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Abstract 

Mimicking the molecular recognition functionality of antibodies is a great challenge. Foldamers are attractive 

candidates because of their relatively small size and designable interaction surface. This paper describes a 

sandwich type enzyme-linked immunoassay with a tetravalent β-peptide foldamer helix array as capture 

element and enzyme labeled tracer antibodies. The assay was found to be selective to β-amyloid oligomeric 

species with surface features transiently present in ongoing aggregation. In optimized conditions, with special 

emphasis on the foldamer immobilization, a detection limit of 5 pM was achieved with a linear range of 10 - 

500 pM. These results suggest that protein mimetic foldamers can be useful tools in biosensors and affinity 

assays. 

Keywords: foldamers; β-amyloid oligomers; bioaffinity assay; molecular recognition; antibody mimetics 

1. Introduction 

While antibodies are still the gold standards for high affinity and selective recognition of molecular targets, 

their limitations, including antigenicity, poor pharmacokinetic properties and costly time-consuming 

production, called for the development of artificial antibody mimetics with more favorable properties in 
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therapeutic and diagnostic applications. To date, several antibody mimetics such as affibodies, anticalins, 

DARPins, nanofitins, fynomers and avimers have been developed, having various advantages over conventional 

antibodies in respect of stability, solubility, tissue penetration and also production costs[1-3]. In this respect 

peptidic foldamers (artificial oligopeptides capable of folding into well-defined conformations) provide an 

advanced approach for the design of selective synthetic receptors. The molecular conformation that enables 

selective recognition is not directly formed during chemical synthesis but the selective interaction surface is 

created by a subsequent folding process. Folding is determined by the primary structure of the foldameric 

sequence, the solvent and the interaction partner acting as a template. Thus, foldamers are able to form 

biomimetic shapes (helices, sheets) in a controlled manner[4-6] enabling these structures to form extended 

surface patches with anchor points in designed spatial positions, necessary for interaction with the target 

protein. This property makes foldamers potential alternatives of antibodies in therapeutic and diagnostic 

applications. To date different protein surfaces have been successfully targeted with foldamers, such as: 

Somatostatin receptor[7] GLP-1 receptor,[8] PTHR1,[9] the p53-hDM2,[10] the BH3-Bcl-xL[11, 12] and the 

VEGF-VEGFR1[13] interactions, the gp41 virus cell infusion protein assembly[14], the γ-secretase enzyme[15] 

and amyloid aggregation.[16] Whilst biomimetic molecular recognition can be achieved with foldamers, their 

application in therapy, diagnostics and as analytical tools is still a major challenge. [17] The different isoforms 

of β-amyloid is regarded as one of the most important factors in the onset of Alzheimer’s disease (AD), [18][ref] 

and the selective detection of oligomeric Aβ species is a crucial task in developing diagnostic tools for AD, as 

the concentration of oligomeric forms in the cerebrospinal fluid is regarded as the most relevant biomarker for 

the onset of the disease.[19] Multiple approaches have been published for capturing/detecting soluble 

aggregated forms of Aβ: Aβ oligomer specific antibodies; [20-24] simultaneous application of multiple N-

terminal specific antibodies;[25-28] a generic aggregation-sensitive peptide,[29] and Aβ self-recognition via 

seeded polymerization.[30, 31] Advanced detection methods have also been utilized for Aβ oligomer sensing, 

[32] including DNA biobarcode amplification [21], localized surface plasmon resonance [20] and 

electrochemical techniques. [33-35] It has been pointed out that heterophilic antibodies in biofluids may cause 

false positives in the antibody-based Aβ capture schemes, therefore alternative molecular recognition 

elements are sought. [22] 
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In an attempt to neutralize synaptotoxic β-Amyloid oligomers we have previously introduced the β-peptide 

foldamer helix ACHC-β3hArg-ACHC-ACHC-β3hAsp-ACHC-Gly-Gly-Cys (1, Figure 1) (ACHC: (1S,2S)-2-amino-

cyclohexanecarboxylic acid), which is linked by a maleimide-functionalized zero-generation (G0) 

poly(amidoamine) (PAMAM) dendrimer (4) to form a foldamer-dendrimer tetravalent helixarray (7).[36] The 

conjugate provided an interaction surface capable of capturing Aβ oligomers, which play a central role in the 

pathogenesis AD, and showed promising molecular recognition properties including a two-stage interaction 

with Aβ oligomers with low nanomolar and submicromolar affinities toward the target in solution. The first, 

high affinity binding stage required all four recognition segments, whereas the second low affinity binding 

involved only two arms. Here we explored the feasibility of implementing a foldameric recognition element, i.e. 

a de novo designed foldamer conjugate (biot-8), as an alternative to a capture antibody in an affinity assay for 

high sensitivity quantitation of Aβ oligomers and possibly to indicate the state of an ongoing aggregation. This 

study shows the applicability of foldamers as recognition elements in standard biochemical assays, and their 

potential use in diagnostic applications. 

2. Materials and Methods 

2.1 Synthesis of compounds 1-3. 

Peptidic foldamers were synthesized by Fmoc-based solid phase peptide synthesis on Tentagel R RAM resin 

(0,19 mmol g-1) with  1-[Bis(dimethylamino)-methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium-3-oxid 

hexafluorophosphate (HATU) used as a coupling reagent in the presence of N,N-diisopropylethylamine (DIPEA). 

Biotinylation was carried out using N-biotinyl-6-aminohexanoic acid (Sigma Aldrich) and a Gly-Gly linker was 

used in the synthesis of 2. For 3, the acetylation of the N-terminal was carried out on solid phase with acetic 

anhydride (10% v/v) and DIEA (5% v/v) in DCM for 30 min at room temperature. The peptide sequences were 

cleaved from the resin using TFA/H2O/ DTT/TIS (90:5:2.5:2.5) at room temperature for 3 h. The TFA was 

removed in vacuo and the peptide was precipitated in dried diethyl ether, filtered off, dissolved in 10% 

aqueous acetic acid and lyophilized. The crude foldamer was dissolved in 150 µL concentrated acetic acid and 

diluted with 9 mL water then purified by RP-HPLC on a Phenomenex Luna C18 (250 mm x 21.20 mm, 100 Å, 10 

µm) column. The solvent system consisted of 0.1% TFA in water (A), and 0.1% TFA in 80% acetonitrile (B). The 

default gradient was 0%-40% B during 30 min and then 40%-60% during 80 min at a flow rate of 3 mL min-1, 

with detection at 206 nm. Purity was confirmed with HPLC-MS and HPLC-UV measurements. 
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2.2 Synthesis of compounds 4-6. 

For the synthesis of 4, G0-PAMAM dendrimer solution in methanol (Sigma Aldrich) was dried in vacuo and 

dissolved in DMF. 3-maleimidopropionic acid was coupled to the free amino groups with HATU/DIPEA 

activation. The sample was diluted with water and purified by RP-HPLC on a Phenomenex Luna C18 (250 mm x 

21.20 mm, 100 Å, 10 µm) column. Oligolysin-dendrons 5 and 6 were synthesized by Fmoc-based solid phase 

peptide synthesis on Rink-amide resin (0.3 mmol g
-1

), applying HATU as coupling reagent in the presence of 

DIPEA. Biotinylation of the templates was carried out by coupling an Fmoc-L-Lys(Biotin)-OH (Iris Biotech) amino 

acid as an initial building block. 3-maleimidopropionic acid was coupled to the N-terminus of the scaffold on 

the solid phase, with HATU/DIPEA activation. The dendrimers were cleaved from the resin using the same 

method as the peptide foldamers. The lyophilized maleimidopropionyl-lysine-dendrimer was dissolved in a 

mixture of ACN/H2O at a final volume of 10 mL and injected onto a Phenomenex Luna C18 (250 x 21,20 mm, 

100 Å, 10 µm) column, at a flow rate of 3 mL min-1. Gradients were 10-40% B over 120 min in case of 

compound 5 and 0-50% B over 100 min in case of the compound 6. 

2.3 Synthesis of compounds 7-10. 

The maleimide-functionalized dendrimer was dissolved in 4 mL 50mM NaH2PO4/Na2HPO4 buffer (pH=7.0) 

solution. 8 or 16 equivalents of the foldamer peptide was dissolved in 1 mL of the same buffer, for 5 and 6 

respectively, then added drop wise to the dendrimer under constant stirring. The reaction was stirred 

overnight at ambient temperature and the following day, the mixture was injected directly onto a Phenomenex 

Jupiter C4 (250 x 10 mm, 300 Ǻ, 10 µm) semipreparative HPLC column applying different gradient elution for 

each conjugate at 3 mL min
-1

 flow rate. 

2.4 Preparation of the Aβ samples. 

Recombinant Aβ1-42 was purchased from rPeptide (Bogart, GA, USA). Amyloid was dissolved in deionized 

water (conc. 1 mg ml-1) with the pH set to 11 using 100 mM NaOH. The solution was sonicated for 3 minutes 

then incubated for 2 hours at room temperature. The solution was diluted to 50 µM final amyloid 

concentration with 26.67 mM PBS and the pH was set to 7.4 using 1 M HCl. The sample was incubated at 37°C 

for the required time intervals (typically 3 hours). 1% BSA and 0.05% TWEEN20 was added after the incubation. 

Dilution to the required concentrations were made with a probing buffer (20 mM PBS, containing 1% BSA and 
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0.05% TWEEN20, TPBS). The samples were characterized by TEM as reported in (17). For the selectivity test 

against the fibrillar form, 50 µM Aβ was incubated for 72 h at pH 4.0 and diluted with the washing buffer to the 

appropriate concentrations. 

2.5 Isothermal calorimetric titrations  

Isothermal calorimetric titrations (ITC) were performed with a Microcal VP-ITC microcalorimeter in pH 7.4 PBS 

buffer solution. In individual titrations, 10 µL ligand containing solution was injected from the computer-

controlled 300-mL microsyringe at intervals of 300 s into the Aβ oligomer solution, dissolved in the same buffer 

as the ligand. All measurements were carried out at 285 K. The Aβ concentration in the cell was 100 µM and 

the total ligand concentration was set in the syringe so that the titration stopped when the precipitation 

became excessive. Control experiments were performed by injecting the ligand into a cell containing buffer 

with no target, and the heats of dilution were subtracted from those measured in the presence of Aβ. The 

experimental data were fitted to the two independent site binding model by using a nonlinear least-squares 

procedure, with ∆Hb, ∆Hb’, Kd, Kd’ (association constants), n and n’ (number of binding sites for monomer) as 

adjustable parameters. 

2.6 ELISA experiments. 

PIERCE (Rockford, IL, USA) avidin (125 pmol/well or 60 pmol/well) coated plates were used. The capture 

molecule was dissolved in PBS (conc. 10 µg ml
-1

) and 100 µl capture molecule solution was pipetted in each 

well and incubated for 2 hours at room temperature. The plate was washed with 3 × 200 µl TPBS (20 mM PBS 

containing 1% BSA and 0.1% TWEEN20) and incubated with 100 µl diluted amyloid solution under shaking 

(overnight at 4 °C). After washing the plate with 3 × 200 µl TPBS, the primary antibody (6E10, Covance, Leeds, 

UK) was diluted with the washing buffer (1:10000 dilution) and 100 µl diluted primary antibody solution was 

pipetted into each well. The sample was incubated for 1 hour at room temperature. The plate was washed with 

3 × 200 µl TPBS and 100 µl of the secondary antibody (Histols-M (Histopatology Ltd., Pécs, Hungary) in 250x 

dilution or anti-mouse IgG HRP (Dako, Glostrup, Denmark) 1:10000 dilution) was pipetted to each well. After 1 

hour incubation at room temperature, the plate was washed with 2 × 200 µl TPBS (the first washing step has 

the TPBS solution left in the plate for 30 minutes). Development was carried out with 100 µl 3,3’,5,5’-
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tetramethylbenzidine (TMB) solution pipetted into each well and the absorbance was measured with a plate 

reader (NOVOstar OPTIMA, BMG Labtech, Offenburg, Germany) in plate mode, for approximately 1.5 hours. 

For validation, Innotest® β-Amyloid(1-42) (Innogenetics, Gent, Belgium) assay was performed according to the 

manufacturer’s instructions. The selectivity tests were carried out in artificial cerebrospinal fluid (ACSF), made 

of Dulbecco's Modified Eagle Medium (DMEM) containg 1% fetal bovine serum (FBS), both purchased from 

Sigma-Aldrich. 0.1% Tween20 was added to prevent aspecific binding. 

2.7 SPRi measurements. 

A HORIBA SPRi-Plex II (HORIBA Jobin Yvon S.A.S. Palaiseau, France) surface plasmon resonance imaging (SPRi) 

system was used for multiplexed SPR measurements at a fixed working angle selected for optimal response in 

the PBS running buffer (10 mM phosphate, 137 mM NaCl, 2.7 mM KCl). The sensitivity across the active area of 

the chip was normalized using the refractive index dependent signal change for 180 mM NaCl containing PBS. 

The foldamer interactions were measured in PBS running buffer at a flow rate of 50 µL min-1 and 25.00 °C. The 

signal change recorded for control (Figure S7) was used as a negative control and subtracted from the signals 

recorded in the various foldamer spots. The injected volume for each analyte and regeneration solution was 

180 µL. 5 mM NaOH solution was used (3.6 min, flow rate 50 µL min-1) to regenerate the foldamer-modified 

surfaces after each interaction. Kinetic evaluation of binding interactions was performed with global analysis 

using first order kinetics with Scrubber 2 (GenOptics version, BiaLogic Sofware, Campbell, Australia). Detailed 

procedure for spotting SPR sensor chips is found in the supporting text. 

3. Results and Discussion 

 
3.1 Design of the affinity assay. 

In the sandwich assays, the capture antibody is immobilized on the well plate surface by coating hydrophobic 

polystyrene surfaces using passive adsorption. The recognition interface of the Fv region remains mostly 

accessible due to the large size of the immunoglobulin molecule (MW = 150 kDa). However, for the low 

molecular weight foldameric capture element (MW = 5.2 kDa), the oriented immobilization is crucial to make 

the recognition segments available for analyte binding. Therefore the foldamer sequences were custom-

designed and biotin-tagged to enable their oriented immobilization to streptavidin-coated well plates (Figure 
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2). The subsequent capture of Aβ species was detected optically with a primary monoclonal mouse antibody 

specific to the free N-terminus of Aβ chain (6E10) and a horseradish peroxidase-conjugated secondary anti-

mouse antibody. 

Two biotinylation strategies were followed. First, the centrally symmetric PAMAM-foldamer was tagged at the 

foldamer termini (biot-7, Figure 1C). Second, the biotin-tag was placed in the focal point of a redesigned 

template so the helical units may freely point away from the surface. The centrally symmetric PAMAM 

dendrimer is not suitable for this biotinylation strategy and thus, was replaced with a functionalized oligolysine 

dendron having focal symmetry (5). The biotinylation was carried out at the root of the dendron by solid-state 

coupling of ε-biotinyl-Lys. The capture ligand was synthetized by maleimide-thiol coupling in non-tagged (8) 

and tagged forms (biot-8). The binding affinity was tested in the solvent phase by ITC. For 8, a two-stage 

enthalpogram was observed, similar to 7, with dissociation constants of 4.1 ± 2.5 nM (n = 0.05), and 374 ± 102 

nM (n = 0.25) (Figure 3C). This finding confirmed that the Aβ binding features were carried by the foldamer 

recognition segments, and the function of the dendritic linker was tethering. 

The ELISA experiment performed with biot-8 as capture element revealed marked affinity increase when 

compared with biot-7 (Figure 3A). The EC50 value for biot-8 was 0.97 ± 0.04 nM indicating the presence of the 

high-affinity interaction. By contrast, biot-7 has an EC50  value of 648.5 ± 11.2 nM, which is in line with the 

second-stage binding event observed in solution for 7. There can be two reasons for the lower affinity: (i) the 

biotinylation removes the N-terminal amino group, which is potentially critical for the recognition mechanism, 

(ii) and the geometry of biot-7 on the surface prevented projecting all its foldamer helices thus impeding the 

high-affinity binding (Figure 3B). The role of the N-termini was tested by the acetylation of the foldamer helices 

of biot-8 (biot-9). The ELISA experiment indicated an EC50 value of 30.16 ± 2.27 nM for biot-9 (Figure 3A), which 

confirmed the involvement of the free N-termini in high-affinity binding. The acetylation of N-termini however 

did not fully account for the lower affinity observed for biot-7 and thus, the accessibility of the foldamer 

segment in the immobilized ligand appears to be essential in order to obtain low nM dissociation constants. 

3.2 Multivalency Effects 

It has been previously shown that the divalent PAMAM-foldamer conjugate does not display low nanomolar 

affinity[36] and spurred on by the good performance of biot-8, the effects of increasing the number of arms on 
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the affinity were tested. An octavalent oligolysin dendron template was synthesized (6) and the foldameric 

recognition segments were coupled through maleimide-thiol ligation (10). ITC experiment revealed that there 

was no change in the initial gradient of the curve and only the foldamer conjugate/Aβ ratio decreased in accord 

with the octavalent design (Figure S2). The curve could not be evaluated quantitatively by assuming the two 

binding site model a priori. Independent quantitative data on the affinity was obtained through SPR 

experiments with capture elements biot-8 and biot-10 attached to the streptavidin coated gold surface. There 

were no difference between the affinities of the two derivatives and only an increase in the binding levels was 

found (Figure 4A). The same phenomenon relating to affinity was observed in ELISA experiments where no 

difference was found between the EC50 values of biot-8 and biot-10 (Figure S5). Sensitivity improvement in 

ELISA could not be detected possibly due to steric crowding in the detection step (Figure S5). From these 

findings, it can be concluded that the high-affinity binding does not require more than four foldameric capture 

segments. This is indicative of an interaction with a specific interface displayed by the Aβ oligomers rather than 

capturing repeating features of the cross-β-sheet surface of the aggregated forms. 

3.3 Detection of Aβ oligomers by ELISA  

The sensitivity in detecting Aβ species can be crucial because their concentration in body fluids is in the 

picomolar range or less.[37, 38] Using a HRP-polymer tagged secondary antibody (Histols-M) increased the 

sensitivity of the system due to the multiple copies of HRP (Figure 4B). Noting that steric hindrance may 

prevent efficient detection, further improvements to sensitivity were attempted by decreasing the surface 

crowding on the well surface. This was tested by comparing the ELISA results obtained by using streptavidin 

precoated plates with surface loads of 60 pmol and 125 pmol per well. The EC50 value did not change with the 

surface load but the signal intensity was higher for the 60 pmol plate (Figure 4B) in agreement with the steric 

hindrance hypothesis. Utilizing the improved capture ligand and the optimized protocol, the limit of detection 

(3 σ) was estimated to 5 pM (n=12), and linear dependence was obtained over the concentration range 10 - 

500 pM (R2=0.9974). 

The effect of ligand multivalency suggested that foldamer-based capture element shows selectivity for the Aβ 

oligomers and this was tested using both predominantly monomeric and oligomeric Aβ samples. The Aβ 

solutions with different aggregation state were prepared according to literature protocols.[36, 39] For the 

ELISA performed with the capture element biot-8, concentration-dependent (0 - 200 pM) signal was observed 
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for the oligomeric sample (Figure 5A). The fresh monomeric Aβ did not yield signal (LOD estimated to 3600 

pM). The monomeric Aβ contents of the samples were checked in parallel by using a commercially available Aβ 

monomer-selective ELISA kit (Innotest®) commonly utilized in clinical studies. It was obvious that the 

monomer-sensitive commercial sandwich ELISA kit produced concentration-dependent signal only for the 

monomeric Aβ sample (Figure 5B). Low intensity response was detected above 100 pM for the aggregated Aβ 

sample, which can be attributed to the residual monomeric Aβ content. 

These results revealed that the capture ligand biot-8 is selective for the Aβ oligomers, and the foldamer-based 

sandwich assay gives complementary response to the monomer Aβ selective kit utilizing an Aβ C-terminal 

selective antibody as capture element. The applicability of the assay as a potential diagnostic tool requires the 

detection of the analyte in a complex biological matrix. No signal was observed for an an artificial cerebrospinal 

fluid (DMEM cell culture media containing 1% fetal bovine serum). The responses recorded for oligomeric Aβ in 

an this matrix showed no significant difference compared with those obtained for the same concentrations of 

Aβ in a buffer solution. This confirmed the selectivity of the assay against the rich variety of proteins in fetal 

bovine serum (Figure S8). 

3.4 Monitoring time-dependent aggregation of Aβ 

It was also known from earlier studies that the foldamer conjugate 7 cannot bind fibrillar Aβ with high affinity 

in the solution phase, suggesting that this newly devised ELISA method should be capable of monitoring the 

aggregation state of an Aβ solution by solely detecting the oligomer content. A standard Aβ aggregation 

procedure (incubation of a freshly disaggregated Aβ monomer sample at the concentration of 50 µM, 37°C) 

was followed with the stock solution being sampled at regular intervals. Samples were diluted to a total Aβ 

concentration of 500 pM, then applied onto the ELISA plate. The intially recorded absorbances increased with 

time, then plateaued after 3 hours (Figure 5C) and tapered off after 18 hours. TEM analysis was carried out in 

parallel, confirming that Aβ oligomer specii were formed in the first 3 h and were captured by biot-8. Towards 

the end of the experimental run (18 h), aggregation transformed the oligomers and residual monomers to 

fibrils (Figure S6) which did not show affinity to biot-8. These results strongly suggested that this system is able 

to indicate the state of an ongoing aggregation in a pM sample by detecting transient Aβ surface features with 

high affinity to our foldamer-based capture element. It must be noted however that quantitative 
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measurements with fibrillar Aβ at pM concentrations are not possible due to its disaggregation into oligomeric 

and monomeric forms. [40] Therefore selectivity of our foldamer-ELISA assay against the fibrillar form can not 

be concluded from these data. 

 

4. Conclusions 

Foldamers are attractive candidates as molecular recognition elements due to their programmable molecular 

surface, attained with short chain lengths. In this study, a hexameric β-peptide 14-helix was utilized with a 

surface engineered to bind to Aβ aggregates. Two-stage binding was observed in the solution phase when the 

foldameric recognition segments were attached to a tetravalent oligo-lysine dendron template (8). The first 

stage has a low nanomolar affinity toward Aβ oligomers with fractional stoichiometry indicating that multiple 

copies of aggregated Aβ chains are necessary to form a surface patch to be recognized by the tetravalent 

ligand. The second, lower affinity step proved to be stoichiometric with a ratio of 1:4 for the 8: Aβ chain ratio. 

The foldamer-ELISA assay was designed by using the biotinylated derivative of the multivalent foldamer 8 

attached to streptavidin precoated plate surface as a capture element. We found that the free N-termini and 

the accessibility of the four foldameric arms are essential for the high-affinity interaction with Aβ oligomers. 

The optimized foldamer-ELISA was sensitive to the Aβ oligomers in the picomolar range. Aggregation time-

dependent tests with monomeric, oligomeric and fibrillar Aβ proved that this system is selective to Aβ surface 

patterns transiently present during the ongoing aggregation process.[41] These results point to the utility of 

protein mimetic foldamers in biochemical assays and sensors, where they can functionally mimic the molecular 

recognition properties of antibodies. 
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Figure 1. Structure and schematic representation of (A) foldamer recognition elements, (B) templates (with 

biotin-tag (ε-biotinyl-Lys) or Gly at the root of the dendron), (C) multivalent foldamer conjugates.  

 

Figure 2. Design of the foldamer-based immunoassay platform. HRP designates horseradish peroxidase and 

TMB indicates 3,3′,5,5′-tetramethylbenzidine. 

 

Figure 3. A) Comparison of the immunoassay affinities observed for biot-7 (blue), biot-8 (red) and biot-9 

(green) as capture elements. Absorbances were normalized to the absorbance maximum in each 

measurement. B) Schematic representation of biot-7 and biot-8 surface geometry.  C) ITC enthalpogram and 

thermogram for the titration of Aβ oligomers with 8. 
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Figure 4. (A) Representative SPR sensorgram of 2000 nM amyloid oligomers binding to 10 µM spotted biot-10 

(black), biot-8 (red), and 2 (blue). See details in the Supplementary Information (Table S1, Figure S3 and S4). (B) 

Optimization of the ELISA setup. Recorded absorbances with original conditions (green), after applying Histols-

M (red), and after lowering the surface load to 60 pmol (blue). 

 

 

Figure 5. (A) Recorded absorbances in ELISA with the foldamer-based capture element for monomeric (red) and 

oligomeric (blue) Aβ. (B) Recorded absorbances with the Innotest® kit for the same Aβ samples. (C) 

Aggregation time-dependence of the ELISA signals. 
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Highlights 

• A sandwich-type immunoassay is developed to detect β-amyloid. 

• The assay utilizes foldamer helices as recognition elements. 

• The assay is selective to β-amyloid oligomers against monomeric forms. 

• β-amyloid oligomers can be detected at pM levels. 

 

 

 

 




