Continuous flow synthesis of heterocyclic scaffolds

Design principles of multistep systems – A review

Klára Lövei1,2*, Péter Bana3, Róbert Örkényi3, György I. Túrós1, János Éles1, Zoltán Novák2, Ferenc Faigl3,4

1Gedeon Richter Plc., Gyömrői út 19-21., Budapest, H-1103, Hungary
2MTA-ELTE “Lendület” Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös University, Pázmány Péter stny. 1/a., Budapest, H-1117, Hungary
3Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budafoki út 8., Budapest, H-1111, Hungary
4MTA-BME Organic Chemical Technology Research Group, Budafoki út 8., Budapest, H-1111, Hungary

Keywords: continuous flow synthesis; condensed heterocycles; scaffold; multistep flow synthesis; telescoping

Abstract
The synthesis of novel heterocycles is an essential task in small-molecule drug discovery. Continuous flow processing opens the way for a new paradigm in laboratory-scale synthesis as well as pharmaceutical manufacturing. Based on our experiences with the multistep synthesis of condensed benzothiazoles, we gathered some of the key design features in light of literature examples.

Introduction
The design and preparation of new heterocycles as scaffolds or building blocks for active pharmaceutical ingredients (APIs) is a challenging area in today’s small-molecule drug discovery. Chemists seek new approaches and technologies that can be applied to produce novel structures, while keeping an eye on increasing the efficiency and productivity of chemical processes. The new “enabling technologies”1,2, like flow chemistry3,4, provide practical solution for the synthesis of heterocyclic compounds. The emerging trends and recent synthetic results indicate the growing importance of continuous flow manufacturing in academia as well as pharmaceutical industry5–9. These efforts are also pointing towards the realization of continuous technologies for API synthesis10,11 in accordance with FDA’s recommendations12,13. However, the application of flow methods demands a paradigm shift in synthetic mentality and a new knowledge base, which can mean a barrier for those, who are unfamiliar with it. Our
experience during the introduction of this technology to laboratory practice inspired us to compile this mini-review, to make flow chemistry more accessible. Here we discuss the problems and their solutions we faced during our research on the multistep synthesis of condensed benzothiazoles14 (Fig. 1), in the light of recent literature references.

Heterocyclic scaffolds in drug discovery

The development of new leads for APIs is largely based on the design and synthesis of new heterocycles. Applying them as building blocks, biological activity and physicochemical properties (like solubility, polarity and lipophilicity) of a given molecule can be modulated. In medicinal chemistry, the term “scaffold” is used for the core structure of a molecule, which is often a heterocyclic ring or ring system. In cases, when issues with these properties or the novelty of a specific compound series cannot be solved by modification of the side chains, the replacement of the central moiety (“scaffold hopping”) may become necessary, while keeping similar biological profile. Furthermore, the different chemical structure can lead to new patentable compound libraries15–17.

Although a wide range of heterocycles are theoretically available18,19, the obtainable number and variety thereof is limited by the parameter window, and convenience of the synthesis20–22. In the preparation of such compounds with increasing complexity, the classical laboratory-scale methods are often difficult. Multiple steps, use of hazardous reagents, high pressure or temperature are usually required. These circumstances can hinder the production of the desired structures in large numbers. Flow chemistry, as an “enabling technology” provides new opportunities to broaden the chemical space.

Fig. 1. Considerations for the proposed multistep continuous flow synthesis of condensed benzothiazoles.
Design of the flow reactions

In our recent work\(^{14}\) we have developed a multistep continuous flow approach for the synthesis of various tricyclic benzothiazoles (compounds I-V, Fig. 2).

![Fig. 2. The prepared tricyclic compounds.](image)

We intended to obtain them in three steps: (1) the preparation of the corresponding bicyclic compounds bearing a nitro-group, (2) the reduction of the nitro-group and (3) the formation of thiazole ring. Possible issues with the selection of solvent, handling of insoluble and hazardous reagents and the implementation of hydrogenation were taken into account during the synthesis.

The choice of the **appropriate solvent** is a primary concern when designing continuous flow reactions. In the simplest case, a single solvent can be found which sufficiently dissolves all reagents, intermediates and products, and tolerates all reaction conditions. Even in this case, unexpected precipitation of transient species can occur, because the solubility of these compounds cannot be explored beforehand. Slight clogging can be flushed out if the system is carefully monitored. In our work, we found that *N*,*N*-dimethylformamide (DMF) could be applied in every step of the multistep protocol. The final step specifically required DMF, which could completely dissolve the products. This motivated us to switch the solvent of the hydrogenation step in order to simplify the whole sequence\(^{14}\).

This solvent also proved to be the best option for the two-step syntheses of 5-(thiazol-2-yl)-3,4-dihydropyrimidin-2(1*H*)-one derivatives\(^{23}\) and imidazo[1,2-a] heterocycles\(^{24}\).

The high solubility of compounds and its compatibility with the integrated purification motivated the use of *N*,*N*-dimethylacetamide in the synthesis of 1,2,4-oxadiazole and 1,2,4-triazole libraries\(^{25}\).

Dichloroethane was used in the telescoped synthesis of quinoxalines\(^{26}\).

The **replacement of the insoluble reagents**, most often bases, by soluble alternatives is a common method to avoid clogging. *N*,*N*-diisopropylethylamine (DIPEA) is often used under flow conditions\(^{24,25,27}\). This base was successfully applied in our procedure for the synthesis of benzofurans and benzo thiophenes, in order to replace potassium carbonate, which was used in
batch synthesis14. While this change did not affect the synthesis of benzothiophenes negatively, we found that this way the alkylation reaction yielded the intermediate in the case of benzofurans. In order to obtain the bicyclic products, we had to use a stronger base. Verkade’s base (P(CH\textsubscript{3}NCH\textsubscript{2}CH\textsubscript{2})\textsubscript{3}N) proved to be suitable in terms of the flow conditions, too28 (Fig. 3).

\textbf{Fig. 3.} The synthesis of benzofurans and benzothiophenes mediated by different bases.

Several examples are reported, in which 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) is used as soluble stronger base29–31. Solid supported alternatives of DBU31 as well as other strong bases such as phosphazenes29,32, were used in heterocyclic flow synthesis.

The \textbf{safe handling} of explosive or toxic reagents and the precise control of process conditions are two of the main benefits of flow chemistry that are getting more and more important both in laboratory environment and on industrial scale11,33,34. Due to the size of the microreactors, the actual reaction occurs only in small volume at a given time, which minimizes safety issues.

The handling of bromine in the continuous flow ring-closure reaction leading to tricycles14 was safer than batch conditions, since the flow equipment can be regarded as a closed system, which prevents the escape of harmful vapours.

Hazardous reagents were handled or generated in-situ in the microreactor in syntheses of other heterocycles. Toxic alkyl nitrite and TMS azide reagents were safely used and the resulting explosive azides were transformed to stable triazole products in a two-step sequence35.

Unstable diazoketones were synthesized and used without isolation for the preparation of wide range of quinoxalines26.

Flow processes are also advantageous for \textbf{hydrogenations}. The benchtop hydrogenation modules enable the safe handling of both hydrogen and the heterogeneous catalysts, most
commonly loaded into packed bed reactors36. The separation of the catalyst from the reaction mixture is trivial with this setup, since it does not require additional filtration. In our work we utilized commercially available continuous flow hydrogenation equipment with preloaded Pd/C cartridges for nitro-reduction in the first step of our sequence. Due to the careful optimization37, sufficiently clean product (without leaching of the catalyst) was obtainable in every case, which helped to avoid the otherwise problematic purification of the sensitive amines14. Several examples of selective ring saturation, late-stage modification and protecting group removal can be mentioned in this context, using flow hydrogenation38-40. Similar approach was applied for the hydrogenation of hydrazone during the three step synthesis leading to the intermediate of the API Atazanavir41.

Incorporation of the reactions into a continuous flow system

One of the main goals of continuous flow processes is to perform multistep reactions in **telescoped** way. To achieve this, every single reaction parameter, chemical transformation and flow equipment should be taken into account. As the intermediates are not purified and isolated at the end of each step, all reaction steps have to be designed to be compatible with the whole sequence.

In the course of our synthesis14, the aromatic amines prepared in the first steps proved to be unstable leading to decomposition products during purification. We realized at this point that the initially envisioned telescoped approach (Fig. 4) would show its benefits in this particular problem. This way, the outcome of the multistep system was better than the overall yield of the single steps.
However, during investigation of the connected system we found, that utilization of the stream from the first step led to poorer results in the formation of the thiazole ring, compared to the same reaction conducted as an isolated step.

We assumed that in this case the lack of the premixing of the amines with ammonium thiocyanate, which happens in the storage flask in the single step procedure, hindered the following reaction with bromine. Increasing the mixing time by adding a coil reactor before the introduction of bromine, we could obtain higher overall yields. Although, this modification increased the number of steps (which contributes to complexity adversely), it was advantageous in context of the whole process. Similar observations on the importance of the mixing time, in terms of the overall yield and kinetics of the reaction were made in the continuous flow synthesis of 4,5-disubstituted oxazoles32.

When connecting the separately optimised steps in our work, we had to remove the hydrogen used in the nitro-reduction, prior to the thiazole formation. The addition of a buffer vessel to the reaction stream was sufficient for degassing. The same solution was employed in the multistep flow synthesis of Rolipram42, while other researchers tended to avoid the problem of gas separation and conduct hydrogenation as the last step40,41.

Further implications

Besides the above mentioned advantages, the application of flow chemistry enables the rapid optimization of reactions and synthesis of compound libraries together with
automatization43,44. In our study the quick automated optimization45,46 of conditions for each reactions was possible14. With the appropriate setup, small volume reaction mixtures can be handled fast and safely, which also lowers reagent consumption of the optimization process. New reactions can be discovered this way, for example, novel route to the core heterocycle of Efavirenz was enabled by extensive screening of conditions47. Several analogues and larger compound libraries can be prepared, thankful to the variability of such systems. Numerous examples show that this concept is viable using specific, carefully designed and optimised fluidic setups23,29,32,35,48,49.

Conclusion

The application of flow chemistry has great perspectives in drug discovery. In order to take advantage of its benefits, chemists need to learn to design and build complex continuous flow systems. In this mini-review we have focused on the everyday challenges of laboratory-scale multistep flow synthesis. We aimed to present some of the design principles through our work in this field along with literature examples in order to help others with their own experiments in this field.
References

(25) Bogdan, A. R.; Wang, Y. A High-Throughput Synthesis of 1,2,4-Oxadiazole and 1,2,4-Triazole Libraries in a Continuous Flow Reactor. *RSC Adv.* 2015, 5, 79264–79269.

