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Abstract
: The fact that surplus connections and neurons are pruned duringBackground

development is well established. We complement this selectionist picture by a
proof-of-principle model of evolutionary search in the brain, that accounts for
new variations in theory space. We present a model for Darwinian evolutionary
search for candidate solutions in the brain.

: We combine known components of the brain – recurrent neuralMethods
networks (acting as attractors), the action selection loop and implicit working
memory – to provide the appropriate Darwinian architecture. We employ a
population of attractor networks with palimpsest memory. The action selection
loop is employed with winners-share-all dynamics to select for candidate
solutions that are transiently stored in implicit working memory.

: We document two processes: selection of stored solutions andResults
evolutionary search for novel solutions. During the replication of candidate
solutions attractor networks occasionally produce recombinant patterns,
increasing variation on which selection can act. Combinatorial search acts on
multiplying units (activity patterns) with hereditary variation and novel variants
appear due to (i) noisy recall of patterns from the attractor networks, (ii) noise
during transmission of candidate solutions as messages between networks,
and, (iii) spontaneously generated, untrained patterns in spurious attractors.

: Attractor dynamics of recurrent neural networks can be used toConclusions
model Darwinian search. The proposed architecture can be used for fast
search among stored solutions (by selection) and for evolutionary search when
novel candidate solutions are generated in successive iterations. Since all the
suggested components are present in advanced nervous systems, we
hypothesize that the brain could implement a truly evolutionary combinatorial
search system, capable of generating novel variants.
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Introduction
The idea that functional selection on a large set of neurons and  
their connections takes place in the brain during development1–3 
is now experimentally validated4–7. As originally portrayed, this  
process is only one round of variation generation and selection, 
even if it requires several years. Evolution by natural selection 
works differently: variants are generated and then selected in 
iterative rounds. The field of “Neural Darwinism”1–3 fails to 
include generation of variants and thus could justifiably be 
regarded as a misnomer because the process that it describes is not 
evolutionary in the strict sense8. Evidence indicated that the 
development of the brain is more “constructivist”9 than pictured 
by the original selectionist accounts: for example, repeated 
rounds of neuron addition and loss happen during development10. 
Structural plasticity (synaptic remodelling) is now known to be 
a lifelong process with implications for memory and learning  
(e.g. 11,12). The addition and deletion of synapses and neurons 
takes several hours or days13. Our main goal here is to present a 
proof of principle that bona fide evolutionary dynamics could  
happen in the brain on a much faster time scale.

Maynard Smith14 identified multiplication, inheritance and vari-
ability as necessary features of evolution. In genetic evolution the 
variability operators are mutation and recombination. If there are 
hereditary traits that affect the survival and/or the fecundity of 
the units, then in a population of these units, evolution by natural 
selection can take place. While this characterization qualitatively 
outlines the algorithmic aspect of evolution15, concrete realizations 
require also quantitative conditions: population size cannot be too 
small (if it is too small, neutral drift dominates over selection16)  
and replication accuracy cannot be too low (if it is too low, 
hereditary information is lost17). Note, that this description 
says nothing about the nature of the units: they could be genes, 
organisms, linguistic constructions or anything else.

The proper implementation of an evolutionary process within the 
nervous system could have major implications for neuroscience 
and cognition8,18–25. A main benefit of neuro-evolutionary dynam-
ics would be that it could harness the parallelism inherent in the 
nervous system and the redistribution of resources at the same 
time. The latter process means that hopeless variants are thrown 
away and are replaced in the “breeding space” by more promising 
ones8. Another important aspect of the process is that it is genera-
tive: it could explain where new hypotheses and new policies come 
from in Bayesian approaches to cognition26,27 and reinforcement  
learning28–30, respectively. Bayesian inference and natural selection 
are analogous31,32 in that candidate hypotheses in the brain (the 
prior distribution) represent a population of evolutionary units, 
which are evaluated, or selected, based on the evidence. There is 
a mathematical isomorphism between the discrete-time replicator 
equation and Bayesian update31. The likelihood function is anal-
ogous to the fitness function and the posterior distribution to the 
selected population. Relations like this suggest that Bayesian 
update could be one of the pillars of “universal Darwinism”33.
We believe that convincing models for neuro-evolution could 
empower Bayesian approaches by providing a mechanism to 
generate candidate hypotheses.

Attractor networks have been used (among others) as models of 
long-term memory, which are able to complete partial input34,35. 
These networks consist of one layer of units that recurrently 
connect back to the same layer. The recurrent connections can 
learn (store) a set of patterns with a Hebbian learning rule. Later, 
if these patterns or their noisy versions are used to provoke the 
network, it settles on the original patterns after several rounds of 
activation updates on the recurrent weights (recall), thus stored 
patterns act as attractors. It is of high importance that the existence 
of such networks has been experimentally validated in the visual 
cortex of awake mice by optogenetic methods36. Some versions of 
the learning rule allow for iterative learning without catastrophic 
forgetting and enable palimpsest memory. A network with pal-
impsest memory is able to learn new patterns one-by-one, while 
sequentially forgetting earlier patterns.

In this paper we describe a model that implements evolution of 
activation patterns in the brain with the help of attractor networks. 
We see it as a model of problem solving, which is able to generate 
new candidate solutions to a problem based on past experiences. 
Any cognitive problem of the brain is encoded by the activity pat-
tern of neurons. We represent neurons as binary units, being able 
to continuously maintain firing in one state or the other. A group 
of neurons at any time therefore has a binary activation pattern. 
In our model, the units of evolution are these activation patterns,  
represented as bitstrings. Attractor neural networks can store activa-
tion patterns stably for a considerable time in form of corresponding 
attractors and are able to recall them given the appropriate trigger 
(Figure 1A). This memory allows for heredity, which is indispen-
sable for Darwinian dynamics (in genetic populations memory is 
the genotype pool). Attractor neural networks can generate new 
pattern variants in different ways (corresponding to mutation in a 
genetic system), see below under Discussion. Owing to memory 
and pattern generation, the possibility of iterated selection over a 
population of activation patterns becomes feasible. Our approach 
thus offers a more natural way to incorporate hereditary dynamics 
in models of cognitive problem solving at a faster scale that could 
be provided by, say, structural plasticity (cf. 37). This fast-scale  
dynamics is missing from Edelmanian Neural Darwinism.

The patterns represent candidate hypotheses or candidate solu-
tions to a problem, which are evaluated based on a fitness func-
tion that measures their goodness as a solution. The best patterns 
are selected and copied (with variation) back to the networks, 
which in turn generate the next generation of patterns (Figure 1B). 
Stored patterns constitute the long-term memory; output patterns 
constitute the working memory (Figure 1B). While pattern  
generation is a simple recall task, which is only able to reproduce 
previously learnt patterns, the whole system is able to generate  
new variants due to noisy recall, spurious patterns (see later), 
noisy copying of patterns, and iterative learning, thus enabling the  
evolution of novel solutions.

Methods
Recurrent attractor networks. The basic units in our model 
are attractor networks. Attractor networks are recurrent neural  
networks consisting of one layer of units that are potentially 
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Figure 1. A) Architecture of multiple attractor networks performing Darwinian search. Boxed units are attractor networks. Each network 
consists of N neurons (N = 5 in the figure, represented as black dots). Each neuron receives input from the top (1) and generates output 
at the bottom (2). Each neuron projects recurrent collaterals to all other neurons (but not to itself), forming thus N × (N – 1) synapses. The 
weight matrix of the synapses is represented here as a checkerboard-like matrix, where different shades indicate different weights on the 
connections. Selection and replication at the population level is as follows: 1) Each network receives a different noisy copy of the input 
pattern. 2) According to its internal attractor dynamics, each network returns an output pattern. 3) All output patterns are pooled in the 
implicit working memory (grey box with dashed outline), where they are evaluated and a fitness wi is assigned to the i th pattern. 4) The best 
pattern(s) is selected based on fitness. 5) One of the networks is randomly chosen to learn the pattern that was selected, with additional noise 
(dashed arrow). 6) The selected pattern is copied back to the networks as input to provoke them to generate the next generation of output 
patterns. B) Lifecycle of candidate solution patterns during a cognitive task. Patterns are stored in the long-term memory as attractors 
of autoassociative neural networks. When provoked, networks produce output patterns, which are stored in implicit working memory. These 
patterns are evaluated and selected. Patterns that are good fit to the given cognitive problem can increase their chance to appear in future 
generations in two possible, non-exclusive ways: 1) selected patterns are retrained to some networks (learning) and 2) selected patterns are 
used as inputs for the networks (provoking). The double dynamics of learning and provoking ensures that superior solutions will dominate 
the system. Erroneous copying of patterns back to the networks for provoking and learning and noisy recall are the sources of variation (like 
mutations).

fully connected. An attractor neural network produces the same 
(or highly correlated) output whenever the same input is provided 
(omitting retraining). The pattern that was learned becomes the 
attractor point of a new basin of attraction, i.e. it is the prototype 
pattern that the attractor network should return. Consequently, an 
attractor with a non-zero sized basin should also return the same  
output to different input patterns. However, the amount and 
type of correlation of input patterns that retrieve the same pro-
totype, i.e., the actual structure of the basin of attraction, is hard 
to assess, let alone visualize. Still, it is safe to assume that most 
input patterns correlated with the prototype, produce the same  
output – the prototype itself.

The Hopfield network is a recurrent artificial neural network with 
binary neurons at nodes and weighted connectivity between nodes, 
excluding self-connections. According to the usual convention, the 

two states of binary neurons are +1 and -1. In our model, a neuron 
fires (state +1) if the total sum of incoming collaterals is greater 
than 0. Accordingly, the update rule has the following form:

1( )
( 1) sgn ( ) .

N

ij ji
j i

x t w x t
= ≠

 
 + =  
 

∑

The original Hebbian (covariance) learning rule has the following 
form (where m is the index of the patterns):
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The Hebb rule is both local and incremental. A rule is local if the 
update of a connection depends only on the information available 
on either side of the connection (including information coming 
from other neurons via weighted connections). A rule is incre-
mental if the system does not need information from the previ-
ously learnt patterns when learning a new one, thus the update 
process uses the present values of the weights and the new pat-
tern. The above update rule performs immediate update of the 
connection weights (“one shot” process; not a limit process 
requiring multiple update rounds). The covariance rule has a 
capacity of 0.14 N58. However, if during learning the system 
reaches its capacity and further patterns are presented, catastrophic 
forgetting ensues and the network will be unable to retrieve any 
of the previously stored patterns, forgetting all it has learnt.

To overcome this problem and to preserve the favorable properties 
of the covariance rule (one-shot, local and incremental updating) 
Storkey has introduced a palimpsest learning scheme41 as follows:

1 1 1 1
ifm m m m m m m m

j i j jij ij i iw w h h i j,
N N N

ξ ξ ξ ξ−= + − − ≠

             0 ifm
ijw i j,= =

and

1

1
.

N
m m m
i ik k

k
h w ξ−

=
=∑

Using the above rule, the memory becomes palimpsest (i.e. new 
patterns successively replace earlier ones during learning) with 
a capacity of C = 0.25 N (for details and proper definition of  
palimpsest capacity, see 41).

An interesting feature of some autoassociative neural networks is 
the appearance of spurious patterns. In some cases, the network 
converges to a pattern different from any other patterns learnt 
previously. These spurious patterns can be the linear combination 
of an odd number of stored patterns:

1 2spur sgn ...( )m m ms
i i ii ,ξ ξ ξ ξ=± ± ± ±

where S is the number of the stored patterns58. This effect can be 
thought of as an effective implementation of a neuronal recombina-
tion operator.

Selection. For the selection experiment, we used N
A
 structurally 

identical attractor networks, each consisting of N neurons, imple-
menting Storkey’s palimpsest learning rule. N

A
 = 20 networks  

(N = 200) were initially trained with random patterns plus a  
special pattern for each. The 20 special training patterns were as 
follows. The worst special pattern was the uniform -1, the best 
special pattern was the uniform +1. Intermediate special patterns 
had increasing number of +1-s from the left. Fitness was measured 
as the relative Hamming similarity from the globally best target  
O

target
 (i.e. the proportion of +1-s in the pattern). The worst special 

pattern was trained only to network #1, the second worst to #2, 
etc., while the best special pattern (which was the target pattern) 
was trained to network #20. In this scenario, no further training  
occurred (i.e., the dashed arrows on Figure 1 are not there). 

Assuming that the attractor basins of these patterns overlap 
among networks (Figure 2A) the output of one network will be the 
cue to trigger one or more close special patterns in other networks. 
The special patterns ensure that there exists a search trajectory 
leading from the worst to the best pattern. Starting from any 
arbitrary initial pattern, if any of the special patterns gets triggered 
at any time, the system can quickly converge to the optimum.

After initial training, each network received the same random  
input and generated an output according to its internal attractor 
dynamics. The output population was evaluated and the best output 
O

best
 was selected based on its fitness. Noisy copies (with μ

I
, where 

Figure 2. Schematics of attractor networks searching for the 
global optimum. A) Four time steps of selection, from top to 
bottom. At each step, we only show the network that produces the 
best output (numbered); the rest of the networks are not depicted. 
In each time step the networks are provoked by a new pattern that 
was selected from the previous generation of patterns. Different 
attractor networks partition the pattern-space differently: blobs 
inside networks represent basins of attraction. At start, the topmost 
network (#3) is provoked with an input pattern. It then returns the 
center of the attractor basin which is triggered by the input. When 
the output of this network is forwarded as input to the next network 
(#11), there is a chance that the new attractor basin has a center that 
is closer to the global optimum. If there is a continuity of overlapping 
attractor basins through the networks from the initial pattern (top) to 
the global optimum (bottom), then the system can find the global 
optimum even without learning. B) Learning in attractor networks. 
Network #5, when provoked, returns an output pattern that is used to 
train network #9 (blue arrow). As the network learns the new pattern, 
the palimpsest memory discards an earlier attractor (with the gray 
basin), a new basin (purple shape) forms around the new prototype 
(purple ×) and possibly many other basins are modified (basins 
with dotted outlines). Black dots indicate attractor prototypes (i.e. 
learnt patterns). With learning, successful patterns could spread in 
the population of networks. Furthermore, if learning is noisy and a 
network might learn a slightly different version of the pattern, new 
variation is introduced to the system above the standing variation. 
This allows finding the global optimum even if it was not pre-trained 
to any network. The gray arrow in the background indicates the 
timeline of network #9.
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μ is the per-bit mutation probability) of O
best

 were redistributed for 
each network as new input for the next generation. These steps 
were iterated until fitness reached the theoretical optimum (i.e. the 
system found special pattern #20). The crucial assumption for 
selection to work is continuity, namely the possibility that the out-
put of one attractor of one network could fall in a different attrac-
tor basin of another network returning an output that is closer to 
the global optimum than the input was (see Figure 1 and Figure 2).

Evolutionary optimization on a single-peak landscape. In con-
trast to purely selective dynamics, in the evolutionary experiment, 
networks could learn new patterns during the search process. At 
start, each network was trained with a different set of random pat-
terns. The fitness of a pattern is defined as the relative (per bit) 
Hamming similarity between the given pattern and an arbitrarily 
set globally best target pattern O

target
. The selection process for the 

actual best output O
best

 and redistribution of its noisy copies (with 
μ

I
 = 0.005) for input was the same as before. Most importantly, 

the mutated versions (with μ
T
 = 0.01) of O

best
 were also used for 

retraining N
T
 different networks in each generation (see Figure 1): 

this forms the basis for the Darwinian evolutionary search over 
attractor networks, as it allows for replication with variation of 
(learnt) patterns over networks (thin lines in Figure 3).

We have compared the search behavior of our system of  
attractor networks with a simpler model. In this model networks 
were represented as abstract storage units, which could store  
exactly C

fix
 patterns (C

fix
 was set to be close to the actual capacity 

of networks). When such a storage unit receives an input pattern 
it simply returns the closest (in Hamming distance) of its stored 
patterns as output, with additional noise (μ

O
 = 0.001). The units 

simulate the almost perfect recall property of attractor networks 
and effectively approximate attractor behavior. We compared 
evolution in this simple model with evolution in the system of 
attractor networks (thick and thin lines in Figure 3).

Optimization in a changing environment. In order to test the 
effect of memory on successive search, we have implemented a 
periodically changing selective environment, i.e., we periodically 
changed the fitness function. The environment alternated between 
E

1
 and E

2
, with a stable period length of T

E
 = 2000. Each envi-

ronmental change reset the global optimum: for this scenario, we 
assumed a uniform +1 sequence for E

1
 and its inverse, uniform -1 

for E
2
 as global optima, and used the relative Hamming similarity 

as a fitness measure.

In the first phase of the simulation, networks were allowed to  
learn in each environment for a total of T

nolearn
 = 12000 generations 

(three periods per environments). Afterwards, learning was turned 
off to test the effect of memory. To make sure that the optimal  
pattern was not simply carried over as an output pattern from the 
previous environment but was recalled from memory, the input  
patterns were set to random patterns (instead of inheriting the  
previous output population) at the start of each new environmen-
tal period after T

nolearn
. This ensures that the population could only 

maintain high fitness afterwards in an environment if the optimum 

Figure 3. The effect of retraining on the speed of evolution. Lines represent the evolution in four different populations, where a different 
number of networks were retrained. Each population consisted of 10 networks (see the rest of the parameters under the Methods section). 
Thin lines: stochastic attractor dynamics; thick lines: simulated attractor dynamics (abstract networks always return the stored attractor 
prototype that is closest to the actual input, with 0.001 per bit probability noise; capacity to store Cfix = 30 patterns, μO = 0.002). Parameters: 
N = 200, NA = 20, μT = 0.01, μI = 0.005, elitist selection, keeping the best one only from each output generation; retraining selects random 
networks (never the same in a given generation). Fitness is the relative Hamming similarity to the global optimum.
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was stored and could be successfully recalled (see Figure 4). In 
order to assess the memory of a network, we also measured the 
distance between the actual best output of the population and the 
closest one of the set of previously learned patterns within the same 
network (as different networks have different training history). A 
small distance indicates that the network outputs a learned pattern 
from memory (i.e. recalls it) instead of a spurious pattern.

For this scenario, we introduced a different selection method  
(also used in the next section). Each network in the population  
produces an output according to its internal attractor dynamics and 
the input it received from the previous generation. From all output 
sequences one was randomly chosen and mutated (µ

R
 = 1/N per bit 

mutation rate). If the mutant had a higher fitness than the worst of 
the output pool, the worst pattern was replaced by it (elimination 
of the worst). Furthermore, in the case of a superior mutant, it 
was also trained to N

T
 number of different networks. Lastly, the 

resulting output population is shuffled and fed to the networks 
as input in the next generation (except when the environment 
changes and input is reset externally).

Optimization on a difficult landscape. To investigate the  
applicability of this optimization process, we adopted a complex, 
deceptive landscape with scalable correlation, and also modified  
the selection algorithm introduced above. We used the general 
building-block fitness (GBBF) function of Watson and Jansen38. 
According to the GBBF function, each sequence of length N 
is partitioned into blocks of uniform length P, so that N = P B  

(P, B ∈ Z+) where B is the number of blocks. For each block, L  
arbitrarily chosen subsequences are designated as local optima, 
with randomly chosen but higher-than-average subfitness values. 
The overall fitness F(G) of a pattern G (“genotype”) is as follows:

1
( ) ( )

B

i
i

F G f g ,
=

=∑

where f(g
i
) is the fitness contribution of the ith block in the  

pattern, t
j
 is the jth local optimum of length P (all L different optima 

are the same for each block in our experiments) with subfitness 
value w

j
 > 1, and d is the Hamming distance. Consequently, this 

landscape has many local optima, a single global optimum and 
a highly structured topology. Furthermore, since there are no 
nonlocal effects of blocks, each block can be optimized independ-
ently, favoring a metapopulation search.

Accordingly, in this experiment, we introduced multiple popula-
tions of attractor networks. Each population of N

A
 attractor neural 

networks forms a deme and N
D
 demes are arranged in a 2D square 

Figure 4. Fitness and recall accuracy over periodically alternating environments. Blue: average fitness; green: best fitness; purple: 
distance of the best output of the population from the closest one stored in memory (for details, see main text). Grey and white backgrounds 
represent the changing environment: We alternated two global optimums at every 2000th generation. After the 12000th generation, we 
turned off learning (thick vertical line) and set the input to random patterns after each changing of the environment. Parameters: NA = 100,  
N = 100, NT = 40, fitness is the relative Hamming similarity to the actual optimum.

1
( ) ( )j

L

i i
j

f g c g ,t ,
=

=∑

( )
( )if 0

–1 otherwise1 ,
( )

j
j

j

w , d g,tj
d g,t
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+
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lattice of Moore neighborhood (all of the eight surrounding demes 
are considered neighbors). Demes might accept output sequences 
from neighboring demes with a low probability p

migr
 per selection 

event; this slow exchange of patterns can provide the necessary 
extra variability for recombination. These demes correspond to the 
groups of columns in the brain.

Networks in the deme are the same as those used in previous  
experiments. However, selection is modeled in a different way, 
similar to the selective dynamics outlined in 38. In turn, we only 
give a brief description. Given a deme, each network produces an 
output according to its internal attractor dynamics and the input 
it received from the previous generation. Output sequences are  
pooled and either one or two is randomly chosen for mutation 
or recombination, respectively (i.e. no elitist selection). With  
probability p

rec
, two-point recombination is performed of the 

two selected partners, with 1-p
rec

 probability, a single selected 
sequence is mutated, with µ

R
 = 1/N per bit mutation rate. With p

migr
  

probability, the recombinant partner is chosen from another  
neighboring deme instead of the focal one. Next, the output(s) of 
recombination or mutation are calculated: if the resulting sequence 
(any of the two recombinants or the mutant) has a higher fitness 
than the worst of the output pool, it is replaced by the better one 
(elimination of the worst). Furthermore, in the case of a superior 
mutant or recombinant, it is also trained to N

T
 number of different 

networks within the deme. Lastly, the resulting output population 
is shuffled and fed to the networks as input in the next generation. 
Each deme is updated in turn according to the outlined method;  
a full update of all networks in all demes constitutes a generation 
(i.e. a single time step).

The GBBF landscape was set up identically to the test case in 38,  
as follows. For each block uniformly, two target sequences of 
length P, T

1
 and T

2
, were appointed. T

1
 is the uniform plus-

one sequence T
1
 = {+1}P and T

2
 is alternating between -1 and 

+1 (T
2
 = {-1, +1}P/2). According to the fitness rule (Equation 5– 

Equation 6 in 38 and Equation 1–Equation 3 above), the best  
subfitness of each block in a sequence can be calculated and 
the sum of all the subfitness values is the fitness of the global 
optimum sequence. Thus for sake of simplicity, we used relative  
fitness values with the global optimum (the uniform +1 sequence) 
having maximal fitness 1. The sequence(s) with lowest fitness 
always have a nonzero value.

The source code of all models and data presented in this paper is 
freely available as a supplement to this paper.

Results
Selection. We should distinguish between two processes: (i) search 
without learning among the stored patterns to find the best avail-
able solution (i.e., selection without step 5 on Figure 1A), and 
(ii) search with learning: retrain one or more networks with the 
selected and mutated patterns (Figure 1A with step 5). The first 
is a purely selectionist approach because it cannot generate 
heritable variants, while the second implements Darwinian evolu-
tion because learning changes the output behavior of the networks, 
thus they generate new patterns. First, we analyze the strictly selec-
tionist version, and then the evolutionary version of the model.

In the selectionist version we pre-trained each network with a 
random set of patterns (excluding the target pattern) and started 
by provoking them with a different random input. Each network  
produced an output pattern according to its own attractors 
and then the best pattern was selected. This pattern was used in 
turn to provoke the networks in the next generation, and so on. This 
search has found among all the available stored (pre-trained) pat-
terns the one with the highest fitness; it could not find the global 
optimum, as the networks were not pre-trained with it and there was 
no way for new variants to appear in this simulation.

Next, we specifically composed the sets of pre-training patterns: 
each network was pre-trained with random patterns as before but 
also with one special pattern. This set of special patterns (in which 
individual patterns can be ordered according to gradually increas-
ing fitness values) delineate a route to the optimum through over-
lapping basins of attractors in different networks (see Figure 2A) 
so that we can test whether in this simplified case the algorithm 
converges quickly to the optimum. The first population was initi-
ated with the special pattern that was farthest from the optimum. 
We have found that the selected output gets closer to the opti-
mum in each generation, but the optimization process is saltatory: 
it skips over many intermediate neighboring special patterns (and 
thus networks). This is due to the fact that attractor basins of 
neighboring special patterns were highly overlapping. For exam-
ple, in Figure 2A, the stored special pattern of network #3 is in 
the basins of stored special patterns of networks #4–#11, and 
since the stored pattern of network #11 is closest to the optimum, 
networks #4–#10 were skipped. A typical sequence of networks 
generating the actual best output is: #3, #11, #17 and #20 (of 20 
networks; for actual parameters, see Figure 2A).

Evolution. Learning new patterns as attractors (Figure 2B) allows 
networks to adapt to the problem and perform evolutionary search. 
The results of the evolutionary experiments clearly prove that 
a population of attractor networks can implement evolutionary 
search in problem spaces of different complexity (i.e. different 
levels of correlation and deceptiveness).

Evolution on a simple fitness landscape. In this scenario, neither 
the global optimum nor a route toward it is assumed to pre-exist 
in the system as in the selectionist experiments: networks are pre-
trained only with random patterns. Even under these stringent con-
ditions, we have found that the system can converge to the global 
optimum, and this convergence is robust against a wide range of 
mutation rates. Our simplified abstract model, which always returns 
the stored prototype that is closest to an input, behaves qualitatively 
the same way (see Figure 3). The speed of convergence to the 
optimum is mainly affected by the number of retrained networks  
(Figure 3): as we increase the number of networks that are retrained 
we find a faster fitness increase, albeit with diminishing returns. 
Mutation has an optimal range in terms of the speed of evolution. On 
one hand, if mutation rate is too low evolution slows down, because 
there is not enough variation among patterns. On the other hand, if 
mutation rate is too high it hinders evolution as the offspring is too 
dissimilar to the parent and cannot exploit the attractor property of 
the system. When mutation rate is zero, the source of variation is 
only the probabilistic input-output behavior of the networks due to 
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their asynchronous update and the appearance of spurious patterns 
when the input is too far from the stored patterns.

While the attractor networks have memory, due to the monotonic, 
single-peak nature of the fitness landscape there is no need to use it: 
the system works almost equally well if the networks only store the 
last trained pattern (i.e., weights are deleted before each learning 
event). Next, we present experiments where both the attractor 
property and the palimpsest memory of the networks are used.

Evolution in a changing environment. In this experiment we 
alternated two environments: in every 2000th generation the target 
pattern (the optimum), against which fitness was measured, was 
changed. From an evolutionary point of view, this can be perceived 
as a changing environment, whereas from a cognitive point of 
view, this procedure simulates changing task demands. Figure 4 
shows that the system found and learnt the optima of each of the 
two environments separately. Then, after generation 12000, we 
switched off learning. The fact that networks are nevertheless able 
to recall the target pattern right after the environmental change 
proves that they use previously stored memories. After we switched 
off learning, we used random patterns to provoke networks at the 
first generation of each new environment. A single network that 
can recall the optimum from the random input is enough to pro-
duce a correct output that is amplified by selection for the next gen-
erational input, ultimately saturating the population with optimal 
patterns. This experiment effectively proves that a system of attrac-
tor networks can reliably recall earlier stored solution patterns, 
therefore solves the problem faster in an alternating environment 
than a system without long-term memory.

Evolution on a difficult fitness landscape. The previous evo-
lutionary experiment (where search was on a single-peak fitness 
landscape with a single population of networks) is a proof of 
principle of the effectiveness of our evolutionary algorithm. In 
order to assess the capacity of population search of attractor  
networks, we introduce a considerably harder fitness landscape 
with higher dimensionality, where the deceptiveness of the problem 
can be tuned. The GBBF fitness landscape of 38 provides a method 
to easily generate scalable and complex landscapes with many  
deceptive local optima. The complexity of the problem requires 
the introduction of multiple interacting populations of networks. 
Though explicit spatial arrangement of the networks is not required 
to solve the problem, we have nevertheless included it in our 
implementation to imitate real spatial arrangement of neurons in 
the brain. Locality allows the exchange of information among 
neighboring populations (i.e. recombination) that is essential 
to solve the GBBF problem (or similar deceptive problems) in a 
reasonable time.

We have investigated the performance of search in a metapopula-
tion with different problem sizes (pattern lengths; see Figure 5). 
Results indicate that despite the vastness of the search space, the 
metapopulation is always able to converge to the global optimum, 
given enough time. The most complex landscape of 100-bit  
patterns is of size 2100 with one global optimum and a huge number 
of local optima. The metapopulation consists of 105 neurons  
(100 populations of 10 networks each with 100 neurons per  
network) and can find the single global optimum in ~104 time 
steps. The limit of further increasing the problem size is in the 
computational capacity of our resources.

Figure 5. Convergence of the actual best fitness of the metapopulation with increasing problem size N on general building block 
function landscape. Each curve is an average of 10 independent iterations. ND = 10 × 10 demes, NA = 10 networks per deme, N neurons per 
network, patterns of length N are partitioned to blocks of size P = 10 (B = N/P blocks per pattern), prec = 0.1, µR = 1/N, pmigr = 0.004, NT = 5.  
Note the logarithmic x axis. Inset: single simulation at N = 80, B = 8 (other parameters are the same). Plateaus roughly correspond to more 
and more blocks being optimized by finding the best subsequence on the building-block fitness landscape.
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Discussion
Summary of results. Attractor networks can be used to imple-
ment selection, replication and evolutionary search. As a proof of  
principle, we showed that attractor networks find the global opti-
mum in a purely selectionist model (i.e. without learning) if they 
are pre-trained with attractors that overlap in their basins and lead 
to the optimum. The population can effectively select over the 
standing variation of all stored patterns and find the trajectory to the 
(single) peak of the fitness landscape (see Figure 2B). Furthermore,  
if learning is allowed during search, the relative frequency of 
good patterns (those closer to the optimum) can be increased by  
re-training networks with such patterns, so that they are stored in the 
long-term memory in more copies (Figure 3). Overwriting an older 
memory trace with a new pattern corresponds to a copying opera-
tion, potentially with mutations. A particularly interesting aspect 
of a population of attractor networks in the given coupling is that 
even if learning is not erroneous, the Lamarckian nature of inherit-
ance of patterns (as output → memory → output; see Figure 1B)  
means that there is room for heritable variation to emerge at other 
stages of the cycle, thus implementing Darwinian dynamics.

The explicit benefit of memory manifests in a periodically chang-
ing environment. In a single, stable environment, memory is not 
very useful because the attractor property acts against exploring 
variation, and networks might be even slower than gradient hill-
climbers (i.e. searchers who generate mutant output blindly and 
only take a step on the landscape if the output is better than the 
input). However, in a periodically changing environment, attrac-
tor networks with memory are able to recall the actual global 
optimum if they have already encountered the given environment 
in the past and stored its optimum; hill-climbers or naïve attractor 
networks lacking the necessary memory would have to perform the 
search all over again. Attractor network can recall the appropriate  
pattern even if there is no initial cue for the population to know 
which environment it is in. A network with memory can com-
plete a partial cue and thus can recall the global optimum. After 
learning has ceased, it is enough to only have a few networks in 
the population that can recall the optimum from random cues that 
are accidentally close to the actual optimum (maximal fitness is 
immediately 1 in the population, see green curve in Figure 4). 
Selection then simply amplifies these optimal output patterns in the 
population (as output is fed back as input in the next generation) 
until all networks receive optimal patterns as input. At that point, 
average fitness also reaches the maximum (Figure 4, blue curve). A 
network without memory would have to search for the new optima 
in each environment over and over again, finding the whole uphill 
path on the landscape.

We also proved that a metapopulation of attractor networks can 
successfully optimize on a complex, correlated landscape of higher 
dimensionality. This is a notoriously hard optimization problem  
(cf. 38) as hill-climbers can easily get stuck in deceptive local 
optima. The spatial organization of attractor networks resembles 
the spatial organization of neural structures of the cortex and it 
allows parallel optimization of subproblems. By this independent 
optimization of solution parts, local populations can exchange  
successful partial solutions with each other and form recombinants 
that are necessary to solve such complex problems in reasonable 
time.

Evolutionary context. We have chosen attractor networks to 
demonstrate Darwinian neurodynamics because (i) the search for 
existing solutions uses the same architecture for generating, testing 
and storing novel ones; (ii) stored patterns help evolutionary 
search by readily employing related past (learnt) experience, and 
(iii) the particular choice of Storkey’s model naturally results in 
some new recombinant patterns. This is an important point because, 
as we know from population genetics39, recombination speeds up 
the response to selection by creating new variants40.

Our choice of implementation of attractor networks, follow-
ing Storkey’s model41, is based on three important aspects: (i) it 
has palimpsest memory, so that it can learn new and forget old  
patterns without catastrophic forgetting, as happens in Hopfield 
and other networks; (ii) its attractors are roughly of equal size and 
are well-structured according to a Hamming distance measure, and  
(iii) unlike most other neural networks, it is able to store corre-
lated patterns. The downside is that these networks require full  
connectivity, which is neuronally unrealistic. However, its func-
tional properties reflect well what we know of long-term memory in 
the brain, which is enough for a proof or principle of an evolutionary 
implementation of neuronal function. To our knowledge no model 
exists in the literature that could satisfy all requirements above and 
that, at the same time, works with diluted connectivity42.

It is important to clarify that the units of evolution in our proposed 
Darwinian neurodynamics system are the activation patterns: 
they are copied potentially with errors, selected and amplified.  
However, patterns live in two stages: in the working memory and 
in the long-term memory (cf. Figure 1). This implies different 
inheritance methods (routes to pass on information) from what is 
expected in a purely genetic system. Changed attractor prototypes 
imply changed outputs, just like a mutated genotype implies a 
different phenotype. However, in our proposed system, changes 
made to output patterns (by mutation) can also be “inherited” by 
the stored attractor prototypes via learning. Furthermore, there is 
another difference in the dynamics, explained in turn.

Darwinian evolution is often described as a parallel, distributed 
search on a fitness landscape8. The population, as an amoeba,  
climbs the peaks of the landscape via iterative replication and  
selection in successive generations. The attractors, however,  
impose a different mode of evolution, because they simply return 
the prototype pattern closest to the input, even if it is less fit than  
the input pattern itself. Consequently, attractor networks work 
against variability and slow down hill-climbing. However, attractor 
networks resist fitness increase only half of the time on average;  
the other half of the time they effectively push inferior patterns 
uphill in the fitness landscape at a speed much higher than that 
expected for the same (reduced) amount of genetic variation.  
Consequently, attractor networks can facilitate evolution21.

We stress the importance of evolutionary combinatorial search. 
In cases where ab initio calculation of molecular functionality is 
impossible, artificial selection on genetic variants has proven to 
be an extremely useful method to generate molecular solution to  
functional problems, as experiments on the generation of catalytic 
RNA molecules (ribozymes) illustrate (see 43 for a recent review). 
By the same token when a brute force numerical calculation of a 
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combinatorial functionality problem is impossible for the brain, 
given the adequate architecture it could (and we suggest it does) 
use an evolutionary search mechanism, as shown in this paper.

Implementation in the brain. It is of primary importance that 
all the components in our ‘algorithmic diagram’ (Figure 1) can be 
implemented by mechanisms known in the brain. It is likely that 
the cortical hypercolumn44 behaves like an (at least one) attractor  
network. The reciprocal connections between the long-term 
and working memory networks are assumed to be like those in  
Figure 3 in 45. We propose that, first, the reinforcing signal from 
the basal ganglia via the thalamus keeps active the good candidate 
pattern solutions in the rewarded auto-associative network 
and, second, that the latter sends a copy of the active pattern to  
(unconscious) working memory for eventual redistribution. When 
there is an increase in the quality of a solution (fitness increase) or 
when a local or global optimum is reached, the central executive 
elicits the transmission of a copy of the solution to the conscious 
memory46.

Our proposed mechanism relies on information transmission 
of patterns between cortical groups and relevant subcortical  
structures with variation, and in this way it differs from all previ-
ous models. A discussion of timescales is in order. Without learning 
newly generated variants, the selective mode would require about 
the same time as suggested by 47 as the “cognitive cycle” (based 
on data), but without perception at the beginning of the cycle,  
i.e. it would be in the 160–310 ms range. In the evolutionary mode, 
learning of new variants is required which would take more time. 
A conservative estimate for the reliable expression of changed  
synaptic weights is between seconds to minutes48,49. The second 
scale would allow several dozen cycles/generations per minute—a 
very good number in artificial selection experiments. A more accu-
rate estimate of timing will require a fully neuronal model of our 
proposed mechanism.

Copying of information is necessary for evolutionary processes: 
this is where previous approaches22–24,50 have been too artificial. 
There are four well known instances where scholars invoke  
copying of information in the brain: (i) the transfer of information 
from short to long-term memory35,51,52, (ii) the transfer of infor-
mation from specialized cortical areas to working memory53 or 
to the global workspace54,55 and, finally (iii) the possible copying 
of patterns from working memory to conscious processing56.  
Undoubtedly, all these approaches require accurate information 
transfer between different brain components57.

There are three sources of variation in our system: (i) due to the 
finite size of our networks and asynchronous update of the neurons, 
the output patterns show some variation even if a network is  
repeatedly provoked by the same input pattern, (ii) acknowledging 
the noisiness of neuronal transmission we introduce variation akin 
to mutations when patterns are transmitted among the blocks of the 
model, and finally (iii) we have realized that “spurious patterns”58 
emerge as by-products of previously trained patterns and they  
might act as (new) recombinants of learnt patterns that facilitate the 
evolutionary search.

The non-conscious or implicit working memory, which has  
received considerable attention lately46,56, is crucial for our  
proposed mechanism. Irrespective of whether working memory 
overlaps with the conscious domain59 or not56 (in the latter case a 
‘conscious copy’ must be sent from working memory to conscious 
access), the important factor is that the bound on the number of 
patterns that can be held in the unconscious part of the working 
memory is larger than that of the conscious working memory59. 
In other words, our mechanism suggests that the total storage  
capacity of the unconscious network population is much higher 
than that of the conscious one. Crucially, there is support for this 
requirement: there is evidence that the central executive func-
tion of working memory is not restricted to the conscious domain  
either46. The relatively large capacity of (unconscious) working 
memory can hold not one, but several patterns selected by the  
cortex-striatum-basal ganglia loop. This type of selection can be 
realized by a winner-share-all (WSA) mechanism60.

The latter point requires special attention. The reader is referred 
to the recent review by 61 on models of action selection and  
reinforcement learning. We wish to make a few critical points in  
this regard. First, as we are considering problem solving that  
unfolds its capacity online, there is no reason to select one pattern, 
since the interim patterns are not alternative actions but only  
candidate solutions. They can be turned into actions sometimes  
during, or only at the very end, of the evolutionary search. Weak 
lateral inhibition within the evaluation mechanism enhances value 
differences in selection, but a single winner is not selected60,61.  
Second, parallelism of the evolutionary approach loses consider-
able power if the evaluations are not done in parallel, and if poor 
solutions cannot be replaced by better solutions in the storage.  
(In a subsequent study we shall show that the number of parallel 
evaluations are allowed to be considerably smaller than population 
size but also that purely serial evaluation of candidates is a killer). 
Third, it is perfectly possible that the WSA part is implemented 
by the cortex rather than the striatum (cf. 61): we are agnostic on 
this point for the time being. (Admittedly that option would require 
a different version of the full model). Fourth, we maintain that  
parallel survival of a number of candidates should happen, and 
the mechanism for this might have evolved with selection for  
complex (offline) problem solving. Fifth, it is well possible that 
WSA is gradually reduced towards WTA (one winner takes all)  
during evolutionary search in the brain: this would also guard 
against premature convergence early and fast convergence towards 
the end of the search.

To sum up, we have seen that a process analogous to natural  
selection can be rendered into a neuronal model employing known 
neurophysiological mechanisms. Now we discuss relations to  
some other publications and outline future work.

Related work. Several examples show that evolution with  
neurodynamics can be more powerful than either of the com-
ponents alone. Fernando et al.25 proved that the path evolution  
algorithm – which includes both elements of structural  
plasticity62,63 and iterative generation of variation – is more power-
ful in several regards than classical genetic algorithms. Fernando  
et al. have also shown that replication combined with Hebbian  
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learning is more powerful than classical natural selection in a 
model of mechanistic copying of binary activity22. De Vladar and 
Szathmáry provided proof that the synergy between selection and 
learning results in increased evolvability; also they pointed out that 
synaptic plasticity helps escaping impasses and build circuits that 
are tailored to the problem21. Finally, in a recent model Fernando 
and his colleagues have used autoencoders for the generation of 
“neuronal genotypes”64. Since autoencoders produce compressed 
representations of the input, we expect them to successfully replace 
the identity function (i.e. bit by bit copying, as in DNA replica-
tion). Indeed, applying this neural component within the context of 
a genetic algorithm turned out to be rewarding.

Unless the envisaged information transfer is accurate enough in 
space and time, the evolutionary dynamics breaks down. Similar 
to genetic evolution, where the error threshold17 had to be raised 
before long informative genomes could arise by evolving adap-
tations for more accurate copying65, in the neuronal context the 
element of accuracy was raised by Adams18. In his “Hebb and 
Darwin” paper Adams talks about synaptic replication and syn-
aptic mutation as important ingredients for a Darwinian view of 
the brain. Synaptic replication means either the strengthening of 
an existing synapse, or the making of a new synapse between two 
neurons that already have one synapse between them. Adams’ is 
an important insight: evolutionary dynamics does not need copy-
ing for selection (scoring or strengthening is enough), but it needs 
copying with errors to test the new variants against the others. 
Synaptic mutation happens when a neuron grows a synapse 
towards a neighboring neuron with which previously it had no 
contact. Interestingly, these thoughts preceded the burst of  
interest in structural synaptic plasticity (SSP,62,63). Following his 
expansion-renormalization model for SSP66 Kilgard observes 
that when SSP is used for learning something new, this could be 
regarded as a Darwinian mechanism37, as it generates and tests 
variations in successive rounds, based on what is already there 
(unlike the original models of “neural Darwinism”). Kilgard’s 
mechanism has not been formalized yet (although see 21), but the 
path evolution model25 bears some relationship to it.

We share the view of Eliasmith53 that the cortex/basal ganglia/
thalamus/cortex loop plays a crucial role not only in elementary  
action selection but also in symbolic reasoning. We conjecture that 
non-primate animals (in particular mammals and birds) employ the 
same (or at least an analogous) loop in order to retrieve old and to 
innovate new solutions, in a similar way as we have shown using 
our elementary model.

Another view to which we feel strongly related to is that of 
Bayesian models that advocate “theory learning as stochastic 
search in a language of thought”27. We are reasonably confident 
that we have found a candidate mechanism for the search proc-
ess. If true, the rugged learning landscape in Figure 3 of 27 can 
be directly interpreted as the fitness landscape of our neuro- 
evolutionary model. A task for the future is to work out the 

explicit relations in detail. We note again the formal link between  
Bayesian inference and evolutionary selection31,32 mentioned in 
the Introduction. Our mechanism (Figure 1) could in principle  
implement, with appropriate modifications, an estimation of  
distribution algorithm (EDA). The population-based incremen-
tal learning (PBIL) algorithm consists of the following steps67:  
(i) Generate a population from the probability vector; (ii) Evalu-
ate and rank the fitness of each member; (iii) Update the probabil-
ity vector based on the elite individual; (iv) Mutate the probability  
vector; (v) Repeat steps (i-iv) until a finish criterion is met. EDA 
can work better than copying algorithms making it an interesting 
line to pursue.

Future work will be to link our recurrent model with the 
feedforward autoencoder model of Fernando et al.64, since the latter 
can generate interesting genotypes (better substrates for selection) 
due to the emerging compressed representations of the inputs.

As two experts aptly remark: “The Bayesian brain falls short in 
explaining how the brain creates new knowledge” (68 p. 9). We 
suggest that neuronal evolutionary dynamics might serve as a  
remedy.
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 László Acsády
Laboratory of Thalamus Research, Institute of Experimental Medicine, Hungarian Academy of Sciences,
Budapest, Hungary

This is a truly enlightening and thought provoking paper which utilizes Darwinian logic to explain neuronal
network dynamics. The manuscript is a nice example of how approaches in a different discipline
(population genetics) may yield fresh insights into age old problems of neuroscience.
I have the following notes, suggestions and questions to the authors.

Introduction:
One drawback of the paper is that the parallelism between genetic and neuronal Darwinism is not
made clear right at the onset. We should be aware of what the authors mean by parent, offspring,
multiplication, mutation, selection in case of neuronal activity right from the beginning in order to
follow the logic of the paper.

Results:
I miss the clear demonstration of the “Selection” experiments showing that it is not able to find the
global optimum (e.g as an additional panel to Fig 2). I also think we need some form of
quantification here, how many simulations were run, how significant the result was…etc.etc
 
I also miss the formal demonstration of the effect of mutation rate on the speed of evolution. Since
this is a crucial concept, I would dedicate a separate figure for that.
 
I would like to see, how implementing palimpsest memory affects the performance of the model
and how this depends on whether the system use dense or sparse coding. Presently this is only
briefly mentioned in the Method section, but since this may have important implications it may be
good provide some more details. Intuitively, more sparse coding may tolerate the lack of
palimpsest memory.
 
Neuronal noise considered as “mutation” in the model is enlightening. Still, I feel there are some
basic differences here. During evolution genetic mutations can get stabilized when they reach the
global optimum whereas neuronal noise is inherent to the system and not necessary change with
evolution. Can it be demonstrated or is there any evidence that neuronal noise decreases as the
system approaches the optimum state?
 

What were the connection weights of the recurrent (i.e. new input) patterns relative to the weights
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What were the connection weights of the recurrent (i.e. new input) patterns relative to the weights
of the local, autoassociative connections? Can the model perform better/worse by changing the
relative weights of these connections? Note that many original autoassociative models worked with
a “detonator” synapse as an input and weaker local connections .

Discussion:
I would not necessarily constrain the model to implicit memories. I think “implicit” here refers to the
unconscious effort to recall the best target pattern not to type of memory item to be recalled. The
term “implicit memory” evokes mainly procedural memories and indeed the authors place the
model in the cortex-basal ganglia loop. I don’t see why recall of an episodic memory trace by the
CA3 recurrent network cannot follow the same evolutionary logic even though hippocampal
memories are not considered as “implicit”.
 
In the cortex-basal ganglia-thalamus loop, it is not really known how exactly the cortical output will
affect the return signal from the thalamus but, in any case, the signal goes through significant
dimension reduction  and the final output of basal ganglia may also affect thalamic firing in
different ways  (i.e it is “mutated” a lot). The question is, how the properties of the model network
changes if the final output is not directly fed back to the system but undergoes various (but
consistent) signal transformation.

Minors:
I miss the definition of “best pattern”. Can this term be equated with “pattern with highest fitness”?
 
I would also support a short glossary with the neurobiological relevance of the crucial ecological
concepts (fitness, generation, landscape, mutation).
 
I guess subheadings in the Results section are not appropriate. “Selection” and “Evolution” are the
two main subheadings and all the others are subsections of the “Evolution” section.
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I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:
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This article continues the important effort of the authors and their colleagues to advance a line of research
capable of fleshing out the somewhat vague concept subsumed under the heading Neural Darwinism.
While the general idea that subtle functions of the brain involve Darwinian features has persisted over the
last 40 years (beginning with Changeux et al. ) an up-to-date synthesis has been lacking and the authors
are to be congratulated for their sustained effort to achieve this goal. Part of the difficulty encountered is
related to ambiguities concerning exactly what features of neo-Darwinism so successfully applied to
population genetics and molecular biology, can be imported into concepts of neuroscience. In the present
effort, many terms from the classical Darwinian literature are invoked, but how they are translated from
population genetics to computational neuroscience is not always clear. In this respect a glossary could be
very helpful, which would include the classical definition and the neural application, as applied for
example to terms such as: replication, hereditary variation, breeding, fitness, mutation, deme, generation,
Lamarckian, etc. In particular, the hallmark of fitness in evolution is expansion of population size, but
whether and how this criterion is applicable in neuroscience should be addressed.

A second challenge is to define the level at which Darwinian principles are applied. More explicit attention
could be given to dendritic spines (an obvious target for LTP, STDP), axonal pruning (see for example
Kolodkin and Tessier-Lavigne ), or neural circuitry. Cortical columns are invoked in passing, but should
be evaluated in more detail. Each of these levels is stochastic in some respects, but to what extent does
the variation implicit in neural Darwinism require additional mechanisms? Concerning the results
presented for the various simulations performed, several valuable points were raised in the comments by
Karl Friston. In addition, it would be helpful to make clearer connections with respect to the putative
neuronal structures simulated. For comparison, the recent success of deep learning algorithms should be
considered, in so far as they do or do not mimic Darwinian mechanisms of the brain. Moreover, since a
global optimum is set for the simulations, what criteria would establish optimality in a natural Darwinian
system within the brain? Finally, what is the relationship of the high number of “generations” (20,000 in
Figure 4) to putative neuronal processes?

Overall, describing neuronal activity using Darwinian terminology is a double-edged sword. On the one
hand, a thorough application of Darwinian principles to brain science involves many one-to-one
correspondences that must be clearly articulated. On the other hand, since the words are familiar, their
usage carries immediate associations that can obscure understanding and become an ambiguous jargon.
It would be hard to over-estimate the difficulty of finding the right balance, especially for scholars already
immersed in the quest and possessing their own specific understanding of terms employed. Therefore,
navigating through these troubled waters, requires extreme vigilance of language, and an addition effort
by the authors in preparing their final version would be extremely helpful.
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 Karl Friston
Wellcome Trust Centre for Neuroimaging, University College London, London, UK

This is a thought provoking simulation study of Darwinian neurodynamics. It uses populations of attractor
networks to illustrate the distinction between purely selectionist and evolutionary optimisation. This
demonstration rests upon the dynamical instability of the neuronal networks considered – and the explicit
introduction of variation or mutations in graduating from a selectionist to an evolutionary scheme. The
paper is rather dense and I do not pretend to follow all the subtleties and nuances; however, the basic
ideas are compelling and are described with sufficient clarity and detail for the interested reader to
understand. There are a few points of clarification that I think you could attend to. In addition, there are
some minor grammatical improvements you could consider. 
 
Major points

I think you need to overview your simulations so that the reader knows where you are going. I
would recommend something like:

“We will present a series of simulations graduating from purely selectionist schemes to
evolutionary schemes in the face of a changing environment. In the first set of simulations we
preclude variation in transmission over generations to examine the sufficiency of dynamical
instabilities in supporting a selective process. This involves taking the outputs of one neural
network and using them (after selection) to train another network. In the second set of simulations,
we consider evolution proper and the transmission of patterns from generation to generation. Here,
the patterns that are transmitted are subject to mild mutations (and selection) to illustrate the
efficiency with which optimal (high adaptive fitness) patterns emerge.”
 
I think you need to explain simply what is being optimised in your simulations. I would suggest
something like: 

“In what follows, we will treat a pattern of activations over binary neurons as the unit of selection. In
the general case, the adaptive fitness of this pattern may be some complicated function that is
contextualised by the current inputs and may or may not be a function of the history of inputs and
outputs. To keep things simple, we will just consider the fitness of a pattern in terms of its hamming
distance to some target pattern. This means, we are effectively using selectionist and evolutionary
schemes to optimise the connections (and ensuing dynamics) to recover a target pattern.”
 
When talking about the utility of dynamical instability in providing a basis for selection, you might
want to refer to the work of Ivan Tyukin and colleagues , . These authors have studied chaotic
systems in the context optimisation – and their neuronal counterparts.
 
At the end of your discussion, I think you can usefully pursue the Bayesian brain hypothesis. I
would suggest something like:

“In fact, there may be a deep connection between the selectionist dynamics illustrated in this paper
and the Bayesian brain. This follows from the fact that the Bayesian brain can use Bayesian model
selection to identify its most plausible hypotheses about the world. In this sense, the selective

mechanisms we have demonstrated become Bayesian model selection, if we use marginal
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mechanisms we have demonstrated become Bayesian model selection, if we use marginal
likelihood or variational free energy as adaptive fitness. See for example Sella and Hirsh, 2005
and Friston, 2013 . Crucially, the evolutionary role of mutations and variations provides the extra
ingredient required for structure learning; namely the elaboration of a model or hypothesis space."

Minor points
 
Page 3:

Replace "Bayesian update" with "Bayesian updates". 
You might want to add a footnote about reentry and neural Darwinism when you say that “this fast
scale dynamics is missing from Edelmanian neural Darwinism.” I suspect that Edelman considered
variation an important aspect of neural Darwinism and that this was mediated by reentrant
dynamics that shows the dynamical and structural instabilities that you refer to.  

Page 5 and throughout:
Replace "was trained only to" with "was presented only to". 

Page 5:
Replace "this allows finding the global" with "this allows the system to find". 
Replace "system above the", with "system above and beyond the". 
I would say “… can quickly converge to the optimum – providing the output of each network is
delivered to the appropriate network that successively converges on the global optimum.”.

Page 6:
Replace "at start" with "at the start".
I would remove the simulations based upon the simpler model (i.e. the thin lines in Figure 3). These
simulations and their description do not add much to the text – or any insight. It would be less
distracting if these simulations and their discussion were removed.

Page 8 and throughout:
Replace "provoking them" with "perturbing them". 
Replace "performed of" with "performed in". 

Page 8:
It would be useful to mention the (Stuart Kauffman) notion of second order selection and selection
for selectability (or evolvibility). In other words, you should discuss the optimisation of the mutation
rates in relation to the volatility of the environment. 

Page 9:
Replace "solves the problem" with "solving the problem". 

Page 10:
Replace "networks in the given" with "networks under the given". Later replace "attractor network"
with "attractors networks". Later replace "works with diluted" with "work with diluted". Finally,
replace "explained in turn" with "explained next". 

 
I hope that these comments help should any revision be required.
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