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SUMMARY

well-to-well correlation and zonation.

Principal Component Analysis (PCA) is a multivariate statistical technique often used
successfully in various scientific disciplines. This paper aims to show the mathematical
principles of PCA and introduce two log analysis applications based on the technique:

Traditionally well-to-well correlation has been performed using only one log, often a
resistivity log or gamma ray log. A better, though usually slower, correlation often can be
obtained by using all available wireline logs. This paper describes a method of computing
the first principal component, a method which should make correlation easier, more
efficient and accurate. The first principal component should contain the largest common
part of variances of the input logs. (The Principle Component Analysis technique is
described in the Appendix at the end of this paper.)

The second part of this paper deals with a zonation technique based on the first
principal component. The technique computes not only boundaries but characteristic
values of log responses within a given layer. This computation is based on the ideal case
that rock properties are constant within a layer and change suddenly at a layer boundary.

ften in variable groups a common

cause-variable or background-varia-

ble can be found. In favorable cases

the meaning of this common-variable

may be easily recognized. However,
if the physical meaning of this variable, detected
in several examinations, remains unknown, a
hypothesis to determine the physical meaning of
the background-variable must be established and
the veracity of this hypothesis examined.

One benefit of PCA is that the procedure
decreases the number of variables. In computing
the first principal component, information from
the important variables is included while data
from unimportant variables are neglected.

WELL-TO-WELL CORRELATION

A thorough well-to-well correlation program
ideally includes all the available well log data.
Because this can be a very demanding process,
interpreters often use only a reduced data set
such as the resistivity logs. In many situations
data reduction can produce an erroneous or mis-
leading correlation.

A useful compromise between the simple and
the complex data sets would be to perform a PCA,
an analysis tool which would include all the
important well information while leaving the
interpreter with a data set much easier to handle.

The PCA technique calls for the interpreter to
compute the first principal component for every

well, resulting in a dimensionless “log” contain-
ing the largest common part of variances of the
input logs for each well. The interpreter then has
several “logs” suitable for the well-to-well corre-
lation. Previously the interpreter had to assimi-
late and utilize too many logs; he now needs to
perform the pattern recognition necessary for
well-to-well correlation with only one “log.”

Description of the Technique

The well-to-well correlation program is based
on an HP9845/B desktop computer, however the
technique can be used on any computer having
similar computational and graphics capabilities.

An example of the correlation graphic display
is shown in Figure 1. The first principal compo-
nent for each well is displayed. The zones can be
followed from well to well and marked by means
of the cursor. These correlations then are stored
on a disk or other mass memory device, and the
results, such as cross section, displayed on a
graphic plotter which can be further enhanced
with dipmeter interpretation.

Similar results can be used in seismic interpre-
tation, especially if the input logs are important in
the seismic wave propagation (i.e., density,
sonic). An example is shown in Figure 2.

ZONATION BY MEANS OF PCA

The identification of rock boundaries is an old
problem with well log interpretation, and the lit-




erature on both manual and automatic techniques
is extensive. The PCA technique uses only the
first principal component log of the input well to
identify zones. This layer identification method is
not only simple, but fast and reliable. One syn-
thetic and one practical example are given.

Description of the Technique

A flow chart for the technique is in Figure 3.
The following steps are included:

* Before processing, determine logs to be
included in the PCA and select a minimum thick-
ness of the layers, h ..

e Perform the Principal Component Calculation
(see appendix).

e Filter the first principal component with a
median filter. The window length of the median
filter is equal to h,;,. The resulting log will be bro-
ken (cornered) in some places because of features
of this edge-preserving filter (see Figure 4).

* Smooth the broken log to remove angles. The
upper limit is related to the window
length of the median filter.

* Pick the boundaries at the inflection points (see
Figure 5).

¢ Within each layer, pick a constant characteristic
value (c.v.).

— Let the c.v. be the extreme (minimum or
maximum) of the smoothed first principal compo-
nent.

— Letthe c.v. be the maximum if the maximum
of the smoothed principal component does not
occur at the boundary (i.e., the maximum can be
found inside the layer).

— Let the c.v. be the minimum if the minimum
of the smoothed principal component does not
occur at the boundary (i.e., the minimum can be
found inside the layer). (See Figure 6).
® So far thin layers have been produced. If
thicker units are required, neglect the “weak”
boundaries and keep the “strong” boundaries.
Define a critical values (EPS) which is dependent
on the “strongness” of the boundary. EPS is
?icked empirically. Presume that the point is in a

“big” layer at the i-th data (“i” starts at the begin-
ning of the layer). The average value of the log
from the beginning to “i” is equal to “m.”

m =

>y
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where a, is the long response in the k-th point.

Examine the relationship between a;, ; and m.
: EPS
if |a, -m|2=F

then there is a boundary in the current point.

: EPS
if |ay -m| <

then there is not any boundary in the current
point. When the critical value (EPS) increases,
only “sharp” boundaries occur, and when the
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Figure 1: First principal components of wells to be correlated.
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Figure 2: Result plot of well-to-well correlation taking elevations into

consideration.




critical value decreases, “weak” and “sharp”
boundaries occur simultaneously. This procedure
can be applied to the c.v. log, so that a boundary
occurs only when one has previously been identi-
fied, neglecting some less important boundaries.
The accuracy of the identification is the same as
the identification of fine layers because the identi-
cal procedure was applied to the characteristic
value log of fine layers (see Figure 7).

¢ Now return to the original logs to calculate

characteristic values of the larger layers. The vari:
ations in log response within a big layer can be
large as there may be several local minima anc
maxima which can cause difficulties. To solve
these problems, divide the c.v. identification intc
two options:

a. c.v. can be the average log response withir
the layer.

b. c.v. can be the extreme (minimum or maxi
mum value) of the log within the layer.

The program selects a or b automatically
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Figure 3: Flow-chart for the zonation

technigue.
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Figure 4: Result log after median filtering.
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Figure 5: Fine boundaries on the

smoothed log.

Figure 6: Characteristic values for fine layers.




depending on the shape of the curve within the
layer. Some simple examples follow:

—If the curve shape resembles this:

the c.v. is the maximum (or something around
maximum).
—If the curve shape resembles this:

I

then the c.v. is the minimum (or something
around minimum).
—If the curve shape resembles this:

then the c.v. is the average.

There are several more complicated cases (i.e.,
very noisy log), but these can be traced back to the
shown simple cases (after using robust statistical
estimations and filtering).

Examination of Synthetic Logs

Some synthetic logs were constructed to exam-
ine the boundary identification method.

At first several layers were constructed and
given five physical values: resistivity, gamma ray
level, density, neutron porosity, and acoustic tra-
vel time. These are the model logs (see Figure 8).

Uncorrelated noise of varying amplitude was
then added to these model logs (see the red
curves in Figures 9 and 10).

In Figures 9 and 10 the following logs are
depicted:

The green curves are the model logs (MLLD,
MGR, MDEL, MFIN, MATL). The MBOUND
curve is the “true” boundary log which was used
to compute the squared logs. These are the
“ideal” boundaries. The red curves are the
“noised” logs (NLLD, NGR, NDEL, NFIN,
NATL). The blues curves are the zoned logs com-
puted from the boundary identification process-
mg.

srhe and blue curves should overlay each
other if the boundary identification process has
been successful. There are two or three places
where the blue zoned logs and green model log
curves are separated. In some other cases, only
one dark curve can be seen because of the overlay.

The first principle component of the “noised”
logs can be seen on Figure 9 in the right column
(red curve). The “ideal” model boundaries (green
- MBOUND) and the computed resultant bound-
aries (blue - RBOUND) are the results of the pro-
cessing and are shown in Figure 9.

Figure 7: Boundaries of big layers.
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Figure 8: Synthetic logs: 'M"' prefix means “model.”
MLLD: laterolog MGR: gamma ray MDEL: density
MFIN: neutron porosity MATL: acoustic




log.

Examination of Practical Examples

In this part, examples of the boundary identifi- | are chosen within the following ranges:
cation technique are shown. The input logs are: | hy, = 0.4m — 2m, EPS = 0.05 - 0.3.
laterolog (W1LLD), gamma ray (W1GR), neutron
porosity (W1FIN), density (W1DEL), and acous- | fall within the following ranges:
tic travel time (W1ATL). In Figure 11, the red | hyy, = 2m — 10m, EPS = 0.3 — 0.8.
curves are input logs (W1DEL, W1ATL), and the
blue curves are the zoned logs (W1DECV,
WI1ATCV). The W1SPCl1 log is the median filtered
and smoothed first principal component of the
inputlogs (red curve), and W1BO is the boundary
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Figure 9: Result plot of the boundary identification and
calculation of characteristic value. Model boundaries
(MBOUND - green), result boundaries (RBOUND - blue) and
the smoothed first principal components (SPC1 - red curve)
can be found in the right column. Model gamma ray log (MGR
- green), the noisy gamma ray log (NGR - red) and the zoned
gamma ray log (ZGR - blue) can be found in the middle
column. Model neutron porosity log (MFIN - green), noisy
neutron log (NFIN - red) and zoned neutron log (ZFIN - blue)
can be found in the left column.
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Figure 10: Model laterolog (MLLD - green), noisy laterolog
(NLLD - red) and the zoned laterolog (ZLLD - blue) can be
found in the right column. Model density (MDEL - green),
noisy density (NDEL - red) and the zoned density (ZDEL -
blue) can be found on the middle column. Model acoustic log
(MATL - green), noisy acoustic (NATL - red) and zoned
acoustic log (ZATL - blue) can be found on the left column.

The results will be fine resolution if parameters
To obtain coarser layers, the parameter should

Figures 13 and 14 show the results of using the
same input logs but with an h_;, = 5 m and and
EPS = 0.3. Figure 13 contains two input logs
(WIDEL and W1ATL), their characteristic value
logs (W1DECV and W1ATCV), the median fil-
tered and smoothed first principal component log

In Figure 12, the input logs (W1LLD, W1GR, | W2SPC], and the boundary log W2BO.
and WI1FN) are red, and the zoned logs
(WILDCV, W1GRcv, and W1FNCYV) are blue.

In this processing, the window length was h;, | (W2LDCV, W2GRCV, and W2FNCV).
= 1mand EPS = 0.15 (the sampling distance was

Figure 14 shows three input logs (W1LLD,
W1GR, and WIFIN) and three c.v. logs

A major problem with the technique is its sensi-



logs are not correctly depth-matched, then the
first principal component will also contain this
mismatch and compute incorrect boundaries.
This problem does not cause much error if only
large layers need to be identified. (Median filter-
ing and smoothing may be used to reduce this
error.)

APPENDIX
Mathematical Bases of the PCA

Assume that the hypothetical database has the
following structure: “p” observation units and
each unit has “N” data (i.e., there are “p” obser-
vation vectors).

Let X 9 vectors be random variables. So ele-
ments of X @ are realizations of a random varia-
ble. In this way each observation unit
corresponds to a vector random variable. Since
observation units can be of different physical
quantities, standardize them:

X0 — 50
‘K?= i‘J

where X 9 is the average of the j-th factors, s is
the empirical scatter of the j-th vector. (The aver-

age of the X @ is equal to zero and its empirical
scatter is equal to 1 because of the standardiza-
tion.) Next, compute the correlation matrix of the

database the following way:
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Figure 11: Result plot of the boundary identification and
calculation of the characteristic values.

Hyp = 1m, EPS = 0.15.

W1SPC1 is the median filtered and smoothed first principal
component log, W1BO is the boundary log, W1DEL - density,
W1DECYV - c.v. of the density log, W1ATL - sonic, W1ATCV -

c.v. of the sonic log.

Figure 12: Result plot of the boundary identification and
calculation of the characteristic values.

Hpn = 1m, EPS = 0.15.

The well is the same which was shown in Figure 11. W1LLD -
laterolog, WILDCV - c.v. log of laterolog, W1GR - gamma ray
log, W1IGRCV - c.v. log of gamma ray, W1FIN - neutron

porosity log, W1IFNCV - c.v. log of the neutron porosity log.




j=12..p
these eigenvalues and v

puted:

where

input vectors).

properties:

components are uncorrelated.

wherer; = correlation (X ?, X ") andi = 1,2,...p,

Calculate eigenvalues of the correlation matrix

and its eigenvectors. Let I\ [>]\; |> . \p | be
Y@

P XD P4 XD g et g XD VO
i=12:'n i=12:"'p and VP v}.-vQ
are principal component weights.

Obviously not more than ‘‘p’’ pieces principal
components can be computed (p is the number of

—Their average is zero and their scatter is equal

.v P eigen-

vector. The j-th principal component can be com- | —Eigenvectors are normalized, i.e.,

<V(j} . ‘,i)> = 53.

Kronecker-delta.

_ f1ifj=i
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p P P
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Figure 13: The same well which was seen in Figures 11 and
12. The difference between the two results is only in the values
of h,;, and EPS. In this case h,,, = 4m, EPS = 0.6. W1SPC1
- median filtered and smoothed first principal component log,
W1BO - boundary log, W1DEL - density log, W1DECV - c.v.
log of density, W2DECV - c.v. log of the density log, W1ATL -
sonic log, W2ATCV - c.v. log of the sonic log.

Figure 14: Result plot of the boundary identification and
calculation of the characteristic values.

Hyn = 1m, EPS = 0.6.

WILLD - laterolog, W1LDCV - c.v. log of laterolog, W1GR -
gamma ray log, W2GRCYV - c.v. log of gamma ray log, W1FIN
- neutron porosity log, W1FNCV - c.v. log of the neutron
porosity log.

where <> means scaler product and §; is the

—Sum of eigenvalues is equal to the number of the
Principal components have some important | input logs.
—Sum of variances of the standardized logs is equal

—The correlation matrix of principal compo- | tothe number of the input logs.
nents is a diagonal matrix meaning that principal



where \; are eigenvalues, s; are the variances of the
standardized logs meaning that the PCA only rear-
ranged variances but did not change the quantity of
variances.

Demonstration of Meanings of
Principal Components

Variables are rearranged by means of Principal
Component Analysis. Each standardized variable
has the same importance by reason of variances,
but the first principal component includes the
largest common part of all the variables. The sec-
ond principal component includes the largest
common part of the residual variances, etc.

The last principal component has hardly any
variances at all and so may be considered unim-
portant. Therefore, the first principal component
may be used instead of the whole database in
many cases, through the number of principal
components to be used depends on the problem
being examined.

Geometrical Meaning of PCA

In the simple case where two variables (X, V
vectors), exist, the first step of Principal Compo-
nent Analysis is standardization (scaling from —1
to 1 around a value of 0), and the second step is
the computation of eigenvalues and eigenvectors
and calculation of principal components.

Standardization P.C.A.

hd

| |

The processing consists of a coordinate trans-
formation, which moves the point cloud to the
origin (standardization), and then rotates the
coordinate axes until the main direction of the
cloud is aligned with the first principal compo-
nent axis.
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e
=

Inversion of the PCA

The computation of principal components can
be inverted and the standardized variables can be
retrieved from the principal components.
Remember how the principal components were
computed:

P x D v XDy g oo x D0

wherei = 1,2,. j=12,...p

and xY, are the standardlzed variables and

¢, are the principal components.

Now try to retrieve the standardized variables:

xP= (O v (D @yt g (OO

If a matrix from principal component weights is
constructed, then the direct and inverse computa-
tion can be easily seen.

DIRECT

[ R

N 2 2 - 2

> \,ill ‘,(21 A V(p)

E

R : i .

S -

B v{;;) V(g) e Vu;;
Direct transformation:

first principal component computation - coeffi-
cients are elements of the first line.

second principal component computation - coef-
ficients are elements of the second line.

i)-th principal component computation - coeffi-
cients are elements of the p-th line.

Inverse transformation:

first standardized variables computation - coef-
ficients are elements of the first column.

second standardized variables computation -
coefficients are elements of the second column.

i:-th standardized variables computation - coeffi-
cients are elements of the p-th column.
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