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Abstract: The essential role of water in extra- and intra- cellular coiled coil structures of proteins is critically 

evaluated, and the different protein types incorporating coiled coil units are overviewed. The following subjects are 

discussed: i) influence of water on the formation and degradation of the coiled coil domain together with the 

stability of this conformer type; ii) the water’s paradox iii) design of coiled coil motifs and iv) expert opinion and 

outlook is presented. The clear and dark sides refer to the positive and negative aspects of the water molecule, as it 

may enhance or inhibit a given folding event. This duplicity can be symbolized by the Roman ‘Janus-face’ which 

means that water may facilitate and stimulate coiled coil structure formation, however, it may contribute to the fatal 

processes of oligomerization and amyloidosis of the very same polypeptide chain. 

 

Introduction 

Proteins evolved in water for billions of years, a ubiquitous solvent indispensable for life. Starting from secondary 

and tertiary structure formation, water plays a crucial role in the most fundamental extra- and intracellular processes 

of proteins, thus coiled coil formation also occurs in H
2
O. Understanding the real biophysical basis of the protein-

water interaction, simpler in vitro conditions may also help to decipher the in vivo role of it. According to the key 

importance of water (1), it seems a logical concept to focus on the water and consider any protein as tightly attached 

to it, which means that also the protein folding is controlled by the solvent motions (2). The bulk solvent fluctuation 

controls the translational diffusion, intermolecular interaction and also the 3D-dynamics of proteins, while local 

hydration shell fluctuations are related to internal backbone and side chain dynamics (3, 4). In spite of the central role 

of water, most publications still neglect or underestimate the role of it mainly focusing simply on the protein itself and 

thus will receive an uncompleted picture of the true phenomena. Characterizing structure and dynamics, folding and 

interaction of proteins without considering water is similar to a symphonic orchestra playing without a conductor. 

This overview represents therefore a stopgap role and by this manner the aqueous reviews are of particular 

importance (5, 6). Considering 3D structures of proteins built up exclusively from -helices, they still remain 

sufficiently versatile to produce very different classes of structures: globular, fibrous and coiled coil [Ref. (7); pp 204–

205]. 

The hydrated forms of these different structures are represented here by myoglobin, by tropocollagen and a 

coiled coil trimerization motif. In most globular proteins coiled coil domains are short comprising only some ~10–

30 amino acid residues. In fibrous proteins, however, the coiled coil structures can be significantly longer: 100 

aa. Myoglobin was one of the first globular protein structure determined by X-ray some 60 years ago. The analysis 

of its globular fold (3) reveals that its hydration shell consists of ≈2 layers of water molecules (Figure 1). Quantum 

mechanics (QM) studies on the stability of the tropocollagen’s hydration layer were carried out (8) and have 

determined that key water molecules form bridges around the [Pro-Hyp-Gly] repeats, where the stability of the water 

binding places range: -6.1 kcal mol-1 to -8.1 kcal mol-1 per hydrogen bond. 

On  the  other  hand, considering the formation, structure and behavior of coiled coils, excellent reviews 



 

 

 

Figure 1:  The hydration shell of myoglobin. 

CPK diagram (blue surface) with 1911 water molecules. The waters form a shell ≈5 Å thick around the protein. Approximately 200 water 

molecules are distinguishable from background with high-resolution X-ray crystallography. Reproduced from Frauenfelder et al. (3). 

 

 

summarize (7, 9, 10) that these domains of the poly- peptide chain are amongst the most versatile protein folding 

motifs, forming ~10% of all eukaryotic proteins and < 5% of the prokaryotic ones [(7); p 203]. The classical coiled 

coil structure consists of two right-handed -helices wrapped around each other into a left-handed super coil, 

covered with a hydrate shell. There are also varieties of three- to five-stranded super coil architectures (11), 

however, the parallel two-stranded ones are the most common in living organisms. The simplicity and regularity of 

this conformational motif have made a system to explore some of the principles of protein folding and stability. A 

hydrated parallel three-stranded coiled coil structure of a 17-residue-long peptide (cc-p) was studied by MD 

simulations (11) at two temperatures (278 and 330 K). The rate of exchange of water molecules in the first hydration 

shell ranges from 0.11 to 5.2 ps-1 at 278 K and from 0.09 to 5.5 ps-1 at 330 K. According to these findings, the MD-

calculated residence times show fast exchange between surface water molecules and the bulk water phase. It has 

been shown (11) that a water bridge between residues Arg 8 and Glu 13 of the neighboring helices might also have 

an important contribution in stabilizing a trimeric coiled coil structure. Although the residues mutated, these key 

waters are  structurally conserved and together with Arg-Glu residues they determine the three-stranded coiled coil 

structure.  This ‘water-bridge-concept’ is enforced by most X-ray crystallographic data, too (11). 

In classical coiled coils, seven residues form a ‘heptad’, labeled as abcdefg [(7); pp 199–200] a pattern 

repeated at every second turn of the helix. It is worth noting that the parallel two-stranded -helical coiled coil, 

characterized by the ‘heptad’-repeat pattern is the most frequently encountered oligomerization motif in proteins. 

Both a and d residues of the ‘heptad’ are mostly hydrophobic (Ile, Leu even Met) and form an interface layer, the 

central element of this secondary structure. The burial of these hydrophobic spots/residues in a water- filled 

environment is mandatory, and thus pairing both a and d residues is the thermodynamic driving force of di- or 

oligomerization of the polypeptide chains. On the other hand, once buried from water, dispersive interaction 

operative among them becomes a dominant contribution to overall stability. In fact, most stable coiled coils have a 

high content of these carefully positioned a and d hydrophobic residues (7). 

On the other hand, residue b, c and f remain in a solvent exposed position even after the coiled coil is formed, while 

both e and g remains flanking. As a consequence of this, -helices are wrapped around each other, with side chains 



 

packed in a ‘knobs-into-holes’ manner (7), a 3D-topology characteristic to most coiled coils. Interestingly enough in 

two-stranded coiled coils, one of the residues forming the ‘hole’ also becomes a ‘knob’. It should be noted that 

according to the ‘hydropathy index’ the most hydrophobic amino acids are: Ile 4.5, Val 4.2 and Leu 3.8 (12). 

Despite the frequent occurrence of -helices in globu- lar proteins, even the matured -helixes become unstable 

in aqueous solution, and thus unfold (13). However, there are ways to stabilize dissected -helices in water by 

packing them together through hydrophobic side chain interaction, concluding in a coiled coil. While the simplest 

way is to form a two-stranded coiled coil structure described above, an additional option based on strict primary 

sequence restriction (charged/ionic residues primarily) is to form a charged single -helix: CSAH (14). In fact, this 

self-standing secondary structural element was discovered by bioinformatics, by assigning residue patches of 

complementary charges in a physiological environment: e.g.: EEEEKKKKEEEE or - - - - + + + + - - - -. Prediction 

methods revealing CSAH domains operate by primary sequence analysis looking for consecutive complementary 

charged residues (15). Although in the latter secondary structure type there are no hydrophobic residues to ‘hid’, 

hydration of the salt-bridges still occurs and contributes to overall stability. 

Formation of coiled coil domain mediated by water 

Formation of the hydrated coiled coil conformation in proteins is one of the fundamental examples of the bio- 

logical self-assembly, as both the spatial distribution and strength of the contacts are effecting their thermostability as 

well as their folding kinetics. Residues in coiled coils have a polar/nonpolar periodicity and it is this amphipathic 

nature of the assembly that drives them to associate at their hydrophobic interface (local hydrophobic col- lapse). The 

fully or partly helical single polypeptide-chain coated by water (the dark side) is the coiled coil’s ‘building brick’. 

However, its hydrated chain is dehydrated (or loosely hydrated) at some positions (the clear side) a necessary 

condition for domain formation. In general: molecular interactions of proteins have to fulfill changes in their hydrate 

layer for physical contact of the proteins. The large number of polar and charged residues within the poly- peptide 

chain involves the presence of several, strongly structured water molecules and vice versa the abundance of 

hydrophobic patches, manifested by apolar side chains together make possible coiled coil formation. However, polar 

and charged residues located on the surface of  the domain are responsible for the aqueous solubility of the overall 

nanosystem and thus, the ratio of the hydro- phobic residues gluing polypeptide chains together and hydrophilic ones 

determines whether a coiled coil domain could be formed. The water’s energy landscape of such a nanostructure is 

governed by thermodynamic and kinetic factors, in which the relative enthalpy (ΔH) and entropy (ΔS) terms 

associated with water should be considered. From this viewpoint, three consecutive events are to be taken into 

account: (i) dehydration of the single polypeptide chain, (ii) accompanied by the chains’ fusion and (iii) concluded by 

the hydration of the two- or multi-stranded coiled coil domain. The first and unfavorable dehydration step has an 

enthalpy/entropy cost caused by the great ‘energy consumption’ of the leaving first and second layer water shells from 

the surface of the helix. However, this can be compensated for by the gain of the water’s association and favorable 

enthalpy/entropy terms. The increase of entropy means the spatial randomization of the water molecules, i.e. the 

ordered solvent molecules of the hydrate shell are moving to the more disordered bulky water as medium. In this 

context an important review of particular interest was published by Kinoshita (16), on the role of translational water 

entropy in self-assembly processes. Although, the fusion of two or more polypeptide chains is an entropically 

unfavorable process as ‘ordering’ occurs, however, there is also a positive term, enthalpy gained from the emerging 

hydrophobic interfaces. These interactions are combined with the exclusion of water from these apolar surfaces and by 

this manner maximization of water’s entropy will occur. The latter favorable effect is to be added to gains from fusion’s 

enthalpy (heat). The third process, the stabilization of the coiled coils by hydration means again an entropy loss paid by 



 

the water binding energy.  Because the dehydration of helices can  be considered as a key step in the folding of coiled coil 

structures, the folding intermediate has been investigated on the C-terminal of the 14-residue-long truncated part of the 

GCN4 peptide. Two relaxations were revealed with 0.2 and 15 s time constants, as has been detected by micro- second 

melting of the coiled coil peptide. These constants are suggested to reflect the melting times of hydrated and non-hydrated 

helices. These microsecond times were monitored successfully by time-resolved T-jump/UV Raman spectroscopy (17). 

 

 

Coiled coil stability 

Length of coiled coils is a decisive factor on their stability: long coiled coils are usually unstable. Coiled coil 

stability in water was calculated using molecular dynamics (MD) (18) as a difference of the appropriate free 

energies, ΔG, derived for values of the coiled coil and -helices determined separately, in an explicit solvent 

model of a 72 residues long domain. The residue based coiled coil stability of about -1.2 kcal/mol, ΔG
residue

, is a good 

indicator of the sum of electrostatic and dispersive interactions operative between residues, with an entropy term of 

about -0.3 kcal/mol per residue. The coiled coil stability is inversely proportional to the polypeptide chain length 

and directly to the side chain salt-bridges of residues at positioning e and g (electrostatic interaction between e of 

one ‘heptad’ and g’ of the following ‘heptad’ on the other helix are operative) (11, 19). For the electrostatic 

interaction part of the above shown -1.2 kcal/mol sum, the following values are given in the literature: ~ -0.37 kcal/mol 

(9, 19). For the most hydrophilic amino acids the ‘hydropathy index’ gives about -4.5 for Arg and -3.9 for Lys (12). 

 

 

Stabilizing and destabilizing clusters 

Series of two-stranded coiled coils were designed and synthesized to determine the nature of the effects specifying a 

stabilizing or destabilizing cluster in the hydrophobic core (20). The results showed destabilization already caused 

by a single Leu to Ala mutation in the hydropho-bic core, on formation of a three-residue-long cluster (ΔT
m 

of 17–

21C). This Leu to Ala substitution contributes to ΔΔG 2.7–3.5 kcal/mol destabilization energy. Nevertheless, these results 

cannot be considered as a big surprise, if we take into account the difference of the ‘hydropathy index’: Leu 3.8 and 

Ala 1.8, respectively (12), which means also that Ala is the least hydrophobic one of the nonpolar amino acids. 

Beside this hydrophobic decrease, the large stereochemical difference between the Leu vs. Ala side chains should 

also be considered. In the formation of clusters, the role of water is also important. This means that the small Ala 

residue also left enough space for hydrating the coiled coil chains, i.e. for destabilizing the clusters (dark water’s 

side). However, in the case of Leu there is an entropy gain (16) by moving the ordered water molecules from  the  

hydrophobic  environment  to the more disordered bulky water phase and in this manner stabilizing the system 

(clear water’s side). Any further Leu substitution with Ala, which is increasing the size of the destabilizing cluster to 

five or seven core residues, has little more effect on stability (Tm of 1.4–2.8C). These data show that Leu 

contribution to protein stability is context-dependent on whether the hydrophobic moiety is in the neighborhood of 

a stabilizing cluster. A 3-membered cluster is a good example for such a context- dependency which was designed 

from two Leu and one Ala residues (21). Although, the Leu-Ala-Leu cluster interspersed by Ala did not produce any 

gain in stability, the Leu-Leu-Ala or Ala-Leu-Leu structures did show a stability gain of 0.9 kcal/mol. Also native 

coiled coils of long chains: the tropomyosin of 284 residues and the coiled coil domain of the myosin rod of 1084 

residues were studied for the as above (20). In the hydrophobic core of both proteins three types of clusters were 

present; namely stabilizing, destabilizing ones and intervening regions including both stabilizing and destabilizing 



 

residues, as well. In the native coiled coils discussed, Leu is the most abundant residue in the hydrophobic core of 

stabilizing clusters and also in the intervening regions. Similarly, Ala is the most predominant residue in the 

destabilizing clus- ters. In all cases Leu or Ala residues are evenly distributed between the positions a and d. 

For the modeling the stabilizing and destabilizing clusters, the cortexillin I protein’s dimerization rod domain 

was used (Figure 2). The 18-heptad-repeat-long -helical coiled coil (22) domain of cortexillin I from Dictyostelium 

discoideum is a tightly packed parallel two- stranded  coiled coil. 

 

 

Figure 2: Models of coiled coils with either a stabilizing cluster (Ile, Leu) or a destabilizing cluster (Ala) in the hydrophobic core, which 

are also the clear and dark sides of water. 

Top panel, a schematic model of a 5-alanine residue cluster located at the center of peptide 6A5 (residues 8–36). The five small con- 

secutive alanine residues (brown) on the non-polar surface of an amphipathic helix pack ‘knobs-into-holes’ onto the alanines (brown) on 

the other amphipathic helix. The alanine residues are smaller compared with the other large hydrophobic residues (Ile, green, and Leu, 

yellow). Inter-chain electrostatic interactions (i to i’ + 5) between Lys (blue) at position g and Glu (red) at position e’ are shown by the double-

headed arrow. Bottom panel, a side view of space-filling models depicting the different side chain packing interactions in a stabilizing 

cluster of Ile and Leu residues in the hydrophobic core (6IL) and a destabilizing cluster of five Ala residues (6A5) in the hydrophobic 

core, at positions a and d, of a model two-stranded parallel coiled-coil (the cortexillin dimerization domain, 1D7M was used to build the 

model). Side chains of Ile (green), Leu (yellow), and Ala (brown). Reproduced from Ref. (20). 

 

 

This domain at 344–352, is exceptionally long where the number of the C-terminal residues are. An interchain 

attractive ionic interaction, which provided some additional stabilization, is mediated by Lys and Glu residues (in 

the top panel of Figure 2). The side chain interactions of the Leu-Leu and Ile-Ile pairings in the coiled coil core were 

represented by space-filling models. A significant increase of the destabilization effect is observed in a coiled coil 

analog (6A5) as a destabilizing cluster of five Ala residues having poor van der Waals contact and

      spatial gap, leaves much more space for water (Figure 2, bottom panel). 

 

 



 

Degradation of the coiled coil domain 

It is an interesting and fundamental question which way the stability of coiled coils can be lost, leading to partial or full 

disassembly, i.e. degradation of this otherwise exceptionally stable protein structure. To explore this exciting question, 

simulations of a trimeric coiled coil molecule have been studied in explicit water solvent and extreme environments 

such as elevated temperatures and/or in detergent (urea, guanidinium chloride) (23). This trimeric structure contained 

three homo helical strands each composed of 29 amino acids. This structure is stabilized by the hydrophobic Val and 

Leu at positions a and d as well as by a salt bridge forming Glu-.+Lys at positions e and g. The results confirmed that 

the -helix unfolding is the first event which helps then the coil to unzip. In the steered molecular dynamics (SMD) 

simulation studies, a helix unfolding revealed that the coiled coils are super- elastic protein bundles. On the other 

hand, the MetaD simulations with 2D sampling (24) served to define the free-energy landscapes of helix unfolding, 

coil unzipping, and also the coupling of these two processes. It is shown, that once the energy barrier of unfolding has 

been passed over and a segment is unfolded, the extra energy required for the unzipping is practically very low. 

Nevertheless, the final driving force of such a stepwise degradation should be the self-stabilization of the individual 

polypeptide strands by effective hydration. Summarizing the MetaD results; the disassembly’s free-energy of a single 

coil from the trimer has been estimated as -28 kcal/mol (24). This value agrees fairly with the experimental unfolding 

free energy of a similar three-stranded coiled coil, as being -18.4 kcal/mol per helix (25). Naturally, the energy values 

of coiled coils may deviate from these ones, depending on the size, the number of strands and the peptide chains’ 

sequences. 

 

Watertight seal 

Not only water soluble globular proteins, but also coiled coil structures maintain their backbone hydrogen bonds 

watertight to ensure their structural integrity. This protection is achieved by sealing and thus fine tuning 

thebackbone amide-carbonyl hydrogen bonds. The tighter the backbone structure is the more they are buried or wrapped 

around by nonpolar sidechain groups. This strategy efficient during molecular evolution brings in sub-nanoscale 

surface ruggedness and represents a tunable molecular machinery of protecting H-bonds in an otherwise H-bond 

weakening hydrophilic media (26). In other words, layering brings in the solution into molecular architecture, as a H-

bond weak in a water is strengthened by ‘moving it’ into a locally hydrophobic environment by sealing layers from 

each other. 

 

 

Designed coiled coil motifs 

A great advantage of any designed coiled coil motif is its applicability for a wide variety of in vitro and in vivo bio- 

chemical purposes. The way the particular system was designed strongly influences the macroscopic character, thus 

by the ratio of polar and apolar residues within the optimized nano-construct and their hydration. The critical review 

(27) discusses the potential of coiled coil peptide structures for the development of responsive, self-assembling and 

bioactive materials. Inter alia, also the role of designed coiled coils is stressed in the same review article (27). 

Concerning the designed coiled coil motifs, Woolfson and his group developed the self-assembled cage-like 

nanoparticles (SAGE) concept, which offers routes to closed systems with the potential for encapsulation (28). This 

exciting idea means the SAGE, which can be made from short, de novo, -helical coiled coil peptides. These tools 

can be used as vehicles for drug and biomolecular delivery, and also as frameworks for protocell development. Also 



 

another article has been published of similar targets of coiled coil peptides with self-assembly properties (29). 

Obviously, they are designed and fine-tuned accordingly, by simply controlling hydrations determined by different 

purposes. In summary, in the era of foldamers, it can be concluded that coiled coils are one of the best subjects of 

protein design, where either natural or non-natural amino acid residues could be used as Lego elements for helix 

design of enforced stability. 

 

 

 

Intrinsically disordered proteins (IDPs) 

Beside the above listed different structures of the protein’s chain, there could be also large disordered segments of the 

peptide, i.e. which lack of a well-structured 3D fold [see also the IDP chapter of Ref. (6)]. These are significant 

fractions of proteomes, especially the eukaryotic ones. IDP domains contain particularly polar and charged, the 

strongly hydrated residues, mean the peptide chain’s stabilization. This is just the opposite of the coiled coil 

structure with apolar dominance in its domain, i.e. it rep- resents a softer stabilization by the hydrate shell. There- 

fore, the coiled coil domain should be fine-tuned for the hydrophobic/hydrophilic chain ratio, namely, whether the 

coiled coil forming part or the hydration part will dominate. 

An interesting method has been published, which is based on the overlaps between disorder, coiled coil and collagen 

predictions in complete proteomes (30). It has been pointed out that fibrillar protein motifs such as the coiled coils 

and collagen triple helical segments can be identified as intrinsically disordered, considering the full proteomes. 

 

 

Crystal structure of short coiled coil protein (SCOC) 

The crystal structure of the human short coiled coil protein (SCOC) has been determined (31). Interestingly, it can be 

seen as two different coiled coils in the crystal structure (Figure 3), which indicates a high conformational flexibility. 

This plasticity is explained by researchers (31) with the high number of polar and charged residues at the a/d-heptad 

positions. Considering also the structural water molecules (Figure 3), it can be suggested that these hydrate molecules 

increase the stability of both conformers. 

 

 

Expert opinion and outlook 

Although the simpler in vitro conditions may also help to understand the in vivo ways, the question of what is the 

proteins’ situation in a cell should be kept in mind. First of all, the most important question is the relation- ship of 

proteins and water in an extremely crowded molecular environment. Namely, macromolecules also including the 

coiled coils are present in the crowded cell at an extremely high molar concentration, ranging from about 300 to 400 

mg ml-1 (32). This means, that the above discussed questions are very important with respect to the cellular 

environment, where water is available 

 



 

 

 

Figure 3: Crystal structure of the human short coiled coil protein (SCOC). 

Top panel: the three chains form two and three stranded parallel coiled coils (blue, green and magenta) with structural water mol- ecules (red). 

Two water molecules (cyan) occupy the proximal side to the third coil (magenta) at the open side of dimer (blue-green). Bottom panel: 

magnification shows additional water molecules (cyan) at the interface of the dimer (blue-green) formed by Leu residues as ‘knobs’ (shown as 

spheres). Reproduced from PDB entry 4bwd; PMID: 24098481. 

 

but the amount of bulk water is different from case to case. Therefore, it should be considered that the cellular 

functions of proteins are strongly dependent from their interactions with proteins of their neighborhood, also 

including their affinity to each other. Currently an important method has been published where the effective 

concentrations within these intra molecular inter- actions can be systematically varied (33). Namely, the tool is a 

modular encoded linker; the single -helix of different lengths, e.g. ER/K [see: CSAH (Ref. (14))], which enables 

regulation of the protein-protein interactions. Recently some of us were involved in the discovery of the important 

role of an anti-parallel two-stranded coiled coil structure, an integrated part of the podocin protein, linked to a 

special nephrotic syndrome (34). In molecular modeling studies, this dimer was investigated by MD simulations and 

its water shell was also calculated. As an optimistic speculation about complicated diseases like this coiled coil 

based one, one could imagine a personalized, faster investigation and treatment of similar cases, in the coming 8–10 

years! 
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