A6| = n/6 + 1. Then their union is [n] and the sets M1 := A1 ∪A2 ∪A3,
M2 = A3 ∪A4 ∪ A5, M3 = A5 ∪ A6 ∪A1 all have size n/2− 1. Let us define

Q =

(

[n]

3

)

\ ({{x, y, z} | x ∈ A1, y ∈ A3, z ∈ A5} ∪ {{x, y, z} | x ∈ A2, y ∈ A4, z ∈ A6}) .

We claim that there exists a set of answers to all the queries in Q such that all Mi’s are
possible minority sets and therefore by Observation 11, Q does not determine a non-minority
ball. Indeed, if a query intersects an Ai in at least two balls, then we can answer any of these
balls. Otherwise, the query contains one ball from both of two adjacent sets Ai and Ai+1

(where A7 = A1). By symmetry we can assume they are a1 ∈ A1 and a2 ∈ A2. If the third
ball is in A3 or A4, we can answer a2, while if the third ball is in A5 or A6, we can answer
a1. One can easily verify that the colorings ci with c−1(0) = Mi are all legal. If n = 6r + i
for some 1 ≤ i ≤ 5, then we use the above construction, such that for j ≤ i we add a ball to
A2j if j ≤ 3 and add a ball to A2j−7 if j ≥ 4.

Now we prove our bounds on N3(n).

Theorem 4. (i) If n is odd, then N3(n) ≥
1
2

(

n
3

)

.

(ii)If n is even, then N3(n) ≥
1
8

(

n−2
3

)

.

(iii) N3(n) ≤ (5
6
+ o(1))

(

n
3

)

.

Proof Theorem 4. (i) To obtain the lower bound on N3(2k+1) we use a standard averaging
argument. By Theorem 3 (i) we know that if Q determines a non-minority ball, then
δ2(Q) ≥ k and therefore the number of pairs ({x, y}, Q) with x, y ∈ Q, Q ∈ Q is, on
one hand, exactly 3|Q|, and on the other hand is at least k

(

2k+1
2

)

. Rearranging, we obtain

|Q| ≥ (2k+1)·2k·k
6

≥ 1
2

(

2k+1
3

)

.
(ii) We also use a standard averaging argument. Counting the number M of ordered

triples ({x, y}, {u, v}, Q) with Q ∈ Q, |Q ∩ {x, y}| = |Q ∩ {u, v}| = 1 and x, u, y, v pairwise
different, by Theorem 3 (iii) we obtain that M ≥

(

n
2

)(

n−2
2

)

(n/2 − 2) holds. On the other
hand M = 6|Q|(n − 3)(n − 4). Taking Q for which |Q| is minimal, we get that N3(n) =
|Q| ≥ n(n− 1)(n− 4)/48 ≥ 1

8

(

n−2
3

)

.
(iii) By Theorem 3 (iv), the upper bound on N3(n) follows from the existence of a query

set Q with 5n/6 ≤ dQ(x, y) ≤ 5n/6 + o(n). The existence of such a query set can be seen
easily using the random construction letting Q ∈ Q with probability 5/6 + n−1/3 for any
triple Q independently. (It is worth mentioning that there is a much stronger recent result
on designs due to Keevash [14].)
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4. Remarks on queries of larger size and other models

In this section we gather some information on the non-minority problem if the query size
q is greater than 3, namely we prove Theorem 5 and Theorem 6. and also investigate some
related models.

Throughout this section the number of colors is still always two. Recall that in this
model a query is a set of q balls, the answer is either (the index of) a majority ball, or
that there is no majority color in this subset, and that we denote the number of queries
needed to determine a non-minority ball by Aq(n) in the adaptive model and by Nq(n) in
the non-adaptive model. As many of the proofs and algorithms are very similar to the ones
we used for the case q = 3, we do not always provide all details.

By definition, the model is quite different for odd and even values of q. We first consider
the case when q is odd.

Theorem 5. We have N2l+1(n) = Ωl(n
3) and A2l+1(n) = Ol(n

2).

Proof. First note that we can simulate queries of size 2l+1 by queries of size 3. That is, we
can determine a possible answer for any query of size 2l + 1 by asking the necessary triples
of the query. This gives N2l+1(n) ≥ N3(n)/N3(2l + 1) = Ωl(n

3) using Theorem 4.
For the adaptive case, we can modify Algorithm 2DB. Again we set aside the answer

ball, add a new ball and then repeat the procedure. After n− 2l queries, among the 2l balls
that have not been removed either we have l red and l blue balls, or all the other n−2l balls
have the same color. Assuming n ≥ 4l+ 1, in both cases it is enough to find a non-minority
ball among the other n−2l balls, thus A2l+1(n) ≤ n−2l+A2l+1(n−2l). Now the quadratic
upper bound follows obviously if for n ≤ 4l the problem can be solved at all.

If n is even, it is enough to solve the problem for any n−1 of the balls; the resulting ball
is in non-minority among the original set of balls. Thus it is enough to solve the problem
for n odd. For n = 2l + 1 the solution is obvious. Now we consider the case n = 2l + 3.

Lemma 13. If n = 2l + 3 and all possible queries of size 2l + 1 have been asked, then we
can find a non-minority ball.

Proof. We will assume that the color classes contain l+1 or l+2 balls, and make sure that
our output is a ball that appears as an answer to a query. If the sizes of the color classes are
more unbalanced, then no ball from the smaller class can appear as an answer to a query,
hence our ball is still non-minority.

Let us assume that we cannot find a non-minority ball. If a set S of l+1 elements is the
minority class, it has the following property: an answer to a query is in S if and only if the
query contains S. Let F be the family of sets S, |S| = l + 1, with the property that for a
query Q if the answer to Q belongs to S, then S ⊂ Q holds. Sets in F are the candidates
for being the minority set. The assumption that we cannot find a non-minority ball means
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that every ball that has appeared as an answer for a query is contained in a member of F .
For any ball b we define Fb = {F ∈ F : b ∈ F}.

Lemma 14. 1. Fa ∪ Fb ( F for every two balls a, b.
2. For every two balls a, b, there is a third ball c, such that Fc = F \ (Fa ∪ Fb) holds.

Proof. Let us consider two arbitrary balls a and b, and the query Q that avoids them. Let
c be the answer to Q. There must be a member F of F containing c (otherwise c is a
non-minority ball), and then F ⊂ Q by the definition of F . This proves 1. To prove 2, note
that, by the definition of F applied to c and Q, every member of F that contains c must be
a subset of Q showing Fc ∩ (Fa ∪ Fb) = ∅. On the other hand if a candidate set is a subset
of Q it must contain the answer to Q.

To finish the proof of Lemma 13, let us consider two elements a and b of a set F ∈ F .
By Lemma 14 there is a ball c with Fc = F \ (Fa ∪ Fb). Similarly, for a and c we can
find another ball d with Fd = F \ (Fa ∪ Fc). We know d cannot be the same as b, since
F ∈ Fa,Fb. Every member of F belongs to exactly one of Fa, Fd and Fc, and also to at
least one of Fa, Fb and Fc. This implies Fd ⊆ Fb. Now for b and d we can find a third ball
e with Fe = F \ (Fd ∪ Fb), but then F = Fb ∪ Fe holds – a contradiction.

Returning to the proof of Theorem 5, we can therefore simulate queries of size 2l + 3 by
queries of size 2l + 1 using Lemma 13. Now using the lemma for n = 2l + 5 and query size
2l+3 we can also simulate queries of size 2l+5 by queries of size 2l+3, and thus by queries
of size 2l + 1. A repeated application of this argument finishes the proof for any odd value
of n.

The algorithm can be improved by reusing some queries between different phases if we
ask them in a “binary tree” branching way. We do not go into details, as we could only
achieve an Õ(n

3

2 ) bound, while we conjecture that an O(n) bound holds also in this case.

Theorem 6. We have N2l(n) ≤ n(n− 2l) and A2l(n) ≤ n− 2l + 1.

Proof. We give a non-adaptive algorithm of length at most n(n − 2l). Let the balls be
b1, b2, . . . , bn and let us consider the queries

{b1, b2, . . . , b2l}, {b2, b3, . . . , b2l+1}, . . . , {bn, b1, . . . , b2l−1}.

If the answer to all these queries is a ball in majority, then all the answer balls have the same
color (otherwise there should be a query for which the answer is that there is no majority in
the set), and it is easy to see that any of these balls is a majority ball in the whole set. Thus
we may assume that there is no majority in (say) {b1, b2, . . . , b2l}. Now for 2l+1 ≤ i ≤ n let
us consider the query Qi = {b2, b3, . . . , b2l, bi}. If the answer to Qi is a ball, then b1 and bi
have different colors, while if the answer is that there is no majority in Qi, then b1 and bi have
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the same color. That is, using n−2l further queries we can explore the whole distribution of
the colors in b2l+1, b2l+2, . . . , bn and now to show a non-minority ball is straightforward. Since
we need the further n−2l queries for every possible sets of the first round, the non-adaptive
algorithm uses n(n− 2l) queries altogether, since we counted twice the interval queries (e.g.
{b2, b3, . . . , b2l+1} once at the beginning and then as Q2l+1).

For the adaptive case let us start our algorithm with an arbitrary query S and suppose
that the answer is a ball s. Then let the next query be S ′ = S \ {s} ∪ {s′}, where s′ 6∈ S.
If the answer to this query is a ball b, then b and s must have the same color. In this case
we continue the process by taking a new ball s′′ 6∈ S ∪ {s′} and S ′′ = S ′ \ {b} ∪ {s′′}. We do
this (always deleting the answered ball from the current set and adding a new ball) until the
answer is not a majority ball or there are no more balls to add. In the latter case we used
n − 2l + 1 questions and a non-minority ball is obvious to show. Otherwise, when we stop
in the current set S1 of size 2l there is no majority ball and the set S2 of all balls deleted
so far (having size i for some 0 ≤ i ≤ n − 2l) is such that for some a ∈ S1 (the ball added
last to S1) and for any b ∈ S2 we know that a and b have different colors. Now it is easy to
learn whether a ball c ∈ B \S1 \S2 has the same color as a: we ask the query S1 \ {a}∪{c},
just like in the second phase of the non-adaptive algorithm we have just seen. That is, after
using n− 2l + 1 questions altogether, we can easily show a non-minority ball again.

Non-minority answers

The huge difference between the odd and even cases motivates us to consider the model
where the answer to a query is simply a non-minority ball. If the query size q is odd, then a
non-minority answer is simply a majority answer, thus the above results remain true in this
case, in particular, by asking all queries we can determine a non-minority ball. If q = 2 or
q = 4 and n is arbitrary or q is even and n is odd, then this is not possible by Lemma 15
below. Finally, the remaining case, when q > 4 and n are both even, is handled for n large
enough by Theorem 16 (the proof of which is postponed to the Appendix), showing that in
this case we can again find a non-minority ball.

Lemma 15. Assume that q = 2, or q = 4 and n > 2 is arbitrary, or q is even and n is odd.
Even if we know a non-minority ball in all

(

n
q

)

possible q-tuples, it is possible that we cannot
show a non-minority ball.

Proof. If q = 2, trivially no answer gives any information about the balls, and so it is
impossible to determine a non-minority ball.

For q = 4 and n > 2 even, we partition thee balls into three groups of size < n/2, any
query intersects at least one group in two elements, we always answer one of these elements.
This way all colorings in which a group is monochromatic is valid, and so, by Observation 11,
it is not possible to determine a non-minority ball.

For n odd and q even we partition tha balls into two groups of size (n − 1)/2 and a
group with one element, as in the previous case any query intersects at least one group in
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q/2 elements, we always answer one of these elements. This way again all colorings in which
a group is monochromatic is valid, and so, by Observation 11, it is not possible to determine
a non-minority ball.

The proof of the next theorem is postponed to Appendix A.

Theorem 16. Let n ≥ q3 be even and q > 4 be even. If we know a non-minority ball in all
(

n
q

)

possible q-tuples, we can find a non-minority ball.

Of course, it would be interesting to know whether Theorem 16 holds for all even n.
For this to hold, it would be sufficient to prove it for n = q + 2, similarly as was done for
Theorem 5 in Lemma 13. Suppose that there is a collection F of minority sets, where the
size of each set is at most q/2 and they cover each of the n elements. If a query Q of size
q = n− 2 contains all elements but x and y, then the answer to Q can be z if and only if for
every F ∈ F with z ∈ F we have |F \ {x, y}| = q/2. This can be translated to the language
of hypergraphs as follows.

A set D of vertices is dominating in a hypergraph H if for every vertex v there exists an
H ∈ H with v ∈ H and H ∩ D 6= ∅. The dominating number γ(H) is the smallest number
for which there is a dominating vertex set of size γ(H). In our case, the edges of H will be
the sets of size exactly q/2 from F , and the vertices of H the elements that are contained in
such an edge. Then a query Q not containing x and y has an answer if and only if {x, y}
does not form a dominating set. Therefore, F is a collection of minority sets if and only if
for the corresponding hypergraph H we have γ(H) ≥ 3. This gives the following equivalent
reformulation of our problem.

Problem 17. Is it true that γ(H) ≤ 2 if H is k-uniform for some k ≥ n/2− 1?

After the first version of this article appeared on arXiv, this problem was answered in
the negative in [4].

Arbitrary ratio model

We finish this section with the introduction of a more general model. For some 0 < α ≤
1/2, we say that a ball b ∈ B is an α-ball of the set B if there are at least α(|B| − 1) other
balls in the set that have the same color as b. Similar density queries were considered in the
group testing model in [11]. Notice that a 1

2
-ball is just a majority ball while in a query of

size q for α = 1
2
q−2
q−1

an α-ball is exactly a non-minority ball. In this new model, the queries
are subsets of size q of the set of n balls colored with two colors and the answer we obtain
to a query Q is an α-ball of Q (which always exists if we have only two colors).

Our goal is to find a ball having the same color as many other balls as possible. Let A
be the largest integer, such that ⌈ q

A
⌉ − 1 ≥ α(q − 1) holds.
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Proposition 18. For any q,n and 0 < α ≤ 1
2
, if A divides n or q, or (n mod A) < (q

mod A), then even asking all possible
(

n
q

)

queries, it is possible that we cannot show a 1
A
-ball

of the full set.

Note that if q is odd and α = 1
2
, then A = 2 and we can determine a 1

A
-ball for odd values

of n, showing that the above conditions are needed. Also note that in the non-minority ball
model, for q = 4 we have A = 3, but for q > 4 we have A = 2, which explains why we could
find a non-minority ball only for q > 4 and n even in Theorem 16.

Proof. First let us consider the case when n is any multiple of A. In this case let us divide
the balls into A equal-sized sets G1, . . . , GA. The adversary reveals that the balls in the
same group have the same color. Any query contains at least ⌈ q

A
⌉ balls from at least one of

the groups, let this group be Gi. Any of these balls can be the answer to the query, as each
have the same color as ⌈ q

A
⌉ − 1 ≥ α(q − 1) other balls. That is, receiving the answers it is

possible that all balls have the same color and it is also possible that in group Gi there are
only red balls and all the other balls are blue, therefore we cannot show a 1

A
-ball.

In the above construction, if we add at most q − A · (⌈ q
A
⌉ − 1) − 1 further balls to our

set, we still have the property that any query contains at least ⌈ q
A
⌉ balls from one group.

(Otherwise we would have at most ⌈ q
A
⌉− 1 balls from each group in the query and therefore

at most a total of A · (⌈ q
A
⌉ − 1) + (q − A · (⌈ q

A
⌉ − 1)− 1) = q − 1 balls, a contradiction.) It

is easy to check that this settles all the remaining cases.

The natural goal would be to find an α-ball of the full set. As α ≤ 1
A
, Proposition 18

answers this question only for those values of α and q, where equality holds. The following
theorem (the proof of which is postponed to the Appendix) shows that we can find an α-ball
for every other instances of q and α if n is large enough. Moreover, 1

A
cannot be replaced by

any smaller number. To see this, we say that a ball b ∈ B is a c-almost α-ball of the set B
if there are at least α(|B| − 1)− c other balls of the same color, where c is some constant.

Theorem 19. If n is large enough, after asking all possible
(

n
q

)

queries, we can show a

cq-almost 1
A
-ball of the full set, where cq is a constant depending only on q.

Finally, we would like to modify the above model so that it makes sense for 1/2 < α ≤ 1.
In this case it might happen that there is no α-ball in a query. One possibility to deal with
this is that the answer to a query Q is an α-ball of Q if it exists, and any ball of Q otherwise.
For example, if q = 4 and α = 2/3, then if there are three red balls and one blue ball,
then the answer is necessarily a red ball, but if there are two balls of each color, the answer
is arbitrary. Interestingly, a ball b is a possible answer for a query Q if and only if b is a
(1− α)-ball in Q. This way all the above results about α ≤ 1/2 translate to this model, the
best that we can hope for is an almost 1

A
-ball of the whole set, where A is the largest integer

with ⌈ q
A
⌉ − 1 ≥ (1− α)(q − 1).
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Open problems

• Parts (i) and (ii) of Theorem 3 show that the minimum value of δ2(Q) taken over all
non-adaptive sets of queries determining a non-minority ball differs from n/2 by at most 1,
provided n is odd. We conjecture that this holds independently of the parity of n (maybe
with a larger constant instead of 1).

• Does Theorem 16 hold for every even n?

• Is it possible to remove the “almost” part from Theorem 19? (Assuming that the
divisibility conditions required by Proposition 18 hold.)
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Appendix A. Proof of Theorem 16

Theorem 16. Let n ≥ q3 be even and q > 4 be even. If we know a non-minority ball in all
(

n
q

)

possible q-tuples, we can find a non-minority ball.

Proof. We prove by contradiction.
Suppose we cannot find a non-minority ball. Then by Observation 11, we know that the

family F of minority sets of legal colorings covers the full set of balls.

First note that to get a contradiction, it is enough to show the existence of a set Q with:

(•) |Q| = q and for every ball b ∈ Q there is a legal coloring c(b) such that the minority
set of that coloring Fc(b) ∈ F contains b and |Fc(b) ∩Q| < q/2.

Indeed, if the answer to a query Q is x, then the fact that Fc(x) can be a color class together
with the fact that x ∈ Fc(x), implies that Fc(x) is not in minority in Q, i.e., |Fc(x) ∩Q| ≥ q/2.
On the other hand (•) implies |Fc(x) ∩Q| < q/2, a contradiction.

Now let us consider a minimal subfamily F ′ of F which covers the ball set, i.e., no proper
subfamily of F ′ covers all the balls. The minimality of F ′ implies that for every F ∈ F ′

there is at least one ball contained in F but in no other member of F ′. For each F ∈ F ′
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we call these balls, i.e., the balls that are not contained in other elements of F ′, the private
balls of F for F ′ and denote them by pb(F,F ′).

If |F ′| ≥ q, then we can choose q private balls from q different members of F ′. Their set
Q obviously satisfies (•), a contradiction. Thus we have |F ′| < q.

If there is a set F ∈ F ′ with |pb(F,F ′)| ≤ q/2, then we delete F from F ′ and the private
balls of F from the set of balls, and we repeat this procedure for the remaining sets and
balls until we can. Note that balls that are not private balls at the beginning can become
private balls after deleting some sets and also note that every deleted ball is a private ball
of some set at some point during the procedure. Let F ′′ be the family of all deleted sets and
let m := |F ′′|, G := F ′ \ F ′′ and X := ∪F∈GF . Note that |X| ≥ n− qm/2 and |G| < q −m
by |F ′| < q. Note also that |F | ≤ n/2− 1, q/2 < |pb(F,G)| for all F ∈ G.

Case 1 : First we consider |G| ≤ 1. In this case set X (whose cardinality is at least
n−qm/2 > n−q2/2 (asm < q) by above), is covered by at most one set of size at most n/2−1.
This is a contradiction, since the assumptions on n and q imply that n/2− 1 < n− q2/2.

Case 2 : Now we consider the case |G| = 2 and let G := {A,B}. The bound |A ∪ B| =
|X| ≥ n−mq/2 > n− q2/2 (using m < q) implies

|A \B| ≥ n/2− q2/2 + 1 and |B \ A| ≥ n/2− q2/2 + 1,

as members of F ′ have cardinality at most n/2 − 1 (and n is even). Every set C ∈ F ′′

intersects either A\B or B\A in at most n/4 elements. Thus using that n/2−q2/2+1−n/4 ≥
q/2− 1 by the assumptions on n and q, we have that for all C ∈ F ′′

|(A \B) \ C| ≥ q/2− 1 or |(B \ A) \ C| ≥ q/2− 1.

Subcase 2.1 : |F ′′| = 1. Let C be the only set in F ′′ and without loss of generality we
can assume, that |(A \B) \ C| ≥ q/2− 1. Since the size of the union of any two of the sets
A,B and C is at most n − 2 (here we use that n is even), each of the sets has at least 2
private balls for F ′. So put the q/2−1 balls of (A\B)\C, 2 private balls of B and C for F ′,
and q/2− 3 elements from the complement of A into Q (we note that this is a point, where
we use the assumption 4 < q). This Q satisfies (•), since in this case A∪B ∪C contains all
the balls, and A is good minority set for those in (A \ B) \ C, B and C is a good minority
set for those that are the private balls (for F ′) of B and C (respectively), and finally either
B or C is a good minority set for those balls that are in the complement of A and contains
that ball.

Subcase 2.2 : |F ′′| ≥ 2 and there are C,D ∈ F ′′ different with |(A \ B) \ C| ≥ q/2 − 1
and |(B \ A) \ D| ≥ q/2 − 1. We can construct Q by picking q/2 − 1 balls from both of
(A \ B) \ C and (B \ A) \D, including at least one private ball of A and B for F ′, and in
addition a private ball of both C and D for F ′. This Q satisfies (•), since A (B) is a good
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minority set for the balls in (A \B) \C ((B \A) \D, resp.) and C and D is a good minority
sets for their private ball (respectively).

Subcase 2.3 : |F ′′| ≥ 2 and there are no such C and D as in the previous subcase. Then
without loss of generality we can assume that for every C ∈ F ′′ we have |(A\B)\C| ≥ q/2−1
and |(B \ A) \ C| ≤ q/2− 2.

Then for every C ∈ F ′′ we have |(B \ A) ∩ C| ≥ n/2− q2/2− q/2 + 3 (using the bound
on |B \ A|), and thus |(A \B) ∩ C| ≤ q2/2 + q/2− 4 (using that |C| ≤ n/2− 1).

Using our assumptions on n and q we have (q2/2+q/2−4)(q−3)+q/2−1 ≤ n/2−q2/2+1
(this is the place, where we really use the cubic lower bound on n) and n/2−q2/2+1 ≤ |A\B|,
and we can conclude that the elements of F ′′ together can cover all but at least q/2−1 balls
from A \ B. This means that A contains at least q/2− 1 private balls for F ′. Then we can
form Q satisfying (•) by picking q/2−1 private balls of A for F ′, a private ball of B for F ′, a
private ball of two different C,D ∈ F ′′ for F ′, and q/2−2 further balls from the complement
of A. It is easy to see that this Q satisfies (•) and we are done with Case 2.

Case 3 : Finally, if |G| ≥ 3, let us consider 3 sets A,B and C with more than q/2 many
private balls for G. Then put q/2 − 1 private balls of A and B for G and 2 private balls of
C for G to form Q. This Q easily satisfies (•).

Appendix B. Proof of Theorem 19

Theorem 19. If n is large enough, after asking all possible
(

n
q

)

queries, we can show a

cq-almost 1
A
-ball of the full set, where cq is a constant depending only on q.

Proof. We prove by contradiction, so suppose this is not the case. Let F be the family of
sets that appear as color classes in colorings consistent with all the answers. Then every ball
must be contained in a member of F that has less than n

A
− cq elements. As in the proof of

Theorem 16, let F ′ be a subfamily of F of minimum size that covers every ball, such that
all members of F ′ have less than n

A
− cq elements. Now for every F ∈ F ′ there is a private

ball, a ball contained in F but no other member of F ′. As in Theorem 16, |F ′| < q. Indeed,
otherwise we could find a query Q of size q containing only private balls and the answer b
for this query would be contained in F ∈ F . But if F would be a color class, then it would
intersect Q in one element concluding in a contradiction.

From now on we will consider colorings where a member of F ′ is one of the color classes,
and find a cq-almost 1

A
-ball of the full set, which is obviously a contradiction. If two balls

are contained in exactly the same members of F ′, their colors must be the same. Thus F ′

determines at most 2q−1 groups such that all the balls in each group have the same color.
We partition each group into groups of size exactly ⌈α(q − 1)⌉, throwing away less than

⌈α(q − 1)⌉ balls of each original group. Let G be the family of the resulting groups, then
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|G| > n−2q−1(⌈α(q−1)⌉)
⌈α(q−1)⌉

.
Let us consider the queries that have a common element with exactly A+ 1 members of

G, and contain no balls thrown away. One can easily see that (A+1)(⌈α(q−1)⌉) ≥ q ≥ A+1,
thus such queries exist. For these queries the answer is an element of a group, such that there
is another group of the same color. Indeed, in a query there are at least α(q−1)+1 elements
with the color of the answered ball, not all of these fit into one group of size ⌈α(q − 1)⌉.
Considering the groups as elements of a new underlying set, this means we can ask queries
of size A + 1, and the answer to such a query is a 1

A
-ball (or more precisely a 1

A
-group) of

the A+1 elements. If we can find a 1
A
-group, it means that there are at least 1

A
(|G| − 1) + 1

groups, thus n
A
− cq balls, of the same color.

From here, the following algorithm run on the setting where elements correspond to the
groups finishes the proof of the theorem.

Algorithm. Denote the current set of balls by B. Ask a set of size A+1, and temporarily
remove the answer from B. Repeat this until only A balls are left, whose set we denote by
K. If there are no red balls in K, then there can be no red balls in B \K. This means that
any ball from B \K is a 1

A
-ball of B. If there is at least one ball of each color in K, then

any 1
A
-ball of B \K is also a 1

A
-ball of B. Therefore, in both cases, it is enough to solve the

problem in B \ K. Repeating this, using O(n2) queries we can achieve that we have O(q)
balls. Notice that any of the remaining balls is a cq-almost 1

A
-ball of the full set.

Note that the above proof is essentially the combination of the proof of Theorem 16 and
the algorithm in the proof of Theorem 5.
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