
Formal Validation and Model Synthesis for
Domain-specific Languages by Logic Solvers

Oszkár Semeráth
Budapest University of Technology and Economics

Department of Measurement and Information Systems
MTA-BME Lendület Research Group on Cyber-Physical Systems

semerath@mit.bme.hu

Abstract
Despite the wide range of existing tool support, construct-
ing a design environment for a complex domain-specific lan-
guage (DSL) is still a tedious task due to the large number
of derived features and well-formedness constraints com-
plementing the domain. Additionally, an advanced design
environment uses view transformation techniques to high-
light different relevant aspects of the system. As any soft-
ware, modeling tools are not free from errors. For complex
domains, derived features and constraints can easily be for-
malized incorrectly resulting in inconsistent, incomplete or
ambiguous DSL specification, or inconsistent view models.
Moreover, errors in the modeling environment injects errors
to the generated code and invalidates the results of any veri-
fication process. Therefore it is important to ensure the cor-
rectness (i.e. consistency and unambiguity) of the modeling
languages. My research focuses on validation of modeling
environments by (i) proving the correctness of Domain Spe-
cific Languages, (ii) automatically generating or extending
models for DSLs and view models, and (iii) developing effi-
cient decision procedures for DSLs.

Keywords language validation, derived features, partial
snapshots, model queries, logic solvers

1. Validation of Domain-specific Languages
The design of integrated development environments for
complex domain-specific languages (DSL) is still a chal-
lenging task nowadays. Advanced environments such as
Xtext, or Sirius built on top of model management frame-
works such as Eclipse Modeling Framework (EMF) sig-
nificantly improve productivity by automating the produc-

[Copyright notice will appear here once ’preprint’ option is removed.]

tion of rich editor features (e.g. syntax highlighting, auto-
completion, etc.) or by task-specific view models [14] to
enhance modeling for domain experts. Furthermore, there
is efficient tool support for validating well-formedness con-
straints and design rules over large model instances of the
DSL using tools like Eclipse OCL [45] or VIATRA Query
[5]. As a result, Eclipse-based IDEs are widely used in the
industry in various domains including business modeling,
avionics or automotive.

However, in case of complex, standardized industrial do-
mains (like ARINC 653 for avionics or AUTOSAR in au-
tomotive), the sheer complexity of the DSL and the mod-
els is a major challenge itself. (1) First, there are hundreds
of well-formedness constraints and design rules defined by
those standards, and due to the lack of validation, there is no
guarantee for their consistency or unambiguity. (2) More-
over, domain metamodels are frequently extended by de-
rived features, which serve as automatically calculated short-
cuts for accessing or navigating models in a more straightfor-
ward way. In many practical cases, these features are not de-
fined by the underlying standards but introduced during the
construction of the DSL environment for efficiency reasons.
Anyhow, the specification of derived features can also be in-
consistent, ambiguous or incomplete. And finally (3) view
models are key concept in domain-specific modeling tools
to provide task-specific focus by creating a model which
highlights only some relevant aspects of the system. How-
ever, views can also be inconsistent with the model, or repre-
sent unfeasible requirements. In general, mathematical pre-
cise validation of DSL specifications themselves has been at-
tempted by only few approaches so far [24], and even these
approaches lack a systematic validation process.

As model-driven tools are frequently used in critical sys-
tems design to detect conceptual flaws of the system model
early in the development process to decrease verification and
validation (V&V) costs, those tools should be validated with
the same level of scrutiny as the underlying system as part of
a software tool qualification process in order to provide trust
in their output. Therefore software tool qualification raises

1 2017/2/12



several challenges for building trusted DSL tools for a spe-
cific domain. First, the consistency and unambiguity of the
DSL specification have to be ensured. Secondly, the devel-
opement of the modeling environment requires systematic
testing methods, which is based on the generation of valid
(or purposely faulty) models. And finally, the complete anal-
ysis of view models requires tracing of view model changes
back to source model changes.

Therefore, based on the previous challenges, I have iden-
tified the two main research questions:
RQ1 Validation of Domain Specific Languages: How to
prove the consistency and completeness of DSL specs?

RQ2 Generation of well-formed instance models: How to
generate valid instance models of a complex DSL or View
models?

2. Preliminaries
The precise definition of complex domain-specific lan-
guages (DSL) necessitates a combination of different spec-
ification techniques. Metamodels define the main concepts,
relations and attributes of the target domain to specify the ba-
sic structure of the models. A metamodel can be represented
by a theorem META, and consequently, a logic structure
M can specify an instance model. Therefore, M |= META
denotes if a model satisfies all structural constraints of the
metamodel (e.g. multiplicity or containment).

To create an advanced modeling environment, a DSL is
typically augmented with well-formedness constraints (WF),
which capture additional restrictions any well-formed in-
stance model needs to respect (denoted with M |= WF ).
Such constraints can be defined by model queries (often
captured by graph patterns) [6] or as OCL invariants [30].
Furthermore, the metamodel can also be enhanced with de-
rived features (DF), i.e. attributes and relations calculated
from core model elements during model use, which can be
also specified using by graph patterns [33]. If the attributes
and references have the correct values then it is denoted
by M |= DF . The axiom set DSL of a domain-specific
language is summarized as DSL = META ∧ WF ∧ DF ,
and a valid instance model M satisfies those constraints:
M |= DSL.

In a domain-specific modeling tool, the underlying do-
main model is presented to the engineers in different views
(VIEW ). These views are populated from the source model
(by abstraction). One source model may populate multiple
view models. A view VIEW is derived from the source
model M by a unidirectional forward transformation view
[14]. An instance model M is consistent with a view model
VIEW (denoted by M |= VIEW ) if forward transforma-
tion creates the same view VIEW = view(M). Deriving
different views from an instance model is an efficient way to
highlight selected properties. However, calculating models
for views requires logic reasoning.

Reasoning over a metamodel or view models has two
main challenges, which hinders the efficient analysis of
domain-specific languages:
Ch1 Proving a property P over a language DSL |= P is
undecidable in general.

Ch2 Existing logic solvers (SAT/SMT) fail to derive
instance models for complex domain-specific languages
with views to create example or counter-example models.

3. Related Work
Logic Solver Approaches There are several approaches
and tools aiming to validate models enriched with OCL con-
straints [19] relying upon different logic formalisms such
as constraint logic programming [10, 11], SAT-based model
finders (like Alloy) [3, 9, 27, 43, 44], first-order logic [4],
constructive query containment [32] or higher-order logic
[8, 20]. Some of these approaches (like e.g. [9, 11, 27, 43])
offer bounded validation (where the search space needs to
be restricted explicitly) in order to execute the validation and
thus results can only be considered within the given scope,
others (like [8]) allow unbounded verification (which nor-
mally results in increased level of interaction and decidabil-
ity issues).

Uncertain Models Partial models are also similar to uncer-
tain models, which offer a rich specification language [34]
amenable to analysis. Uncertain models provide a more ex-
pressive language compared to partial snapshots but with-
out handling additional WF constraints. Such models docu-
ment semantic variation points generically by annotations on
a regular instance model, which are gradually resolved dur-
ing the generation of concrete models. An uncertain model
is more complex (or informative) than a concrete one, thus
an a priori upper bound exists for the derivation, which is not
an assumption in our case.

Potential concrete models compliant with an uncertain
model can synthesized by the Alloy Analyzer [35], or refined
by graph transformation rules [36]. Each concrete model is
derived in a single step, thus their approach is not iterative
like ours. Scalability analysis is omitted from the respective
papers, but refinement of uncertain models is always decid-
able.

View Models Using logic solvers for generating possible
source and target candidates is common part of several ap-
proaches. [13] uses Answer Set Programming, [12] maps the
problem to Mixed Integer Linear Programming. [28] uses
Alloy to generate change operations on the source model
which leads to a modified source model which is (i) well-
formed and (i) consistent with the changed target model.
[18] and [17] converts the transformation to Alloy similarly,
but do not handle WF constraints of the source model, and
changes the whole source model.

Rule-based Instance Generators A different class of model
generators relies on rule-based synthesis driven by random-

2 2017/2/12



ized, statistical or metamodel coverage information for test-
ing purposes [7, 16]. Some approaches support the calcu-
lation of effective metamodels [42], but partial snapshots
are excluded from input specifications. Moreover, WF con-
straints are restricted to local constraints evaluated on in-
dividual objects while global constraints of a DSL are not
supported. On the positive side, these approaches guarantee
the diversity of models and scale well in practice.

Iterative approaches. An iterative approach is proposed
(specifically for allocation problems) in [26] based on For-
mula. Models are generated in two steps to increase diversity
of results. First, non-isomorphic submodels are created only
from an effective metamodel fragment. In the second step
the algorithm completes the different submodels according
to the full model, but constraints are only checked at the very
final stage.An iterative, counter-example guided synthesis is
proposed for higher-order logic formulae in [29], but the size
of derived models is fixed.

4. Formal Validation of Domain-Specific
Languages by Logic Solvers

Approach Addressing research problem RP 1., we created
a novel approach presented in [38, 39] to analyze the DSL
specification of modeling tools by mapping them into first
order logic (FOL) formulae that can be processed by ad-
vanced reasoners such as SMT solvers (Z3) or SAT solvers
(Alloy, see Figure 1). The outcome of a reasoning prob-
lem is either satisfiable or unsatisfiable. If the problem is
satisfiable, the solver constructs an output (or completed)
model (which is interpreted as witness or counterexample
depending on the validation task), while an unsatisfiable re-
sult means a contradiction. Because certain validation tasks
are undecidable in FOL it is also possible that validation ter-
minates with an unknown answer or a timeout.

Reasoning

Snapshots

Metamodels

WF Constraints

Derived Features

Mapping

Modelling Tool

Search
Parameters

Solver

SAT
M

UNSAT
↯

Unknown
?

Result

View Models

Figure 1. Functional overview of the approach

We carry out a wide range of validation tasks by auto-
mated theorem proving based on this formalization to prove
different properties of a DSL. To decrease the development
time and cost of DSL tools, we aim to detect design flaws
in the early phase of DSL development by highlighting val-
idation problems to the developer directly in the tool itself
by back-annotating analysis results. Linking the independent
reasoning tool to the modeling tool allows the DSL devel-

oper to make mathematically precise deductions over the de-
veloped languages.

Contributions My first contribution aims the formalization
of graph patterns used in the specification of DSLs to first
order logic expression (FOL).
Con1.1 Mapping of graph patterns to effectively propo-
sitional logic: I introduced a technique to transform WF
and DF rules captured by graph patterns to a decidable
fragment of FOL [31] by using over- and underapproxi-
mation techniques. [38]

With model queries, meta- and optionally instance mod-
els can be translated to logic expression in order to analyze
their consistency.
Con1.2 Uniform analysis of DSL specification: I intro-
duced a technique that uniformly translates DLS elements
to FOL to analyze the consistency of the whole DSL spec-
ification, which includes metamodels, instance models,
well-formedness (OCL or graph pattern) and derived fea-
tures.

Based on the consistency analysis technique, several val-
idation rules are specified, which can be checked by the un-
derlying logic solver.
Con1.3 Identification of context dependent DSL vali-
dation criteria: I defined completeness and unambiguity
properties of derived features, subsumption and equiv-
alence relations of well-formedness constraints, derived
features and instance models. These properties can be
checked on the full DSL, or on a specific fragment of it.

In order to systematically carry out the validation process
for the whole DSL, we propose a validation workflow, which
consequently investigates each language feature, and can be
used without any theorem-proving skills.
Con1.4 Validation workflow for DSL specifications: We
recommended a validation process for the DSL, which
systematically checks the language properties, and in
case of inconsistencies, helps the developer to correct
the DSL specification (or refine the validation context) by
showing representative counterexamples to the assumed
properties.

Our technique is successfully applied on a case study
taken from the avionics domains.
Con1.5 Application: Validation of an avionics DSL: I
carried out the validation of the functional architecture
modeling language of of avionics systems, developed in
Trans-IMA project [22].

Added Value The main added value of approach is to
cover rich DSL constructs such as derived features and well-
formedness constraints captured in declarative languages
such as graph patterns and OCL invariants. While other
approaches use bounded verification or simply ignore un-
supported features, I proposed approximations to transform
language features into a decidable fragment of first-order
logic (called effectively propositional logic), and to han-
dle language features which cannot be represented in FOL.

3 2017/2/12



Therefore, the correctness of a DSL can be proved using our
method, while others only can detect errors.

Our approach is supported by a prototype tool integrated
into Eclipse, which takes EMF metamodels, instance mod-
els, EMF-IncQuery graph patterns and OCL constraints as
input to carry out DSL validation. As a technological dif-
ference, our tool is compliant with standard Eclipse based
technologies, while Formula and Alloy use their own mod-
eling language. When an output model is derived as a wit-
ness or counterexample, this model is back-annotated to the
DSL tool itself so that language engineers could observe the
source of the problem in their custom language. Therefore it
does not require additional theorem proving skills.

5. Iterative and incremental model
generation by logic solvers

As a side effect, our DSL validation framework of section 4
can also generate prototypical well-formed instance models
for a DSL, which can be used for synthesizing test cases,
for instance. As the metamodel of an industrial DSL may
contain hundreds of model elements, any realistic instance
model should be of similar size. Unfortunately, this cannot
currently be achieved by a single direct call to the underlying
solver [23, 24, 39], thus existing logic based model genera-
tors fail to scale. Furthermore, logic solvers tend to retrieve
simple unrealistic models [25] consisting of unconnected is-
lands of model fragments and many isolated nodes, which is
problematic in an industrial setting.

Approach Addressing the model generation challenge of
RP2, we propose an iterative process for incrementally gen-
erating valid instance models for DSLs with views by call-
ing existing model generators as black-box components, and
using various abstractions and approximations to improve
overall scalability. Therefore, as seen in Figure 2, instance
models can be incrementally generated in multiple steps as a
sequence of extending partial models M1, . . . ,Mn, where
each step is an independent call to the underlying solver.
The main idea behind this approach is that the solver can
be guided by smaller logic problems, where only the newly
created elements have to be added (marked by ∆).

Step 1

Transformation





Logic 
Solver

M1

Step 2

Transformation





Logic 
Solver

M2

Step 3

Transformation





Logic 
Solver

M3

+Δ +Δ

Figure 2. Overview of iterative model generation

Contributions First, incremental model generation re-
quires the decomposition of the problem into smaller tasks,
which can be solved sequentially, each step in increment-
ing the synthesized model while trying to keep them well-
formed. The decomposition is enabled by two techniques:

metamodel pruning [16, 42] to reduce the types in a prob-
lem, and partial models [15] to extend the model in multiple
steps.
Con2.1 Decomposition of Model Generation Problems:
I specified a decomposition technique for instance mod-
els in order to specify a partial solutions for model gen-
eration using partial modeling, and metamodel pruning.
[41]

When removing certain metamodel elements by prun-
ing, or creating only partial models, related well-formedness
constraints need special care. Simple removal of the con-
straints significantly increase the rate of false positives in a
later phase of model generation to such an extent that no in-
termediate models can be extended to a valid final model.
Based on some first-order logic representation of the con-
straints (derived e.g. in accordance with [39]), we propose
to maintain approximated versions of constraint sets during
metamodel pruning.
Con2.2 Approximation of Well-formedness Constraints:
I specified an overapproximation technique for well-
formedness constraints on partial models with pruned
metamodels. [37, 41]

Using approximated (simplified) model generation steps
an incremental model generation process is created which
iteratively calls black-box logic solvers to guarantee well-
formedness by feeding instance models obtained in a pre-
vious step as partial solution to a subsequent phase. In
each step, the number of types, elements and constraints
is strongly limited by metamodel pruning, partial modeling
and constraint approximation techniques. Our experiments
show that significantly larger model instances (up to 250
objects instead of 20 using Alloy [40]) can be generated
with the same solvers using such an incremental approach
especially in the presence of complex well-formedness con-
straints.
Con2.3 Incremental Model Generation: I proposed an it-
erative workflow to incrementally generate instance mod-
els of increasing complexity. [41]

View models are extensively used in model-driven engi-
neering to highlight different relevant properties of a sys-
tem. However, the generation of valid instance models M
for view models VIEW (such as M |= VIEW ∧ DSL) re-
mains a challenge. The generation problem can be initiated
from an existing source and view models by breaking the
consistency with a change in some of the view models. In
this case, an existing source model and existing unchanged
parts of the view model can be used to reduce the difficulty
of the logic problem further. We illustrated our change prop-
agation technique on a healthcare example [1].
Con2.4 Incremental Model Synthesis for Bidirectional
Transformations of View Models: I transformed query-
based view specification into logic formulae to automati-
cally synthesize possible source model changes consistent
to a view model change.

4 2017/2/12



Finally, the incremental generation technique is applied
in one of our research project:
Con2.4 Application: Generation of Context Models: I
successfully applied my technique in test context gener-
ation for autonomous and cooperative robot systems for
R3COP ARTEMIS project [2]

Added value The validation of DSL tools frequently ne-
cessitates the synthesis of well-formed and nontrivial in-
stance models, which satisfy the language specification.

View model is a convenient and precise way to be used
as specification language for model generation. For generat-
ing source model candidates for views, our approach takes
the whole DSL specification into the account including the
interaction of the metamodel, the WF constraints and other
view models.

6. Towards a Solver for DSL Models
The technique in section 5 is able to automatically creates
valid instance models, but the sequence might lead to a
dead-end if an intermediate solution can not be completed.
By automatically backtracking unsatisfiable partial models a
(semi-)automated process is able to explore the possible so-
lutions for a model generation process. This section presents
our newest model generation approach, which is currently
under developement.

Refinement Step
Refinement

of partial model
by transformation rules

? ?



Partial evaluation
of constraints

by query engine

 

Inconsistency check
of partial model
by logic solver

Solution: 𝑀 Cut: ! PM1 PM2 PM3

PM0
Partial interpretation:

partial model

Refined 
interpretations:

Figure 3. Model refinement strategy

Approach Figure 3 illustrates a model refinement step
combining the advantages of multiple model generation
techniques. As input, the step gets a partial interpretation of
an instance model, which is represented as a partial model
(as opposed to partial interpretations or proofs in solvers).
The partial model is refined in three steps:

1. A model query engine creates a partial evaluation[37]
on the partial model to determine if the partial solution
satisfies all constraints (therefore it is a valid model),
violates a constraint (therefore it can not be finished).

2. Then a solver tries to prove that the logic problem cannot
be solved with this partial solution, or to create a valid
solution as a counterexample.

3. If the solver fails, the solution is refined by partial model
refinement transformations [7, 34] which automatically
produces several partial solution candidates.

Therefore, constraints can be evaluated with an efficient
query engine, and the matches can be used to simplify the
logic problem by the removal of satisfied constraints on the
partial model. Solvers are efficient detecting inconsistencies
in a specification, but often fails to create models. Our so-
lution creates models by trying to add elements. Each re-
finement step may produce several partial model candidates,
create a valid solution or cut off branches by proving that the
partial solution cannot be finished. This requires the manage-
ment of a search space, which can be efficiently handled by
advanced design space exploration techniques [21]

In summary, a search based model refinement with in-
tegrated solvers is able to prove inconsistencies in a DSL,
and expected to create models more efficiently with model-
generation specific heuristics.

Acknowledgments
I would like to thank my advisor, Dániel Varró for his sup-
port during my research, and Ágnes Barta and Ákos Horváth
for the joint work.

References
[1] CONCERTO ARTEMIS project. concerto-project.org/.

[2] R3Cop (Resilient Reasoning Robotic Co-operative Systems).
ARTEMIS project n◦100233, http://www.r3-cop.eu/.

[3] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. On chal-
lenges of model transformation from UML to Alloy. Softw.
Syst. Model., 9(1):69–86, 2010.

[4] B. Beckert, U. Keller, and P. H. Schmitt. Translating the Ob-
ject Constraint Language into first-order predicate logic. In
Proc of the VERIFY, Workshop at Federated Logic Confer-
ences (FLoC), Copenhagen, Denmark, 2002.

[5] G. Bergmann, Á. Horváth, I. Ráth, D. Varró, A. Balogh,
Z. Balogh, and A. Ökrös. Incremental Evaluation of Model
Queries over EMF Models. In MODELS’10, volume 6395 of
LNCS. Springer, 2010.

[6] G. Bergmann, A. Hegedüs, A. Horváth, I. Ráth, Z. Ujhelyi,
and D. Varró. Implementing efficient model validation in
EMF tools. In 26th IEEE/ACM International Conference on
Automated Software Engineering, pages 580 –583, 2011.

[7] E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. Le Traon.
Metamodel-based Test Generation for Model Transforma-
tions: an Algorithm and a Tool. In 17th International Sympo-
sium on Software Reliability Engineering, 2006. ISSRE ’06.,
pages 85–94, 2006.

[8] A. D. Brucker and B. Wolff. The HOL-OCL tool, 2007.
http://www.brucker.ch/.

[9] F. Büttner, M. Egea, J. Cabot, and M. Gogolla. Verification of
ATL transformations using transformation models and model
finders. In 14th International Conference on Formal Engi-
neering Methods, pages 198–213. Springer, 2012.

[10] J. Cabot, R. Clarisó, and D. Riera. UMLtoCSP: a tool for
the formal verification of UML/OCL models using constraint
programming. In 22nd IEEE/ACM International Conference

5 2017/2/12

concerto-project.org/
http://www.r3-cop.eu/
http://www.brucker.ch/


on Automated Software Engineering (ASE’07), pages 547–
548. ACM, 2007.

[11] J. Cabot, R. Clariso, and D. Riera. Verification of UML/OCL
class diagrams using constraint programming. In Software
Testing Verification and Validation Workshop, 2008. ICSTW
’08. IEEE International Conference on, pages 73–80, 2008.

[12] G. Callow and R. Kalawsky. A satisficing bi-directional model
transformation engine using mixed integer linear program-
ming. Journal of Object Technology, 12(1):1: 1–43, 2013.

[13] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio.
JTL: a bidirectional and change propagating transformation
language. In Software Language Engineering, pages 183–202.
Springer, 2010.

[14] C. Debreceni, Á. Horváth, Á. Hegedüs, Z. Ujhelyi, I. Ráth,
and D. Varró. Query-driven incremental synchronization of
view models. In Proceedings of the 2nd Workshop on View-
Based, Aspect-Oriented and Orthographic Software Mod-
elling, page 31. ACM, 2014.

[15] M. Famelis, R. Salay, and M. Chechik. Partial models: To-
wards modeling and reasoning with uncertainty. In Proceed-
ings of the 34th International Conference on Software Engi-
neering, pages 573–583, 2012.

[16] F. Fleurey, J. Steel, and B. Baudry. Validation in model-driven
engineering: Testing model transformations. In International
Workshop on Model, Design and Validation, pages 29–40,
Nov 2004.

[17] L. Gammaitoni and P. Kelsen. F-alloy: An alloy based model
transformation language. In Theory and Practice of Model
Transformations, pages 166–180. Springer, 2015.

[18] H. Gholizadeh, Z. Diskin, S. Kokaly, and T. Maibaum. Anal-
ysis of source-to-target model transformations in quest. In
Proceedings of the 4th Workshop on the Analysis of Model
Transformations, pages 46–55, 2015.

[19] M. Gogolla, J. Bohling, and M. Richters. Validating UML and
OCL models in USE by automatic snapshot generation. Softw.
Syst. Model., 4(4):386–398, 2005.

[20] H. Grönniger, J. O. Ringert, and B. Rumpe. System model-
based definition of modeling language semantics. In Formal
Techniques for Distributed Systems, volume 5522 of LNCS,
pages 152–166. Springer, 2009.

[21] Á. Hegedüs, Á. Horváth, I. Ráth, and D. Varró. A model-
driven framework for guided design space exploration. In 26th
IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011). IEEE Computer Society, 2011.

[22] Á. Horváth, Á. Hegedüs, M. Búr, D. Varró, R. R. Starr, and
S. Mirachi. Hardware-software allocation specification of ima
systems for early simulation. In Digital Avionics Systems
Conference (DASC). IEEE, 2014.

[23] D. Jackson. Alloy Analyzer. http://alloy.mit.edu/.

[24] E. K. Jackson, T. Levendovszky, and D. Balasubramanian.
Reasoning about metamodeling with formal specifications
and automatic proofs. In Proc. of the 14th Int. Conf. on MOD-
ELS, volume 6981 of LNCS, pages 653–667, 2011.

[25] E. K. Jackson, G. Simko, and J. Sztipanovits. Diversely
enumerating system-level architectures. In Proceedings of the

11th ACM Int. Conf. on Embedded Software, page 11. IEEE
Press, 2013.

[26] E. Kang, E. Jackson, and W. Schulte. An approach for effec-
tive design space exploration. In R. Calinescu and E. Jackson,
editors, Foundations of Computer Software. Modeling, Devel-
opment, and Verification of Adaptive Systems, volume 6662 of
LNCS, pages 33–54. Springer Berlin Heidelberg, 2011. ISBN
978-3-642-21291-8.

[27] M. Kuhlmann, L. Hamann, and M. Gogolla. Extensive val-
idation of OCL models by integrating SAT solving into use.
In TOOLS’11 - Objects, Models, Components and Patterns,
volume 6705 of LNCS, pages 290–306, 2011.

[28] N. Macedo and A. Cunha. Implementing QVT-R bidirec-
tional model transformations using Alloy. In Fundamental
Approaches to Software Engineering, pages 297–311. 2013.

[29] A. Milicevic, J. P. Near, E. Kang, and D. Jackson. Alloy*: A
general-purpose higher-order relational constraint solver. In
37th IEEE/ACM Int. Conf. on Software Engineering, ICSE,
pages 609–619, 2015.

[30] Object Constraint Language, v2.0. The Object Management
Group, May 2006. http://www.omg.org/spec/OCL/2.0/.

[31] R. Piskac, L. de Moura, and N. Bjorner. Deciding effectively
propositional logic with equality, 2008. Microsoft Research,
MSR-TR-2008-181 Technical Report.

[32] A. Queralt, A. Artale, D. Calvanese, and E. Teniente. OCL-
Lite: Finite reasoning on UML/OCL conceptual schemas.
Data Knowl. Eng., 73:1–22, 2012.

[33] I. Ráth, A. Hegedüs, and D. Varró. Derived features for EMF
by integrating advanced model queries. In Modelling Foun-
dations and Applications, LNCS, pages 102–117. Springer
Berlin / Heidelberg, 2012.

[34] R. Salay and M. Chechik. A generalized formal framework
for partial modeling. In Fundamental Approaches to Software
Engineering, volume 9033 of LNCS, pages 133–148. Springer
Berlin Heidelberg, 2015. ISBN 978-3-662-46674-2.

[35] R. Salay, M. Famelis, and M. Chechik. Language independent
refinement using partial modeling. In J. de Lara and A. Zis-
man, editors, Fundamental Approaches to Software Engineer-
ing, volume 7212 of LNCS, pages 224–239. Springer Berlin
Heidelberg, 2012. ISBN 978-3-642-28871-5.

[36] R. Salay, M. Chechik, M. Famelis, and J. Gorzny. A method-
ology for verifying refinements of partial models. Journal of
Object Technology, 14(3):3:1–31, 2015.

[37] O. Semeráth and D. Varró. Validation of well-formedness
constraints on uncertain model. In Proceedings of the 10ht
Conference of PhD Students in Computer Science, 2016.

[38] O. Semeráth, Á. Horváth, and D. Varró. Validation of derived
features and well-formedness constraints in dsls. In Interna-
tional Conference on Model Driven Engineering Languages
and Systems, pages 538–554. Springer, 2013.

[39] O. Semeráth, A. Barta, A. Horváth, Z. Szatmári, and D. Varró.
Formal validation of domain-specific languages with derived
features and well-formedness constraints. Software and Sys-
tems Modeling, pages 1–36, 2015. ISSN 1619-1366.

6 2017/2/12

http://alloy.mit.edu/
http://www.omg.org/spec/OCL/2.0/


[40] O. Semeráth, C. Debreceni, Á. Horváth, and D. Varró. In-
cremental backward change propagation of view models by
logic solvers. In Proceedings of the ACM/IEEE 19th Interna-
tional Conference on Model Driven Engineering Languages
and Systems, pages 306–316. ACM, 2016.

[41] O. Semeráth, A. Vörös, and D. Varró. Iterative and incre-
mental model generation by logic solvers. Fundamental Ap-
proaches to Software Engineering, 19th International Confer-
ence, FASE 2016, 2016.

[42] S. Sen, N. Moha, B. Baudry, and J.-M. Jézéquel. Meta-model
Pruning. In Proceedings of the International Conference on
Model Driven Engineering Languages and Systems (MOD-
ELS), Denver, Colorado, USA, Oct 2009.

[43] S. M. A. Shah, K. Anastasakis, and B. Bordbar. From UML
to Alloy and back again. In MoDeVVa ’09: Proceedings of the
6th International Workshop on Model-Driven Engineering,
Verification and Validation, pages 1–10. ACM, 2009. ISBN
978-1-60558-876-6.

[44] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and
R. Drechsler. Verifying UML/OCL models using boolean
satisfiability. In Design, Automation and Test in Europe,
(DATE’10), pages 1341–1344. IEEE, 2010.

[45] E. D. Willink. An extensible OCL virtual machine and code
generator. In Proc. of the 12th Workshop on OCL and Textual
Modelling, pages 13–18. ACM, 2012.

7 2017/2/12


	Validation of Domain-specific Languages
	Preliminaries
	Related Work
	Formal Validation of Domain-Specific Languages by Logic Solvers
	Iterative and incremental model generation by logic solvers
	Towards a Solver for DSL Models

