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 38 

ABSTRACT 39 

The evolutionary equilibrium hypothesis was proposed to explain variation in egg rejection 40 

rates among individual hosts (intra- and interspecific) of avian brood parasites. Hosts may 41 

sometimes mistakenly reject own eggs when they are not parasitized, i.e. make recognition 42 

errors. Such errors would incur fitness costs and could counter evolution of host defences 43 

driven by costs of parasitism, i.e. creating equilibrium between acceptors and rejecters within 44 

particular host populations. Here, we report disappearance of host eggs from non-parasitized 45 

nests in populations of 7 European passerine species. Based on these data we calculate the 46 

magnitude of the balancing parasitism rate given that all eggs lost are due to recognition 47 

errors. Importantly, since eggs are known to disappear from nests for other reasons than 48 

erroneous host rejection, our data represent maximum estimates of such costs. Nonetheless, 49 

disappearance of eggs was rare events and incurred low costs compared to the high costs of 50 

parasitism. Hence, costs due to recognition errors are probably of minor importance as 51 

opposing selective pressure to evolution of egg rejection in most hosts. We cannot exclude the 52 

possibility that intermediate egg rejection rates in some host populations may be caused by 53 

spatiotemporal variation in occurrence of parasitism and gene flow, creating variable 54 

influence of opposing costs due to recognition errors and costs of parasitism. 55 

 56 

KEYWORDS: Co-evolution; cuckoo; fitness cost; host defence; host-parasite interactions; 57 

disappearance of eggs 58 

59 
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INTRODUCTION  60 

In hosts of avian brood parasites, costs of parasitism impose strong selection for evolution of 61 

defensive traits because successful parasitism in many cases leads to total loss of host 62 

reproductive output. Therefore, many hosts have evolved fine-tuned egg rejection abilities, 63 

which in several cases have been countered by parasites evolving mimetic eggs (e.g. Payne, 64 

1967; Brooke & Davies, 1988; Davies & Brooke, 1989a; Moksnes et al., 1991; Antonov et al. 65 

2006a; Starling et al. 2006; Spottiswoode & Stevens 2010; Stoddard & Stevens, 2010, 2011; 66 

Begum et al.,  2011). In some species, there is apparently no variation in rejection abilities 67 

either within or between populations, and rejection rates are more or less fixed at 100% (i.e. 68 

all individuals are capable of rejection) as long as the appearance of the parasitic egg is 69 

cognitively recognizable for the individuals in question (Stokke, Moksnes & Røskaft, 2005). 70 

However, even rejection rates of non-mimetic eggs are only moderate in several other host 71 

species, often showing prominent temporal and/or spatial variation (Brooke, Davies & Noble, 72 

1998; Soler et al., 1999; Stokke et al., 2008), relying on additional cues other than egg 73 

appearance when deciding to reject parasitic eggs (i.e. conditional responses (Brooke et al., 74 

1998; Davies, 2000)). Such co-occurrence of acceptors and rejecters (either as fixed or 75 

flexible strategies) within a single host population is often explained by costs of making errors 76 

in recognition and rejection of foreign eggs, which could outweigh the benefits of egg 77 

rejection under specific circumstances (Rothstein, 1982a; Marchetti, 1992; Lotem, Nakamura 78 

& Zahavi, 1995; Davies, Brooke & Kacelnik, 1996; Takasu, 1998). Specifically, host 79 

individuals attuned to reject foreign eggs may mistakenly reject one of their own eggs in nests 80 

that are not parasitized (Stokke et al., 2005; Røskaft et al., 2002a). These costs obviously 81 

have fitness consequences because the resulting clutch size will be smaller than the optimal 82 

one. In theory, such errors are most likely to occur in hosts that have high variation in egg 83 

appearance within clutches (Davies & Brooke, 1989b; Lotem et al., 1995; Stokke et al., 84 
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2007), making it difficult for hosts to recognize and hence reject parasitic eggs. Thus, if 85 

parasitism rates are low or variable, the costs of making recognition errors could sometimes 86 

potentially be higher than the costs of parasitism. Such a scenario could result in equilibrium 87 

between acceptors and rejecters within particular host populations or, if costs due to 88 

recognition errors and rejection costs are high, even lead to acceptance being the optimal 89 

strategy (the evolutionary equilibrium hypothesis, Lotem & Nakamura, 1998). 90 

However, the importance of recognition errors as an opposing selective force to egg 91 

rejection, at least in hosts of evicting parasites, has been questioned (Røskaft et al., 2002a; 92 

Stokke et al., 2002a). In brood parasites like honeyguides (Indicatoridae) and cuckoos 93 

(Cuculidae), the parasitic chick gets rid of all host eggs or young from the nest soon after 94 

hatching (Davies, 2000; Anderson et al., 2009, Grim et al., 2009; Spottiswoode & Koorevaar, 95 

2012), enforcing high costs on host reproduction and hence strong selection for evolution of 96 

defences against parasitism, depending on the level of parasitism. Furthermore, estimating 97 

occurrence of recognition errors is not straightforward. It is well known that partial egg losses 98 

may be due to other causes than erroneous ejection of own eggs, like e.g. jostling or partial 99 

predation (e.g. Rothstein, 1982b; Lerkelund et al., 1993). Hence, only constant monitoring of 100 

nests throughout the egg laying and incubation period can provide us with evidence for the 101 

occurrence of recognition errors. Without such monitoring, we cannot rule out the possibility 102 

that eggs may disappear for other reasons than erroneous host rejection and estimates of such 103 

costs are therefore in many cases likely to be higher than what is actually the case. 104 

 The objective of the present study is to report the disappearance of own eggs in actual 105 

and potential host species of common cuckoo Cuculus canorus. Based on these data, we 106 

estimate maximum costs of recognition errors and the parasitism rate that should balance 107 

these costs. We discuss our results in relation to current knowledge of co-evolutionary 108 

adaptations in cuckoos and their hosts. 109 
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 110 

MATERIAL AND METHODS 111 

ESTIMATE OF PARASITISM RATE BALANCING MAXIMUM RECOGNITION 112 

ERRORS ESTIMATES  113 

We acknowledge that the response to a parasitic egg may be conditional/plastic (Brooke et al., 114 

1998; Lindholm & Thomas, 2000; Soler, Martín-Vivaldi & Fernández-Morante, 2012). 115 

Furthermore, we realistically assume that host egg rejection behaviour has a genetic basis 116 

(Martín-Gálvez et al., 2006). In the absence of parasitism, the frequency of rejecters in the 117 

population may decline due to recognition errors, but also due to other costs related to 118 

maintaining specific traits or due to stochasticity (Lahti, 2005, 2006). In populations 119 

experiencing parasitism above a certain threshold level, selection will likely lead to rejecters 120 

producing more offspring than acceptors because rejecters escape the costs of parasitism. We 121 

use the model presented by Davies & Brooke (1989b) to derive average reproductive success 122 

of acceptor and rejecter pairs (RSacceptor and RSrejecter) and the corresponding balancing 123 

parasitism rate, p*. Let p be the parasitism rate (probability of a host nest being parasitized). 124 

Average reproductive success of acceptor pairs (both sexes are acceptors) is  125 

 126 

 RSacceptor = F(1 – p) + c (F – 1)  p 127 

 128 

where F is the average host clutch size and c is the proportion of host young reared together 129 

with a parasitic chick (0 ≤ c ≤ 1). Typically, for evicting brood parasites like Cuculus 130 

cuckoos, c = 0 (but see Rutila, Latja & Koskela, 2002), but for non-evicting parasites, c can 131 

be larger. We assume that cuckoo females remove one host egg from the nest when 132 

parasitizing the nest (Davies, 2000), even though removal of more than one egg is not 133 
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uncommon (Øien et al., 1998). Average reproductive success of rejecter pairs (at least one 134 

breeding individual is rejecter), where all parasite eggs are rejected is 135 

 136 

 RSrejecter = (F – F)(1 – p) + (F – F – 1) p 137 

 138 

where F denotes recognition errors expressed as the number of host eggs lost by rejecters. 139 

Since only rejecters are likely to commit recognition errors, we need to take egg rejection 140 

rates within the population into account when calculating F as follows 141 

 142 

F = [Proportion of host eggs lost from unparasitized nests in population] [Mean 143 

clutch size in population] / [Egg rejection rate in population]    (1) 144 

 145 

At equilibrium, the average reproductive success, RSacceptor = RSrejecter, we obtain the 146 

parasitism rate, p*, that balances the benefit of rejecting parasite eggs with the cost of 147 

rejecting own eggs in non-parasitized nests (recognition errors) as 148 

 149 

 p* = F/( F – 1)/( 1 –  c ) 150 

 151 

 In some species, host individuals show phenotypic plasticity in their responses against 152 

parasites (based on social cues; Campobello & Sealy (2011), based on personality, Avilés & 153 

Parejo (2011), based on perception of risk of parasitism, Welbergen & Davies (2009)) and 154 

parasitic eggs, and hosts will more likely reject eggs if they experience additional cues other 155 

than the egg itself, like for instance observing a cuckoo in the vicinity of the nest (Moksnes et 156 

al., 2000). Furthermore, the ability of individuals to reject parasitic eggs usually depends on 157 

the contrast between own and foreign eggs, i.e. egg mimicry (Davies, 2000; Spottiswoode & 158 
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Stevens, 2010). Hence, from Eq. 1 we obtain four estimates of F; assuming that 1) all (RE1), 159 

2) 50% (RE2), 3) 25% (RE3) and 4) observed % (RE4) of individuals in the population are 160 

able to reject foreign eggs. The estimate RE4 is based on rejection of experimental non-161 

mimetic eggs in the specific study population (Table 1). We acknowledge that these four 162 

estimates are only crude attempts to take phenotypic plasticity into account in our 163 

calculations, but firstly we want to keep our calculations as simple as possible, and secondly, 164 

we lacked reliable quantitative estimates of phenotypic plasticity. By calculating four 165 

estimates, at least some of the phenotypic plasticity present at the individual level in specific 166 

populations is taken into account. 167 

 168 

EMPIRICAL DATA IN DISAPPEARANCE OF EGGS AND OTHER RELEVANT 169 

FACTORS 170 

Data on disappearance of own eggs in non-parasitized nests were retrieved from own field 171 

studies in which nests were monitored throughout the egg laying and incubation periods. We 172 

retrieved 1) number of host eggs lost from unparasitized host nests in the specific population; 173 

2) mean clutch size in the specific population (F); and 3) rejection rate of experimentally 174 

added, non-mimetic eggs within the study populations. In addition, we also retrieved 4) 175 

observed parasitism rate within each population (Table 1). The number of eggs lost in each 176 

population, termed “number of disappeared eggs”, was calculated as the number of eggs lost 177 

from non-parasitized nests / total number of non-parasitized nests (excluding nests that were 178 

naturally or experimentally parasitized). We only included nests with single host eggs lost, 179 

because disappearance of more than one egg could indicate partial predation rather than actual 180 

errors in recognition. Hence, in our marsh warbler Acrocephalus palustris population we 181 

omitted cases where three out of four eggs (N = 1), and four out of five eggs (N = 2) 182 

disappeared. In our corn bunting Miliaria calandra population we omitted cases where two 183 
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out of three eggs (N = 1), three out of five eggs (N = 1), and four out of five eggs (N = 1) 184 

disappeared. We also omitted clutches where egg laying did not follow the “one egg per day” 185 

criterion. More specifically this refers to two extraordinary cases in the chaffinch Fringilla 186 

coelebs population, with an irregular egg laying sequence (Stokke et al., 2002a). Furthermore, 187 

loss of all eggs in the clutch was considered to be caused by predation, and such nests were 188 

omitted from the calculations. 189 

Nests were monitored daily from nest building until six days of incubation to allow 190 

estimates of disappearance of own eggs from non-parasitized nests. Eggs were marked with 191 

permanent ink in the sequence they were laid. Clutch size was estimated from completed, 192 

non-parasitized clutches. Nests used to calculate recognition errors and clutch size were 193 

different from those used to calculate rejection rate of experimentally added, non-mimetic 194 

eggs. 195 

Disappearance of eggs from non-parasitized nests were estimated in 8 study 196 

populations (Table 1): (1) great reed warblers Acrocephalus arundinaceus in Apaj, Hungary 197 

(1998-2008), (2) great reed warblers in Embalse del Hondo, Alicante, Spain (XXXX-XXXX), 198 

(3) reed warblers Acrocephalus scirpaceus in Embalse del Hondo, Alicante, Spain (XXXX-199 

XXXX), (4) marsh warblers in Zlatia, Bulgaria (2002-2009), (5) olivaceous warblers 200 

Hippolais pallida in Zlatia, Bulgaria (2001-2009), (6) chaffinches in Stjørdal, Norway (1999-201 

2001), (7) bramblings Fringilla montifringilla in Tana, Norway (2003-2004), and (8) corn 202 

buntings in Zlatia, Bulgaria (2002-2009). All these species are known to be parasitized by 203 

common cuckoos to various extents (Moksnes & Røskaft, 1995). Data on clutch sizes, 204 

parasitism rates, and rejection rates of experimentally added, non-mimetic eggs were retrieved 205 

from the literature for the same populations from which we obtained data on disappearance of 206 

eggs (Moksnes et al., 1991; Moksnes, Røskaft & Solli, 1994; Bártol et al., 2002; Moskát & 207 

Honza, 2002; Stokke et al., 2002a, 2004; Antonov et al., 2006a,b, 2007a,b, 2009; Hauber, 208 

Megjegyzés [BGS1]: Csaba and Germán, Please 
insert years of data collection 
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Moskát & Bàn, 2006; Moskát et al., 2008a,b,c, 2009; Avilés et al., 2009; Vikan et al., 2009, 209 

2010, 2011). A few data from unpublished studies were also included; in the Spanish reed 210 

warbler population (number 3 in the list above), rejection data of non-mimetic eggs refer to 211 

experimentally added eggs painted pale blue. 212 

 213 

RESULTS 214 

Disappearance of eggs from non-parasitized nests was most pronounced in great reed and reed 215 

warblers (7 - 7.4%). In the remaining species, eggs disappeared in only 0 - 0.9% of the nests 216 

(Table 1). Individuals in the populations included in our analyses experienced 0 to 16.7% loss 217 

of own eggs in non-parasitized nests depending on how we consider rejection abilities (Table 218 

1). Calculations of parasitism rates that would balance the costs of recognition errors 219 

(provided that all eggs lost were due to erroneous egg rejection) show considerable variation 220 

among species (Table 1, range 0 – 23.3%). Since only rejecters are assumed to erroneously 221 

reject own eggs, and our estimate of recognition errors is one fixed value per population, the 222 

cost of recognition errors and the corresponding balancing parasitism rate will be higher when 223 

fewer individuals are classified as rejecters (Equation 1). Hence, within particular 224 

populations, estimates of recognition errors and balancing parasitism rates will generally be 225 

higher when considering rejection of mimetic eggs than non-mimetic eggs, since the rejection 226 

rate for mimetic eggs in the population is generally lower than for non-mimetic eggs. If we 227 

assume that all individuals have the ability to reject eggs (100% rejection rate), estimates of 228 

both recognition errors and balancing parasitism rate can be regarded as minimum estimates.  229 

 The balancing parasitism rates are generally in the magnitude of 0 – 1.2%, except in 230 

great reed and reed warblers where it may reach 7.7 and 23.3% respectively, depending on 231 

calculation of the proportion of individuals that are able to reject parasitic eggs. In seven of 232 

the eight study populations, observed parasitism rates are equal to or higher than those 233 
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required to balance the costs of making recognition errors, indicating that egg rejection 234 

abilities should evolve and be maintained, which is in accordance with the high rejection rates 235 

of non-mimetic eggs generally found in this study. Hence, recognition errors should not be 236 

important as opposing selection pressure in these populations. The only exception among 237 

these seven populations is the corn bunting, which experience a rather high parasitism rate but 238 

still only reject non-mimetic eggs at an intermediate level. The remaining population, Spanish 239 

reed warblers, experience a parasitism rate that is lower than the ones required maintaining 240 

rejection behaviour with all four estimates of recognition errors (Table 1).  241 

 242 

INSERT TABLE 1 APPROX. HERE 243 

 244 

DISCUSSION 245 

Perceptual errors may cause costs that could oppose evolution or maintenance of apparently 246 

optimal adaptations like those involved in co-evolutionary arms races. Such costs may act as 247 

opposing selective pressures against evolution of host defences against brood parasitism, as 248 

outlined in the evolutionary equilibrium hypothesis (Rothstein, 1982a; Lotem et al., 1995; 249 

Davies et al., 1996). Here we have shown that the magnitudes of such errors are in general 250 

low across eight different host populations, even with our overestimated rates of recognition 251 

errors. Furthermore, our estimates of recognition errors are comparable to those obtained from 252 

other species (Marchetti, 1992, 2000; Lotem et al., 1995). 253 

Several European passerines regarded as suitable cuckoo hosts show strong rejection of 254 

experimentally added eggs (Davies & Brooke, 1989a; Moksnes et al., 1991; Moskát, 255 

Szentpéteri & Barta, 2002; Honza et al., 2004; Lovászi & Moskát, 2004; Procházka & Honza, 256 

2004; Rutila et al., 2006; Samaš et al., 2011; Table 1). Such species are often characterized by 257 

having a low intraclutch variation in egg appearance (Øien, Moksnes & Røskaft, 1995; Soler 258 
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& Møller, 1996; Stokke, Moksnes & Røskaft, 2002b), reducing the risk of making recognition 259 

errors and enhancing rejection of even moderately mimetic parasitic eggs (Stokke et al., 2007; 260 

Moskát et al., 2008a). Furthermore, several species may retain rejection behaviour in the 261 

absence of parasitism over very long time periods (Underwood, Sealy & McLaren, 2004; 262 

Lahti, 2006), and even after speciation events (Bolen, Rothstein & Trost, 2000; Rothstein, 263 

2001; Peer & Sealy, 2004a) indicating that opposing selective pressures to egg rejection, like 264 

recognition errors, are negligible in these species. Even with the existence of recognition 265 

errors, rejection behaviour may be retained without apparent interspecific parasitism due to 266 

several reasons. Firstly, there may be unaccounted benefits to egg rejection behaviour, such as 267 

resistance to intraspecific brood parasitism, that maintain rejection behaviour and even cause 268 

it to increase in frequency (Grim et al., 2011, Samaš et al., 2011). Secondly, interspecific 269 

parasitism may still occur at a low rate without researchers being able to detect it. Hence, 270 

parasitism by cuckoos laying non-mimetic eggs (i.e. from a gens with another main host) may 271 

happen from time to time, but since such eggs would be ejected quickly the host population 272 

appears to be non-parasitized. Such “accidental” layings are not uncommon (Čapek, 1896; 273 

Chance, 1940), and the rate of which such events are occurring may be sufficient to retain 274 

rejection rates as apparent from the balancing parasitism rates reported in our study. For 275 

instance, Moksnes & Røskaft (1995) found 76 cuckoo eggs in chaffinches stored in European 276 

museums, and out of 58,000 cases of cuckoo parasitism from Europe collected by B.G. 277 

Stokke, 325 cases were recorded in chaffinch nests scattered all over Europe (unpublished 278 

data). The balancing parasitism rates estimated for chaffinches and bramblings in the present 279 

study are equal to zero, indicating that occasional parasitism by cuckoos is sufficient to retain 280 

high rates of egg rejection. Third, the retention of egg rejection in these species may be 281 

caused by immigration of rejecters from other populations that suffer high parasitism rates 282 

(Soler et al., 2001). Hence, there are reports of chaffinches being utilized regularly by 283 
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cuckoos in the European parts of Russia (Malchevsky, 1960), and bramblings are favoured 284 

hosts in parts of Fennoscandia (Vikan et al., 2011). 285 

On the other hand, our results also indicate that perceptual errors may be influential for 286 

the evolution of egg rejection in some cases. Hence, one of our study populations experience 287 

parasitism rates lower than the balancing parasitism rates. Reed warblers in Spain experience 288 

a parasitism rate of 2.0%, which is slightly lower than the calculated balancing parasitism rate 289 

(2.9 - 23.3%). In this population, egg rejection abilities should therefore deteriorate with time, 290 

based on our current estimates of recognition errors, provided that there is no immigration of 291 

rejecters from other populations, or as long as there are no large fluctuations in parasitism rate 292 

among years. Several studies have focused on the influence of recognition errors in reed 293 

warblers, although support for the importance of errors has been ambiguous (e.g. Davies & 294 

Brooke, 1988; Davies et al., 1996; Røskaft et al., 2002a; Čapek et al., 2010). This species 295 

shows marked spatial variation in egg rejection related to parasitism pressure in the specific 296 

population (Lindholm & Thomas, 2000; Stokke et al., 2008), indicating that there could be 297 

opposing selective pressures working against egg rejection in populations experiencing no or 298 

low parasitism. Alternatively, temporal variation in parasitism (Brooke et al., 1998) may also 299 

lead to the same pattern with fluctuations in selective pressures depending on the current costs 300 

of parasitism. Furthermore, reed warblers have substantial intraclutch variation in egg 301 

appearance (Stokke et al., 1999, 2002b) and are parasitized by cuckoos laying mimetic eggs 302 

(Davies & Brooke, 1988), making recognition of parasitic eggs error prone. In such cases, 303 

hosts may rely on conditional stimuli in perceiving the risk of parasitism (Rothstein, 1982a; 304 

Davies & Brooke, 1988, 1998; Stokke et al., 2005, 2007). Hence, reed warblers are more 305 

likely to reject parasitic eggs when they observe a cuckoo close to the nest, indicating 306 

increased risk of parasitism (Davies & Brooke, 1988; Moksnes, Røskaft & Korsnes, 1993; 307 

Moksnes et al., 2000). However, a recent study disclosed that the presence of a cuckoo does 308 
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not necessarily lead to increased risk of making recognition errors (Čapek et al., 2010). 309 

Careful investigations of reed warbler nests by utilizing video recordings should be 310 

undertaken to determine unambiguously if disappearance of eggs is due to erroneous rejection 311 

of own eggs. 312 

Gene flow, not considered directly in the present study, may potentially slow down the 313 

process of evolving optimally expressed traits in particular populations or lead to local mal-314 

adaptation (Nuismer, Thompson & Gomulkiewicz, 1999). Influx of rejecter or acceptor alleles 315 

may therefore influence expression of egg rejection in local populations. However, this 316 

critically depends on spatiotemporal variation in selection regimes (Duffy & Forde, 2009), 317 

like cuckoo parasitism and costs due to recognition errors, although at present such data are 318 

unavailable. Gene flow could also increase the frequency of rejecter alleles in non-parasitized 319 

or weakly parasitized populations (e.g. Røskaft et al., 2002b, 2006; Moskát et al., 2008b), 320 

thus causing errors to increase. Interestingly, there is low genetic differentiation among reed 321 

warbler populations in Europe, showing evidence of extensive gene flow among populations 322 

(Procházka et al., 2011). The intermediate rejection of non-mimetic eggs in reed warblers and 323 

possibly in corn buntings may therefore be caused by a combined effect of costs of making 324 

recognition errors, gene flow and spatiotemporal variation in occurrence of parasitism 325 

creating a mosaic of situations in which the opposing costs vary in relative magnitude. 326 

Interestingly, the few studies available on corn buntings, indicate similar spatial variation in 327 

parasitism as in reed warblers. Hence, in Italy only 1.4% (N = 208) corn bunting nests were 328 

parasitized (Campobello & Sealy, 2009), which is profoundly different from the relatively 329 

high parasitism rate at our Bulgarian study site. 330 

It is important to acknowledge that recognition errors are probably rarer events than 331 

estimated in the present study, because eggs may disappear from nests for many other reasons 332 

like e.g. jostling or partial predation (e.g. Rothstein, 1982b; Lerkelund et al., 1993; Moksnes 333 
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et al., 2000; Røskaft et al., 2002a). For instance, Moksnes et al. (2000) and Røskaft et al. 334 

(2002a) reported that cuckoos visited and partially depredated 12% of reed warbler nests 335 

without actually parasitizing them (see also Wyllie, 1975). Furthermore, cuckoos often 336 

remove one or two host eggs just prior to laying their own egg (Wyllie, 1975, 1981). If the 337 

host then rapidly ejects the parasitic egg, the loss of it’s own egg(s) will appear to be self-338 

inflicted to the observer even when this was not actually the case. Even with daily monitoring 339 

of nests such mistakes may take place. 340 

In our approach, we focused only on hosts of cuckoos Cuculus spp. However, the same 341 

argument can be used for other brood parasitic systems. One important point to consider is 342 

calculations of the cost of parasitism. In the North American brown-headed cowbird 343 

Molothrus ater, the parasite chick does not evict host chicks leading to a lower cost of 344 

parasitism in most cases, but not always (0 ≤ c ≤ 1). We show that the balancing parasitism 345 

rate p* increases as c increases and hence even smaller costs due to recognition errors oppose 346 

the evolution of rejection behaviour. Furthermore, even rejection costs, such as damage of 347 

own eggs when trying to reject the parasitic egg, can be important for opposing egg rejection 348 

in such hosts (Rohwer & Spaw, 1988; Røskaft & Moksnes, 1998) in contrast to cuckoo hosts 349 

where such costs are of minor importance (Stokke et al., 2005, but see Antonov et al., 2009). 350 

In addition, North American passerines in general have a higher intraclutch variation in egg 351 

appearance than comparable species in Europe, which may increase the risk of committing 352 

recognition errors (Stokke et al., 2002b). However, in many cases the brown-headed cowbird 353 

egg is non-mimetic, many hosts experience very high parasitism rates, and especially smaller 354 

hosts also suffer high costs when raising a cowbird chick (Kilner, 2003). Therefore, lag in the 355 

evolution of egg rejection (perhaps due to lack of genetic background) is still the most 356 

plausible explanation for the lack of egg rejection in most hosts parasitized by cowbirds (Peer 357 

& Sealy, 2004b). However, other causes than recognition errors may cause apparently sub-358 
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optimal rejection rates. For instance, costs of desertion due to nest site limitation (hole 359 

nesters), parasite mafia behaviour or few re-nesting opportunities may lead to acceptance of 360 

parasitic eggs (e.g. Soler et al., 1995; Avilés, Rutila & Møller, 2005; Hoover & Robinson, 361 

2007; Krüger, 2007, 2011). 362 

By using empirical data on disappearance of own eggs from non-parasitized nests, we 363 

have shown that costs opposing evolution of egg rejection in hosts of avian brood parasites 364 

may exist but are in general small. Importantly, our estimates are most probably overestimates 365 

of true recognition errors, indicating that such costs in general are minute compared to the 366 

high costs of parasitism. Recognition errors seem most likely in species with specific 367 

characteristics like a high intraclutch variation in egg appearance, intermediate and variable 368 

rejection rate, spatiotemporal variation in occurrence of parasitism, and parasitism by brood 369 

parasites laying eggs that at least to some extent mimic host eggs, like in reed warblers and 370 

perhaps corn buntings. Future studies on the importance of recognition errors should focus on 371 

long-term studies of such “intermediate” rejecters at a spatiotemporal scale including several 372 

populations thus taking gene flow into account, while also considering phenotypic plasticity 373 

in host anti-parasite behaviour. By this approach, we should be able to obtain reliable 374 

estimates of variation in recognition errors, rejection rates and parasitism rates and address the 375 

importance of the various costs for the evolution of egg rejection. Finally, use of video 376 

cameras (e.g. Weidinger, 2010) would disclose the proportion of eggs that are actually lost by 377 

erroneous ejection of own eggs and not to other factors such as jostling or partial predation. 378 

Our findings should be of importance for evaluating hypotheses set forward to explain 379 

variation in expression of defences in hosts. Further research should focus on clarifying how 380 

recognition errors promote selection for low intraclutch variation, an important antiparasite 381 

defence in hosts of brood parasites, as host eggs with extreme appearance are expected to be 382 

identified as parasitic eggs. We also suggest future research looking at how frequency of 383 
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recognition errors might be characteristic for specific stages of the arms race between hosts 384 

and brood parasites. 385 
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Table 1. Data used to calculate the balancing parasitism rate (%) required for opposing maximum estimates of costs due to recognition errors. The frequency of recognition errors is estimated as the proportion of own 

eggs lost out of all eggs laid ((ΔF/F)*100)) in non-parasitized nests assuming that 1) all (RE1), 50% (RE2), 3) 25% (RE3) of the individuals are capable of rejecting eggs. As a fourth estimate (RE4) we also consider the 

proportion of individuals in the population that are able to reject experimental non-mimetic eggs (see Equation 1 for calculation). *Individuals that recognized and pecked foreign eggs. **Rejection rate of non-mimetic 

eggs in Hungarian population used. Numbers in brackets refer to number of nests. See Methods for more details.  
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Acrocephalus arundinaceus Hungary 4 (54) 1.53 (54) 3.07 (54) 6.13 (54) 1.61 (54) 59.4 (546) 95.2 (58) 4.83 (137) 1.9 3.9 7.7 2.0  
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