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Abstract 32 

Factor H (FH) is a major inhibitor of the alternative pathway of complement activation in plasma 33 

and on certain host surfaces. In addition to being a complement regulator, FH can bind to various 34 

cells via specific receptors, including binding to neutrophil granulocytes through complement 35 

receptor type 3 (CR3; CD11b/CD18), and modulate their function. The cellular roles of FH are, 36 

however, poorly understood. Because neutrophils are important innate immune cells in 37 

inflammatory processes and the host defence against pathogens, we aimed at studying the effects 38 

of FH on various neutrophil functions, including the generation of extracellular traps. FH co-39 

localized with CD11b on the surface of neutrophils isolated from peripheral blood of healthy 40 

individuals, and cell-bound FH retained its cofactor activity and enhanced C3b degradation. 41 

Soluble FH supported neutrophil migration and immobilized FH induced cell spreading. In 42 

addition, immobilized but not soluble FH enhanced IL-8 release from neutrophils. FH alone did 43 

not trigger the cells to produce neutrophil extracellular traps (NETs), but NET formation induced 44 

by PMA and by fibronectin plus fungal β-glucan were inhibited by immobilized, but not by 45 

soluble, FH. Moreover, in parallel with NET formation, immobilized FH also inhibited the 46 

production of reactive oxygen species induced by PMA and by fibronectin plus β-glucan. 47 

Altogether, these data indicate that FH has multiple regulatory roles on neutrophil functions. 48 

While it can support the recruitment of neutrophils, FH may also exert anti-inflammatory effects 49 
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and influence local inflammatory and antimicrobial reactions, and reduce tissue damage by 50 

modulating NET formation. 51 

 52 

Keywords: complement; CR3; factor H; extracellular DNA; neutrophil extracellular trap; 53 

reactive oxygen species 54 

 55 

 56 

1. Introduction 57 

The complement system is a major humoral component of innate immunity and plays important 58 

roles in antimicrobial defense and in maintaining host homeostasis (Ricklin et al., 2010). 59 

Complement components and their activation fragments generated upon triggering of the 60 

complement cascade also influence the activation and function of various cells through several 61 

receptors (Ricklin et al., 2010). 62 

Factor H (FH) is a major inhibitor of the alternative pathway of complement in plasma and on 63 

host cellular and non-cellular surfaces (Ferreira et al., 2010; Kopp et al., 2012; Rodriguez de 64 

Cordoba et al., 2004). FH is a 155-kDa glycoprotein that is mainly produced in the liver and 65 

reaches a median plasma concentration of ~250 µg/ml (Kopp et al., 2012). FH is also produced 66 

locally by several types of cells, such as endothelial cells, monocytes and dendritic cells 67 

(Brooimans et al., 1990; Li et al., 2011; Whaley, 1980). FH regulates complement activation at 68 

the level of the central C3b component by acting as a cofactor in the cleavage of C3b by factor I 69 

and by inhibiting formation and accelerating the decay of the alternative pathway C3 convertase 70 

enzyme (Kopp et al., 2012; Rodriguez de Cordoba et al., 2004). 71 

In addition to being a complement inhibitor, there is growing evidence for direct regulatory 72 

roles of FH on several cell types. FH has been shown to bind to neutrophil granulocytes via 73 
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complement receptor type 3 (CR3; CD11b/CD18), and mediate adhesion and cell polarization 74 

(Avery and Gordon, 1993; DiScipio et al., 1998; Losse et al., 2010). Candida albicans-bound FH 75 

facilitated fungal recognition and antifungal responses by neutrophil granulocytes (Losse et al., 76 

2010). FH bound to Streptococcus pneumoniae was shown to mediate interaction of 77 

pneumococci with human neutrophils and epithelial cells, and facilitate the entry into host cells 78 

(Agarwal et al., 2010b). Moreover, FH was shown to facilitate adherence of Neisseria 79 

gonorrhoeae to CR3-expressing CHO-cells (Agarwal et al., 2010a). FH also binds to monocytes, 80 

macrophages, B cells and platelets (Hartung et al., 1984; Iferroudjene et al., 1991; Lambris et al., 81 

1980; Vaziri-Sani et al., 2005). FH promotes the uptake of apoptotic cells by macrophages in a 82 

non-inflammatory manner (Mihlan et al., 2009) and has a chemotactic function on monocytes 83 

(Nabil et al., 1997). It was also shown that CR3 is involved in FH binding to monocytes and FH 84 

can inhibit the C1q-mediated uptake of apoptotic cells (Kang et al., 2012). On B cells, FH was 85 

reported to inhibit immunoglobulin secretion and cell differentiation (Tsokos et al., 1985), but the 86 

B cell FH receptor could not be identified at the molecular level (Erdei and Sim, 1987). However, 87 

these non-canonical, cellular roles of FH are poorly understood. 88 

Neutrophil granulocytes are major inflammatory cells and key players during infections, since 89 

they provide the first line of host cellular defense (Mocsai, 2013; Nathan, 2006). They are rapidly 90 

recruited to infected tissues and have several killing mechanisms to eliminate pathogens 91 

(Kolaczkowska and Kubes, 2013). In addition to phagocytosis and intracellular killing, and the 92 

release of antimicrobial factors, neutrophils can trap microorganisms by releasing neutrophil 93 

extracellular traps (NETs) (Brinkmann et al., 2004; Nathan, 2006). These web-like structures are 94 

formed by activated neutrophils and composed of nuclear chromatin associated with nuclear 95 

histones and granular antimicrobial proteins (Brinkmann et al., 2004). Thus, NETs probably do 96 

not only function as a trap, but they are also able to play a direct role in killing pathogens 97 
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(Brinkmann et al., 2004; Kolaczkowska and Kubes, 2013). NETs are formed in response to a 98 

variety of pro-inflammatory stimuli, such as LPS, IL-8 and TNF-α, as well as several 99 

microorganisms (Brinkmann et al., 2004; Remijsen et al., 2011). In vitro, phorbol 12-myristate 100 

13-acetate (PMA) is considered the most potent agent to induce NET formation (Brinkmann et 101 

al., 2004; Remijsen et al., 2011). In addition to particularly hyphal forms of fungi (Svobodova et 102 

al., 2012; Urban et al., 2006), immobilized, purified fungal β-glucan together with fibronectin as 103 

an extracellular-matrix component can also stimulate NET formation (Byrd et al., 2013). 104 

However, NETs represent not only an effective protection when phagocytosis is not possible due 105 

to the large size of microbes (Branzk et al., 2014), but could also be a potential 106 

immunostimulatory agent if NET elimination is not completely performed under non-infectious 107 

conditions (Farrera and Fadeel, 2013; Leffler et al., 2013; Mocsai, 2013). In addition to the 108 

prolonged inflammatory environment and continuous tissue damage, NETs can contribute to the 109 

production of autoantibodies (e.g., anti-dsDNA and anti-histones), which may play a role in 110 

autoimmune and inflammatory diseases (Leffler et al., 2013; Mantovani et al., 2011; Saffarzadeh 111 

and Preissner, 2013; Sur Chowdhury et al., 2014). 112 

The FH receptor CR3 is also a main receptor for recognizing fungal ligands, including β-113 

glucan, on human neutrophils (Losse et al., 2011; Ross et al., 1987; van Bruggen et al., 2009) and 114 

it also plays an essential role in immune-complex induced (Behnen et al., 2014) and β-glucan 115 

plus fibronectin-induced formation of NETs (Byrd et al., 2013). The present study was designed 116 

to investigate the role of FH in modulating the activation and cellular functions of human 117 

neutrophils, particularly the generation of NETs. 118 

119 
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2. Materials and methods 120 

2.1. Materials 121 

Purified human FH, C3b, factor I, and polyclonal goat anti-human FH antibody were purchased 122 

from Merck Ltd. (Budapest, Hungary). Human iC3b was obtained from Complement Technology 123 

Inc. (Tyler, Texas). Bovine serum albumin (BSA) was from Applichem (Darmstadt, Germany) 124 

and human serum albumin (HSA) was from Sigma-Aldrich Inc. (St. Louis, MO). Horseradish 125 

peroxidase (HRP)-conjugated goat anti-human C3 antibody was obtained from MP Biomedicals 126 

(Solon, OH). HRP-conjugated rabbit anti-goat immunoglobulins and goat anti-mouse 127 

immunoglobulins were from Dako (Hamburg, Germany).  128 

 129 

2.2. Cells 130 

Human neutrophil granulocytes were isolated from peripheral blood of healthy individuals. All 131 

blood donors gave informed consent. In some cases, neutrophils were isolated from buffy coats 132 

obtained from healthy blood donors and provided by the Hungarian National Blood Transfusion 133 

Service. The studies were approved by the respective national authorithy (TUKEB ETT, 134 

permission number 838/PI/12). Mononuclear cells were removed by Ficoll-Hypaque (Sigma-135 

Aldrich) density gradient centrifugation, then dextran sedimentation using Dextran T-500 136 

(Pharmacia Fine Chemicals, Uppsala, Sweden) was performed. Red blood cells were lysed in 137 

hypotonic buffer. Purity of isolated neutrophils was analyzed by flow cytometry using anti-CD16 138 

and anti-CD14 antibodies (BD Biosciences, Heidelberg, Germany) and was over 95%.  139 

 140 

2.3. Colocalization assay 141 

FH binding to neutrophils was analyzed by flow cytometry as previously described (Losse et al., 142 

2010). To measure colocalization between FH and CD11b, 106 neutrophils were first incubated 143 
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with 50 µg/ml FH for 30 min at 22°C in modified Hank’s buffer (142 mM NaCl, 1 mM Na2SO4, 144 

5 mM KCl, 1 mM NaH2PO4, 1 mM MgCl2, 2.5 mM CaCl2, 5 mM glucose, 10 mM HEPES; pH 145 

7.4). After washing with PBS, Fc receptor blocking reagent (Miltenyi Biotec, Bergisch Gladbach, 146 

Germany) was added to reduce nonspecific Ab binding, then a goat anti-human FH antibody 147 

(1:500 in PBS containing 1% FBS) was added for 30 min at 4°C, followed by Alexa-488-148 

conjugated rabbit anti-goat Ig (Molecular Probes-Invitrogen, Carlsbad, CA) for 30 min at 4°C. 149 

For detection of CR3, CD11b was labelled with biotinylated anti-CD11b (clone M1/70.15; 150 

Molecular Probes-Invitrogen) and streptavidin-PE (Sigma-Aldrich). The colocalization was 151 

quantified by calculating Pearson’s correlation coefficients from at least 100 cells in each sample 152 

(Adler and Parmryd, 2010). 153 

 154 

2.4. Cellular cofactor assay 155 

2 × 106 neutrophils were incubated with 10 µg/ml FH for 30 min at 22°C in modified Hank’s 156 

buffer. After washing twice with PBS to remove unbound FH, 3 µg/ml purified C3b and 5 µg/ml 157 

factor I were added to the cells in 200 µl final volume in PBS and incubated for 1 h at 37°C. The 158 

supernatants were separated on 10% SDS-PAGE gel, transferred to nitrocellulose membrane and 159 

analyzed by Western blot using HRP-conjugated anti-C3 antibody to detect cleaved C3b 160 

fragments. As a positive control for cofactor activity, FH, C3b and factor I were mixed together 161 

in PBS, without cells. The blots were developed by enhanced chemiluminescence (Merck-162 

Millipore). 163 

 164 

2.5. Calcium measurement by flow cytometry and microscopy 165 

Neutrophils were washed and incubated for 30 min at 37°C in 5 µg/ml Fluo-4 AM (Molecular 166 

Probes-Invitrogen) solution in RPMI-1640 medium (Sigma-Aldrich). After loading with the dye, 167 
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samples were washed and resuspended in Hank’s buffer. 50 µg/ml FH and 2 µg/ml ionomycin 168 

(Sigma-Aldrich) as a positive control were used to raise cytoplasmic free calcium level. 169 

Fluorescence measurements were performed using a FACS Calibur flow cytometer (BD 170 

Biosciences) with an air-cooled argon ion laser (488 nm excitation) and red diode laser (632 nm 171 

excitation). Data collection and analysis were done with CellQuest Pro software. Dead cells were 172 

excluded by negative gating based on propidium iodide uptake. 173 

To investigate the calcium response induced by immobilized FH, neutrophils loaded with 174 

Fluo-4-AM were placed into wells of Ibidi microplates (Ibidi, Planegg/Martinsried, München, 175 

Germany) at 1.5 × 106/ 200 µl density. Microplates were previously coated overnight at 22°C 176 

with 50 µg/ml FH or BSA. Changes in fluorescence intensity of individual cells were monitored 177 

for 20 min in Olympus FluoView 500 laser-scanning confocal microscope (excitation: 488 nm) 178 

with x60 objective, in time-resolved acquisition mode (1.13 s/frame) immediately after placing 179 

them to the microplate. 37°C, 5% CO2 and humidity were provided by Ibidi gas incubation 180 

system for live cell imaging. During data analysis, mean fluorescence intensities obtained from 181 

single cell recordings were normalized to differential interference contrast (DIC) intensities to 182 

avoid out of focus intensity alteration effects. 183 

 184 

2.6. Measurement of neutrophil spreading by confocal microscopy 185 

Lab-Tek borosilicate chambered coverglass microplates (NUNC, Rochester, NY) were coated 186 

with 50 μg/ml FH or BSA in modified Hank’s buffer overnight, then washed three times. 187 

Neutrophils (2 × 105 cells) in 200 µl were added and allowed to adhere/spread for 60 min at 37°C 188 

in CO2 thermostat, then fixed with 2% paraformaldehyde for 5 min at 37oC, followed by washing 189 

twice with PBS. For blocking experiments, cells were preincubated with 50 µg/ml anti-CD11b 190 

(clone: ICRF44; Biolegend, San Diego, CA) or with control mouse IgG1 mAb (in house) for 20 191 
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min at 4°C. The adhered cells were stained with Phalloidin Alexa-488 (Molecular Probes-192 

Invitrogen; 1:100 in 0.1% Triton X-100) for 5 min at 37°C, and then washed four times with PBS. 193 

The contact surface of the cells was monitored in Olympus FluoView 500 laser-scanning 194 

confocal microscope (excitation: 488 nm). For measuring of the contact zone area we used 195 

ImageJ software (http://rsbweb.nih.gov/ij) with Analyze Particle tool. 196 

 197 

2.7. Cell migration assay 198 

Cell migration assays were performed in serum-free RPMI-1640 medium using Costar 24-199 

transwell plates (Corning Life Sciences, Corning, NY) with 3 µm-pore polycarbonate 200 

membranes. 50 µg/ml FH, 50 µg/ml HSA and 1 µM fMLF (both from Sigma-Aldrich) as positive 201 

control were added to the lower chamber. Neutrophils were stained with 5 µM Cell tracker green 202 

(Invitrogen) for 45 min at 37°C. After washing, 106 neutrophils were added to the top chamber 203 

for 60 min at 37°C in a CO2 thermostat, then 25 mM EDTA was added to the lower chamber to 204 

release neutrophils adhering to the bottom of the membrane and the bottom of the well. The 205 

relative fluorescence intensity of migrated neutrophils was measured using a Fluoroskan Ascent 206 

FL (Thermo Scientific, Waltham, MA) microplate reader with excitation and emission filters of 207 

495 nm and 515 nm, respectively. 208 

 209 

2.8. ELISA 210 

To determine the FH concentration in the upper chamber of the transwell system, microtiter 211 

plates were coated overnight with 1:1000 dilution of polyclonal goat anti-human FH antibody. 212 

After washing with PBS containing 0.05% Tween-20. Supernatants diluted 1:1 with PBS were 213 

added to the wells and incubated for 1 h at 22°C. After washing, 1:1000 dilution of a mouse anti-214 

FH mAb (A229; Quidel, San Diego, CA) was added for 1 h at 22°C, followed by a secondary 215 
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antibody for further 1 h at 22°C. The ELISA was developed using TMB substrate (Kem-En-Tec 216 

Diagnostics, Taastrup, Denmark), and the absorbance was measured at 450 nm. 217 

IL-8 in the supernatant of activated neutrophils was determined using a commercial 218 

ELISA kit (R&D Systems, McKinley Place, MN). 219 

Lactoferrin was measured using sandwich ELISA. 4 µg/ml anti-lactoferrin mAb (Hytest, 220 

Turku, Finland) was immobilized on microtiter plates at 4°C overnight. After blocking with 5% 221 

BSA for 1 h, supernatants of activated cells were added for 1 h at 22°C. Lactoferrin was detected 222 

using 100 ng/ml HRP-conjugated anti-lactoferrin Ig (antibodies-online, Aachen, Germany), and 223 

TMB substrate. 224 

 225 

2.9. NET induction by PMA 226 

Wells of 96-well black transparent-bottom plates (Greiner Bio-One, Kremsmünster, Austria) 227 

were either left untreated or coated overnight with 50 µg/ml FH in modified Hank’s buffer. 228 

Neutrophils (106 cells) were allowed to adhere to the wells for 30 min at 37°C in CO2 thermostat. 229 

Soluble FH (50 µg/ml) or 100 nM PMA (Sigma-Aldrich) as a positive control was added and 230 

after 3 h of incubation in CO2 thermostat at 37°C, NETs were visualized on adherent neutrophils 231 

by addition of 5 µM Sytox Orange nucleic acid stain (Molecular Probes-Invitrogen). 232 

 233 

2.10. NET induction by fibronectin and β-glucan 234 

96-well black transparent-bottom plates were coated overnight with 6 µg/ml human fibronectin 235 

(Fn, from human plasma; Sigma-Aldrich) in TBS (25 mM Tris [pH 7.2], 150 mM NaCl) and/or 236 

with 1 mg/ml β-glucan from S. cerevisiae (Sigma-Aldrich) in 50 µl. In some experiments, 50 237 

µg/ml FH or 50 µg/ml iC3b was immobilized. 106 cells were pre-treated on ice with 1 nM fMLF 238 

for 20 min, then washed and resuspended in serum free RPMI-1640 medium, and 1 mM Mn2+ 239 
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was added to the cells immediately before plating. After 1 h incubation in CO2 thermostat at 240 

37°C, NETs were visualized on adherent neutrophils by adding 5 µM Sytox Orange. 241 

In parallel, an adhesion assay was also performed. Neutrophils were stained with 5 µM 242 

Cell tracker green CMFDA (Molecular Probes-Invitrogen) for 45 min at 37°C. After washing, 243 

106 neutrophils were added to the plates for 1 h. The relative fluorescence intensity of adhered 244 

neutrophils was measured using a fluorescence reader with excitation and emission filters of 495 245 

nm and 515 nm, respectively. 246 

 247 

2.11. Immunostaining of MPO and citrullinated histone H4 248 

After NET induction, DNA was labelled with 5 µM Sytox Orange, then the neutrophils were 249 

fixed with 3% paraformaldehyde for 10 min at 37°C. The cells were permeabilized in 0.1% 250 

Triton X-100 (2 min), washed three times in PBS and then FcR blocking reagent (Miltenyi 251 

Biotec, Germany) with 5% BSA was added for 30 min at 37°C. For detection of MPO and 252 

citrullinated H4, mouse monoclonal anti-MPO (1:500; Hytest Ltd.) and rabbit polyclonal anti-253 

histone H4 (citrulline 3) (1:500; Merck-Millipore) antibodies were used, followed by the 254 

corresponding secondary antibodies (Alexa-647-conjugated goat anti-mouse Ig and Alexa-488-255 

conjugated goat anti-rabbit Ig, both from Molecular Probes-Invitrogen) for 30 min at 22°C. 256 

 Fluorescence microscopy was carried out on an Olympus FLUOView500 laser-scanning 257 

confocal microscope (Hamburg, Germany) equipped with argon ion laser (488 nm) and two He–258 

Ne lasers (with 543 and 632 nm excitation wavelengths, respectively). Typically, fluorescence 259 

and DIC images (512x512 pixels) were acquired using a 60x oil-immersion- or 20x objective. 260 

Images were processed by ImageJ software (http://rsbweb.nih.gov/ij) using the „Image Correlator 261 

Plus" colocalization analysis plugin.  262 

 263 
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2.12. Quantification of NETs 264 

The relative fluorescence intensity of extracellular DNA was measured using a Fluoroskan 265 

Ascent FL (Thermo Scientific) fluorescent ELISA microplate reader with excitation and emission 266 

filters of 543 nm and 592 nm, respectively. Fluorescence in samples labelled with 5 µM Sytox 267 

Orange containing 0.5 mg/ml saponin (Sigma-Aldrich) was taken as maximal signal (100%). 268 

Relative fluorescence increase in the examined samples was calculated and referred to as 269 

“extracellular DNA (% of max)”. 270 

 271 

2.13. Detection of reactive oxygen species (ROS) 272 

ROS was measured on PMA- or fibronectin plus β-glucan activated cells in modified Hank’s 273 

buffer by adding 5 µg/ml dihydrorhodamine (DHR) (Sigma-Aldrich) for the last 15 min of 1 h 274 

incubation at 37°C. The fluorescence signal of the oxidized DHR was measured in a fluorescence 275 

reader with excitation and emission filters of 485 and 538 nm, respectively.  276 

 277 

2.14. Statistical analysis 278 

Statistical analysis was performed using GraphPad Prism version 4.00 for Windows (GraphPad 279 

Software, San Diego, California). A p value < 0.05 was considered statistically significant. 280 

281 
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3. Results 282 

 283 

3.1. Neutrophil-bound FH retains its cofactor activity and enhances C3b degradation 284 

FH when attached via its C-terminal domains to certain host surfaces, such as endothelial cells, 285 

erythrocytes and basement membranes, is thought to play an important role in preventing 286 

complement-mediated inflammation and cell damage (Ferreira et al., 2009; Ferreira et al., 2006; 287 

Jozsi et al., 2007). Therefore, we tested whether FH when bound to neutrophil granulocytes, can 288 

exert complement regulatory activity. First, binding of 50 µg/ml FH was analyzed by flow 289 

cytometry and microscopy. FH showed strong specific binding to human neutrophils (Fig. 1A), 290 

in agreement with previous results (Avery and Gordon, 1993; DiScipio et al., 1998; Losse et al., 291 

2010), and suggesting a receptor-mediated binding different from its loose surface attachment via 292 

the host surface glycosaminoglycan/sialic acid binding site. Even though the plasma FH 293 

concentration is higher, we used this concentration because in contrast to our in vitro system with 294 

neutrophils only, blood contains various cell types in different numbers and with different affinity 295 

for FH, and also because our previous data showed saturation of receptors on neutrophils by this 296 

amount of FH (Losse et al., 2010). Previous results using monoclonal antibodies suggested that 297 

the β2 integrin CR3 is involved in FH binding to neutrophils (DiScipio et al., 1998; Losse et al., 298 

2010). Here, we confirmed this by confocal microscopy, where the calculated positive Pearson’s 299 

correlation coefficient (0.3 ± 0.007) indicated colocalization between CD11b and FH (Fig. 1B).  300 

Since FH is the major regulator of the alternative complement pathway, we tested if it is 301 

able to facilitate C3b inactivation when bound to CR3 on neutrophils. In the cofactor assay, 302 

purified C3b and factor I were incubated with neutrophils, which were either preincubated or not 303 

with FH. The cleavage of C3b was analyzed by Western blot. Incubation of C3b with cells alone, 304 

in the absence of any added factors I and H, resulted in the cleavage of the C3b α’-chain into 305 
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fragments with apparent Mw of 68, 46 and 43 kDa (Fig. 1C, lane 4), indicating activity of 306 

membrane-anchored complement regulators and/or that of FH, which may already be bound in a 307 

small amount on the surface of neutrophils purified from blood (Losse et al., 2010). When 308 

neutrophils were preincubated with FH, strongly increased C3b degradation was observed: all of 309 

the α’-chains were fragmented (Fig. 1D, lane 7). These results demonstrated that receptor-bound 310 

FH could act as a cofactor for factor I, which proteolytically inactivates C3b. 311 

 312 

3.2. FH supports neutrophil spreading and migration 313 

Because FH was shown to serve as an adhesion ligand for neutrophils and to induce cell 314 

polarization (DiScipio et al., 1998), we tested whether FH influences the spreading of 315 

neutrophils. Neutrophils were applied to wells coated with FH and BSA, and neutrophil 316 

spreading was monitored by confocal microscopy using fluorescent F-actin probe to measure the 317 

contact zone area. Under these experimental conditions, significantly increased spreading was 318 

observed on immobilized FH compared with BSA (Fig. 2A and 2B). A mAb blocking the ligand 319 

binding site on CD11b inhibited spreading on FH, whereas the control mAb had no effect (Fig. 320 

2B). 321 

Upon stimulation with immobilized FH, we could observe calcium signal with live cell 322 

imaging microscope. The recording was started immediately after the cells were placed into the 323 

wells, since as they reached the bottom of the plate an activation stimulus was quickly provided. 324 

A small intracellular Ca2+ peak occured within a few minutes in all cases after adhesion to the 325 

chamber, and was followed by additional intense Ca2+ peak and rapid spreading due to the 326 

interaction with FH (Fig. 3A and Supplementary Video 1). Changes in intracellular Ca2+ level 327 

were also quantified (Fig. 3B). We did not observe similar effect with immobilized BSA 328 

(Supplementary Video 2). Freshly isolated neutrophils were also incubated with 50 µg/ml FH 329 
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for 1-20 min. Soluble FH did not induce Ca2+ signals in neutrophils, in contrast to ionomycin, 330 

which was used as a positive control (Fig. 3C). 331 

 Previous data suggested that FH may also support cell migration, as reported for monocytes 332 

and also for neutrophils when exposed to FH-coated Candida albicans yeasts (Losse et al., 2010; 333 

Nabil et al., 1997). Therefore, we tested whether FH modulates the migratory capacity of 334 

neutrophils. The cell migration assays were performed in transwell plates with 3 µm-pore 335 

polycarbonate membranes. The measured fluorescence of migrated cells induced by 1 µM fMLF 336 

as positive control was set as 100%. Addition of FH to the lower chamber of transwells caused 337 

significantly increased neutrophil migration compared with medium control, ~65% of that 338 

induced by fMLF (Fig. 4A). We also tested whether FH added to the lower chamber passes to the 339 

upper chamber. FH could be detected in all cases in the upper chamber by ELISA, confirming the 340 

formation of a FH concentration gradient (Fig. 4B). 341 

 342 

3.3. Immobilized FH enhances IL-8 release from neutrophils 343 

Because IL-8 is a known migratory chemokine for neutrophils, we tested if FH is able to induce 344 

IL-8 production by neutrophils. Neutrophils were stimulated either with soluble or immobilized 345 

FH in FCS-free RPMI-1640 medium for 24 h, then the amount of IL-8 in the supernatants was 346 

measured by ELISA. Under these circumstances immobilized FH significantly enhanced IL-8 347 

production, while for soluble FH a similar effect was not observed (Fig. 5). The effect was 348 

specific to FH since immobilized fibronectin did not induce enhanced IL-8 release from 349 

neutrophils under the same conditions (data not shown). 350 

 351 

3.4. NET formation and ROS production induced by PMA and by fibronectin plus fungal 352 

β-glucan is inhibited by FH 353 
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Neutrophils are rapidly recruited in tissues during infections and have a wide repertoire of killing 354 

mechanisms to eliminate pathogens, including respiratory burst and NET formation (Brinkmann 355 

et al., 2004; Kirchner et al., 2012; Nathan, 2006). Because little is known about how complement 356 

modulates NET production, we asked the question whether FH is able to influence the generation 357 

of NETs.  358 

First, we used a PMA-induced NET formation model (Keshari et al., 2013; Parker et al., 359 

2012), where after 3 h of treatment ~60% of the total DNA was detectable extracellularly (Fig. 360 

6A). Under the same conditions, soluble or immobilized FH alone had no effect on NET 361 

production (Fig. 6B and 6C). However, when applied together with PMA, immobilized but not 362 

soluble FH could significantly decrease the amount of extracellular DNA (Fig. 6C). Because FH 363 

is known to bind to DNA (Leffler et al., 2010), we tested if FH binding affects the staining of the 364 

DNA with Sytox Orange. FH up to 50 µg/ml did not affect the fluorescence signal (data not 365 

shown). The formation of NETs was confirmed by confocal microscopic analysis, which showed 366 

that the DNA was indeed associated with myeloperoxidase and citrullinated histone H4 (Figure 367 

S1). Because NET generation is usually linked to the production of ROS (Fuchs et al., 2007; 368 

Kirchner et al., 2012; Parker et al., 2012), we analyzed the generation of ROS under the same 369 

conditions as above. Again, PMA-induced ROS generation by neutrophils was significantly 370 

reduced by immobilized but not by soluble FH, and FH alone did not induce ROS under these 371 

conditions (Fig. 6D). 372 

An extracellular matrix-based model was also used, where human fibronectin and β-glucan, a 373 

major component of fungal cell wall, together induced NET release, as described by Byrd et al. 374 

(Byrd et al., 2013). Neutrophils were primed with 1 nM fMLF in the presence of 1 mM Mn2+ and 375 

showed rapid homotypic cell aggregation upon NET formation (Fig. 7A), as described (Byrd et 376 
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al., 2013). In this system, FH also inhibited NET formation induced by fibronectin plus fungal β-377 

glucan (Fig. 7A and 7B). 378 

 As a control, we used iC3b as additional complement ligand of CR3. iC3b is a proteolytically 379 

inactivated product of the complement C3 cleavage fragment C3b, which opsonizes pathogens 380 

and enhances the cell responses against them. Under our experimental conditions, iC3b did not 381 

significantly alter NET generation, thus supporting a specific effect of FH (Fig. 7B). We also 382 

tested if differences between cell adhesion properties to the applied coats caused the observed 383 

effects on NET formation. Neutrophils were loaded with Cell Tracker Green and the percentage 384 

of the bound cells was determined compared to the total cell number. As we measured similar 385 

cell adherence rates, it can be excluded that the observed differences in NETs are due to altered 386 

adhesion, and support the specific inhibitory effect of FH on the release of NETs (Fig. 7C). 387 

Similar to the previously observed inhibitory effects of FH on ROS induced by PMA (Fig. 6), 388 

FH inhibited ROS production in neutrophils stimulated by fibronectin plus β-glucan (Fig. 7D). In 389 

these experiments, iC3b did not influence ROS production. In addition, we measured lactoferrin 390 

production by neutrophils in parallel, which was not modulated significantly by either FH or 391 

iC3b under these conditions (Fig. 7E). 392 

393 
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4. Discussion 394 

FH inhibits the alternative complement pathway in body fluids and also protects self-tissues 395 

against complement attack and complement-mediated inflammation. FH can loosely attach to 396 

host surfaces, such as endothelial cells, erythrocytes and basement membranes, via 397 

glycosaminoglycans and sialic acids, and this binding is enhanced if C3 fragments are also 398 

deposited on the surface due to complement activation (Blaum et al., 2015; Ferreira et al., 2009; 399 

Jozsi et al., 2007; Kajander et al., 2011). In addition, recruitment of host FH is a common 400 

complement/immune evasion strategy of several pathogenic microbes. In some cases, such as for 401 

Neisseria meningitidis, FH binding is of major importance to avoid complement-mediated lysis; 402 

in most cases, however, microbes exploit host complement regulators to evade 403 

opsonophagocytosis (Lambris et al., 2008; Ram et al., 1999; Schneider et al., 2006). There is also 404 

evidence for FH-mediated adhesion of microbes to host cells, including neutrophils (Losse et al., 405 

2010; Agarwal et al., 2010a; Agarwal et al., 2010b). 406 

In the case of neutrophil granulocytes, the binding of FH was shown to be mediated via the 407 

CR3 complement receptor (DiScipio et al., 1998; Losse et al., 2010; Agarwal et al., 2010b). As 408 

demonstrated here, despite the specific receptor-ligand interaction, FH retains its cofactor activity 409 

(Fig. 1); moreover, through the direct effects on neutrophils, it is also able to modulate neutrophil 410 

activation and antimicrobial responses. 411 

Previous data provided evidence that FH has a specific receptor on neutrophil granulocytes 412 

(Avery and Gordon, 1993; DiScipio et al., 1998). DiScipio et al. identified CR3 (CD11b/CD18, 413 

αMβ2) as the main FH receptor on neutrophils (DiScipio et al., 1998), which was confirmed by 414 

our group using specific antibodies against the CD11b (clone ICRF44) and CD18 (clone L130) 415 

chains that inhibited FH binding (Losse et al., 2010). In our current study we demonstrated 416 

colocalization between CD11b (with mAb clone M1/70.15) and FH by confocal microscopy (Fig. 417 
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2). We could not detect similar colocalization with CD18, because depending on the order of 418 

labeling only CD18 (clone IB4) or FH could be detected on the cell surface (data not shown), 419 

likely due to strong competition between the anti-CD18 mAb and FH for binding. Previously we 420 

showed that anti-CD18 almost completely blocked FH binding to neutrophils (Losse et al., 2010). 421 

Based on these data, CD18 may have a major role in FH binding. These results, however, do not 422 

exclude the existence of additional FH receptors on the cells. 423 

FH was described as an adhesion ligand for neutrophils (DiScipio et al., 1998); moreover, as 424 

we reported previously, C. albicans covered with FH could more efficiently induce migration and 425 

become adhered to and phagocytosed by neutrophils than the fungal cells alone (Losse et al., 426 

2010). Similarly, it was shown that FH enhanced the interaction of pneumococci with neutrophils 427 

through CR3 (Agarwal et al., 2010b). In addition, FH was described as a chemotactic factor for 428 

monocytes (Nabil et al., 1997). Therefore, we studied whether FH can directly, i.e. without a 429 

pathogen, affect neutrophil activation, migration and spreading. Soluble FH was indeed able to 430 

support neutrophil migration in a transwell assay (Fig. 4). While FH is produced in the liver and 431 

circulates at relatively high concentration, extrahepatic sources of local FH production are also 432 

known. Myeloid cells in tissues and endothelial cells can produce FH upon inflammatory stimuli 433 

(Brooimans et al., 1990; Li et al., 2011; Whaley, 1980), which may contribute to generating a 434 

local FH gradient and thus promote recruitment of neutrophils.  435 

Apparently, the soluble and immobilized forms of FH do not provide the same information to 436 

the cells. In our experiments, only immobilized but not soluble FH could trigger calcium 437 

response and spreading (Fig. 2 and 3), and could induce IL-8 production in neutrophils (Fig. 5). 438 

IL-8 is a potent proinflammatory chemokine and has a key role in the recruitment and activation 439 

of neutrophils (Mantovani et al., 2011). Therefore, presumably an activation process occurs when 440 

neutrophils come into contact with FH that is bound to surfaces, which may enhance cell entry to 441 
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the given area. No effect of soluble FH on neutrophil activation was observed, except for the 442 

migration in the case of FH gradient. This is an important observation because of the relatively 443 

high average plasma concentration (~250 µg/ml) of FH. Thus, the continuously circulating FH in 444 

the body fluids does not stimulate neutrophils; however, when deposited on a pathogen surface 445 

(as shown for the fungal pathogen C. albicans in vitro) or in the tissues, it may affect the 446 

recruitment and activation of these inflammatory cells. This, however, needs to be further studied 447 

for in vivo relevance. It should also be noted that integrin receptors can sense differences 448 

between soluble and immobilized ligands (Ganpule et al., 1997; Schurpf and Springer, 2011), 449 

further supporting the observations that CR3, and probably CR4 (CD11c/CD18), another integrin 450 

sharing the β2 chain but which is expressed at low amount on neutrophils, are specific FH 451 

receptors (Losse et al., 2010; Svoboda et al., 2015). 452 

Neutrophils are not simply effective and fast killer/effector cells, but depending on the size 453 

and nature of the pathogen they deploy different antimicrobial responses. They can selectively 454 

release NETs in response to fungal hyphae and pathogens, which are too large to be 455 

phagocytosed (Branzk et al., 2014; Byrd et al., 2013; Svobodova et al., 2012). These DNA-based, 456 

web-like structures have effective trapping function and are able to prevent pathogen expansion 457 

and dissemination. Moreover, neutrophils can eliminate pathogens extracellularly, by releasing 458 

antimicrobial peptides, enzymes and reactive oxygen and nitrogen species concentrated to the 459 

target area and partly in NETs (Brinkmann et al., 2004; Fuchs et al., 2007; Guimaraes-Costa et 460 

al., 2009; Menten-Dedoyart et al., 2012). Extracellular histones exert bactericidal effects (Allam 461 

et al., 2014; Brinkmann et al., 2004), but are also toxic to host cells, such as endothelial cells 462 

(Allam et al., 2014). Although Byrd et al. found that complement does not have an essential role 463 

in NET production, since using autologous human serum in their model system did not alter the 464 

NETting of the cells when compared to the cells under serum free conditions (Byrd et al., 2013), 465 
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there is also evidence for a modulatory role of complement. Pre-activated neutrophils were 466 

shown to release NETs upon C5a stimulation (Martinelli et al., 2004; Yousefi et al., 2009). 467 

Therefore, we analyzed whether NET release could be modulated by FH. First we used PMA as a 468 

general cell activator agent (DeChatelet et al., 1976; Esaguy et al., 1991), for which effective 469 

NET inducing ability has been described (Brinkmann et al., 2004; Keshari et al., 2013; Parker et 470 

al., 2012). In this model system, the soluble and immobilized forms of FH alone did not induce 471 

NETs. Only immobilized FH could modulate NETosis and significantly decreased the PMA-472 

induced NET- and ROS release (Fig. 6). Several publications indicated that NETosis is strongly 473 

dependent on ROS generation (Fuchs et al., 2007; Keshari et al., 2013; Kirchner et al., 2012), 474 

although a ROS-independent process was also described (Byrd et al., 2013; Pilsczek et al., 2010). 475 

While the underlying mechanisms of NET release are not yet fully understood, we presume that 476 

the decreased NET formation is linked to the decreased ROS production caused by FH in our in 477 

vitro NET model.  478 

In addition, an extracellular matrix-based model was used to investigate NET production, 479 

where a hyphal infection can be mimicked with immobilized fungal β-glucan (Byrd et al., 2013). 480 

A cross-regulatory relationship between β1 and β2 integrins has been described, in which the ratio 481 

of fibronectin to β-glucan determines the cellular responses. This regulatory mechanism allows 482 

superoxid anion production only when neutrophils formed strong contact with fungal hyphae 483 

(Lavigne et al., 2006; Lavigne et al., 2007). In our experimental set-up immobilized fibronectin 484 

plus β-glucan could effectively induce NET and ROS production. While Byrd et al. reported that 485 

fibronectin plus β-glucan induced NET formation is a ROS-independent process and they could 486 

not detect ROS production upon this stimulus (Byrd et al., 2013), in our experiments there was 487 

detectable ROS production. This difference may be due to the different β-glucan preparations and 488 

the different cells to surface ratio employed. In addition, instead of ferricytochrome c we used 489 
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DHR as a ROS detecting probe, which detects both extracellular and intracellular reactive species 490 

with higher response ability and less dependency on the applied buffer (Freitas et al., 2009).  In 491 

our model we also found that immobilized FH had an inhibitory effect on NET release and ROS 492 

production (Fig. 7). The NET response to β-glucan plus fibronectin was found to be dependent 493 

on CR3 (Byrd et al., 2013), and both FH and iC3b bind also to CR3. iC3b, in contrast to FH, did 494 

not inhibit NET release induced by fibronectin plus β-glucan. A direct competition between FH 495 

and β-glucan for binding sites on CR3 cannot be excluded; however, FH also strongly inhibited 496 

PMA-induced NETosis. While FH reduced ROS production, it did not significantly affect 497 

lactoferrin release, thus bactericidal ability of neutrophils in general is not inhibited by FH. It is 498 

also possible, however, that some of the released lactoferrin is sequestered by NETs. 499 

Taken together these data provide evidence that FH ensures self protection not only by 500 

limiting complement activation, but also by directly mediating cellular responses. On the one 501 

hand, FH can promote neutrophil recruitment (Figs. 4 and 5) and may enhance antimicrobial 502 

responses and phagocytosis (Losse et al., 2010). On the other hand, FH could reduce host damage 503 

caused by an inflammatory environment through the inhibition of NET and ROS production. 504 

Prolonged presence or enhanced amounts of NETs may be linked to inflammatory and 505 

autoimmune diseases, e.g. by providing autoantigens such as dsDNA. Furthermore, extracellular 506 

histone may cause cytotoxicity. By inhibiting NET and ROS, FH may limit such adverse 507 

reactions. It is tempting to speculate that in FH-associated diseases, such as the kidney disease 508 

atypical hemolytic uremic syndrome, hereditary or acquired functional FH deficiency may 509 

contribute to local inflammation, NET-mediated complement activation (Leffler et al., 2012; 510 

Wang et al., 2015), endothelial damage and thrombus formation, in addition to impairment in 511 

complement regulation. The results also raise the possibility that bound FH may be exploited by 512 

pathogenic microbes not only for complement evasion, which is a well-documented virulence 513 
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feature (Lambris et al., 2008), but for NET evasion, too. FH-associated anti-inflammatory effect 514 

was demonstrated previously on macrophages, where FH contributed to the non-inflammatory 515 

clearance of apoptotic and necrotic cells by inhibiting the pro-inflammatory cytokine production 516 

of phagocytosing macrophages (Mihlan et al., 2009).  517 

In summary, these data indicate that FH has diverse effects on neutrophil functions. While it 518 

can support the recruitment of neutrophils via promoting migration and enhancing IL-8 release, 519 

depending on the stimulus context FH could also exert anti-inflammatory effects and influence 520 

local inflammatory and antimicrobial reactions as well as tissue damage by modulating NET 521 

formation.  522 
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Figure legends 725 

 726 

Fig. 1. CR3-bound FH on neutrophils retains its cofactor activity. 727 

(A) Neutrophils were incubated with 50 µg/ml FH in modified Hank’s buffer, and bound FH was 728 

detected by flow cytometry. One representative histogram out of three independent experiments 729 

is shown. (B) Representative confocal images show binding of FH to the cell surface of 730 

neutrophils (green: FH, red: CD11b, yellow dots represent highly colocalized FH and CD11b). 731 

During a colocalization analysis a Pearson’s correlation coefficient was calculated from ≥ 100 732 

cells /sample. (C) In a cellular cofactor assay, neutrophils preincubated or not with 10 µg/ml FH, 733 

were incubated with C3b and factor I. Cell supernatants were separated on 10% SDS-PAGE gel 734 

under reducing conditions and analyzed by immunoblotting using anti-C3 antibody to detect C3b 735 

fragments. A representative Western blot from three independent experiments is shown. As a 736 

positive control, purified FH (10 µg/ml), factor I (5 µg/ml) and C3b (3 µg/ml) have been mixed 737 

together in PBS, without cells (lane 2). 738 

 739 

Fig. 2. FH supports neutrophil spreading. 740 

(A) FH and BSA were immobilized in 50 µg/ml in chambered microplate wells, then neutrophils 741 

were added to each well for 60 min at 37°C. The contact surface of the cells was monitored by 742 

confocal microscopy using Phalloidin-Alexa488 as an F-actin probe. Original scale bars, 10 µm. 743 

(B) FH was immobilized as in (A), and in certain chambers preincubated with 50 µg/ml anti-744 

CD11b (aCD11b) or control mouse IgG1 (mIgG1) antibodies. The contact zone areas were 745 

quantified using ImageJ software from 100 cells in each experiment. Error bars represent SEM 746 

calculated from three independent experiments performed with neutrophils from different donors. 747 

***P < 0.001, one-way ANOVA. ns, not significant. 748 
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 749 

Fig. 3. Effect of FH on the calcium response of human neutrophils. 750 

(A) Representative confocal images from three independent experiments show neutrophil 751 

spreading upon exposure to immobilized FH and the fluorescence intensity of Fluo-4 calcium 752 

indicator during this process at different time points. (B) Representative single cell calcium 753 

response belonging to the above presented images. Mean fluorescence intensities were 754 

normalized to DIC intensities to avoid out of focus intensity alteration effects. (C) Fluo-4-AM-755 

loaded neutrophils were investigated by flow cytometry for their Ca2+ response to 50 µg/ml 756 

soluble FH. The maximal response of cells to the Ca2+ ionophore ionomycin is shown as a 757 

positive control. Data are mean ± SD from three independent measurements. 758 

 759 

Fig. 4. FH supports neutrophil migration. 760 

(A) FH was added to the lower well and the cell migration rate was measured by adding Cell 761 

Tracker Green loaded neutrophils to the upper well of a transwell system. The cell number was 762 

quantified by plate fluorimeter, as described in Materials and methods. Migration induced by 1 763 

µM fMLF was set to 100%. Error bars represent SEM calculated from 16 independent 764 

experiments. *P < 0.05, one-way ANOVA. (B) ELISA was used to determine the amount of FH, 765 

added to the lower chamber, in the upper chamber of the transwell system during the experiment 766 

described in (A). Data are mean + SEM from seven experiments. ***P < 0.001, one-way 767 

ANOVA. 768 

 769 

Fig. 5. FH enhances IL-8 release from neutrophils. 770 
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Neutrophil supernatants were collected after 24 h stimulation with 50 µg/ml immobilized or 771 

soluble FH, and the IL-8 content was determined by a commercial ELISA kit. Data are means ± 772 

SEM from five independent experiments. **P< 0.01, one-way ANOVA. 773 

 774 

Fig. 6. PMA-induced NET formation and ROS production is inhibited by FH. 775 

(A) Percentage of NET formation upon 100 nM PMA treatment for 0-180 min. The extracellular 776 

DNA was quantified by a plate fluorimeter after staining with 5 µM Sytox Orange. Mean ± SEM 777 

are shown from three independent measurements. (B) NET formation was visualized by staining 778 

with 5 µM Sytox Orange. The representative microscopic images illustrate the effects of the 779 

indicated treatments. The adherent cell densities are shown in the DIC images, using a 20x 780 

objective. Original scale bars, 100 µm. (C) Neutrophils were stimulated for 3 h after allowing 781 

them to adhere for 30 min. Unstimulated neutrophils in serum-free RPMI medium and 782 

neutrophils incubated with 100 nM PMA served as negative and positive controls, respectively. 783 

50 µg/ml FH was either immobilized or added in solution in serum-free medium alone, or 784 

together with 100 nM PMA. Data are means ± SEM from five independent experiments. *P < 785 

0.05, one-way ANOVA. (D) Under the same conditions, ROS production was measured using 5 786 

µg/ml DHR as a fluorescent dye. The ROS level induced by 100 nM PMA was set to 100%. *P < 787 

0.05, one-way ANOVA. 788 

 789 

Fig. 7. NET formation and ROS production induced by fibronectin plus β-glucan is 790 

inhibited by FH. 791 

(A) Neutrophils were pretreated with 1 nM fMLF and 1 mM MnCl2, before induction of NET by 792 

immobilized fibronectin plus β-glucan. Neutrophils formed aggregates and released NET on this 793 

coat after 1 h. FH had an inhibitory effect on this stimulus. The representative microscopic 794 
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images show cells stained for NET with 5 µM Sytox Orange. The adherent cell densities and the 795 

degree of aggregation are seen in the DIC images, taken using a 20x objective. Scale bars, 100 796 

µm. (B) The extracellular DNA was quantified by plate fluorimeter using 5 µM Sytox Orange 797 

staining. **P < 0.01, one-way ANOVA. (C) Cell adhesion was also measured using Cell Tracker 798 

Green-loaded cells, treated as in (B). The relative flourescence intensity of 106 neutrophils was 799 

set to 100% and compared with that measured on the different coats to determine the adhered cell 800 

rate. (D) Under the same conditions ROS production was assayed using 5 µg/ml DHR. The ROS 801 

level induced by 100 nM PMA was set to 100%. *P < 0.05, one-way ANOVA. (E) Lactoferrin 802 

secretion from supernatants after 1 h stimulation was measured by ELISA. Data in (B)-(E) are 803 

means ± SEM from eight independent experiments. 804 

 805 

Video legends 806 

 807 

Video 1. Neutrophil spreading and calcium response upon exposure to immobilized factor 808 

H.  809 

This video shows neutrophil spreading upon immobilized FH stimulus and the changes in 810 

fluorescence intensity of Fluo-4 calcium indicator during this process. The live cell imaging was 811 

started immediately after the cells were placed into the coated wells, since as they reach the 812 

bottom of the plate an activation stimulus is instantly provided. The focal plane was set during 813 

the recording. 20 min real time events were compressed in this video.  814 

 815 

Video 2. Neutrophil spreading and calcium response upon exposure to immobilized BSA.  816 

This video shows neutrophil spreading upon immobilized BSA stimulus and the changes in 817 

fluorescence intensity of Fluo-4 calcium indicator during this process. The recording was made 818 

under the same circumstances as for Video 1. 819 

 820 
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Figure S1. Verification of NETs. 
The representative microscopic images show neutrophils stimulated with 100 nM PMA. The 

decondensed nuclei were counterstained with Sytox Orange (red) after 180 min incubation 

with PMA. After fixation, staining was performed with primary antibody directed against 

MPO and Alexa647-conjugated secondary antibody (green, upper panel), or with primary 

antibody against citrullinated histone H4 and Alexa488-conjugated secondary antibody 

(green, lower panel). Images were captured with 60x objective. Original scale bars, 50 µm. 


	MIMM2016_PMN_FH_Real
	MIMM2016_PMN_FH_Figures_Real
	SupplementalFigure_Schneider_et_al_MIMM

