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Abstract  

Needs for fast, yet reliable means of assessing the lipophilicities of diverse compounds resulted in the 

development of various in silico and chromatographic approaches that are faster, cheaper, and greener compared to 

the traditional shake-flask method. However, at present no accepted “standard” approach exists for their 

comparison and selection of the most appropriate one(s). This is of utmost importance when it comes to the 

development of new lipophilicity indices, or the assessment of the lipophilicity of newly synthesized compounds. 

In this study, 50 well-known, diverse compounds of significant pharmaceutical and environmental importance have 

been selected and examined. Octanol-water partition coefficients have been measured with the shake-flask method 

for most of them. Their retentions have been studied in typical reversed thin-layer chromatographic systems, 

involving the most frequently employed stationary phases (octadecyl- and cyano-modified silica), and acetonitrile 

and methanol as mobile phase constituents. Twelve computationally estimated logP-s and twenty chromatographic 

indices together with the shake-flask octanol-water partition coefficient have been investigated with classical 

chemometric approaches – such as principal component analysis (PCA), hierarchical cluster analysis (HCA), 

Pearson’s and Spearman’s correlation matrices, as well as novel non-parametric methods: sum of ranking 

differences (SRD) and generalized pairwise correlation method (GPCM). Novel SRD and GPCM methods have 

been introduced based on the Comparisons with One VAriable (lipophilicity metric) at a Time (COVAT). For the 

visualization of COVAT results, a heatmap format was introduced. Analysis of variance (ANOVA) was applied to 

reveal the dominant factors between computational logPs and various chromatographic measures. In consensus-

based comparisons, the shake-flask method performed the best, closely followed by computational estimates, while 

the chromatographic estimates often overlap with in silico assessments, mostly with methods involving octadecyl-

modified silica stationary phases. The ones that employ cyano-modified silica perform generally worse. The 

introduction of alternative coloring schemes for the covariance matrices and SRD/GPCM heatmaps enables the 

discovery of intrinsic relationships among lipophilicity scales and the selection of best/worst measures. Closest to 

the recommended logKOW values are ClogP and the first principal component scores obtained on octadecyl-silica 

stationary phase in combination with methanol-water mobile phase, while the usage of slopes derived from 

Soczewinski-Matyisik equation should be avoided.  

Keywords: Lipophilicity, Reversed-phase thin-layer chromatography, Benzodiazepines, Polyaromatic 

hydrocarbons, Phenols, Sum of ranking differences - SRD, Generalized pairwise correlation method - GPCM, 

Comparison with one variable at a time – COVAT, Heatmap 

List of abbreviations 

ANOVA – Analysis of Variance, C18 – Octadecyl silica, CEPW – Conditional Exact test with Probability 

Weighted (ranking), CN – Cyanopropyl-modified silica, COVAT – Comparison with One Variable at a Time, 

CRRN – Comparison of Ranks with Random Numbers, GPCM – Generalized Pairwise Correlation Method, HCA 

– Hierarchical Cluster Analysis, HILIC – Hydrophilic Interaction Liquid Chromatography, HPLC – High 

Performance Liquid Chromatography, IAM – Immobilized Artificial Membrane Chromatography, LSER – Linear 

Solvation Energy Relationships, MEKC – Micellar Electrokinetic Chromatography, MLC – Micellar Liquid 

Chromatography, PC – Principal Component, PCA – Principal Component Analysis, Rg – Range scaling, Rk – 

Rank transformation, SRD – Sum of (absolute) Ranking Differences, St – Standardized (autoscaled),TLC – Thin-

layer Chromatography  
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1 Introduction 

Throughout the last century lipophilicity evolved into an essential physicochemical parameter that is used in 

pharmaceutical and environmental sciences abundantly. It is related to the distribution of compounds in the 

environment and biota, to bioavailability and bioconcentration in the food chain, as well as to the transport in the 

soil-sediment-water compartments [1]. It is a crucial factor influencing passive transport trough biological 

membranes such as the blood-brain or the gastrointestinal barriers [2,3]. Lipophilicity has a high impact on protein 

binding, drug-receptor interactions, which consequentially alters the desired physiological response, as well as 

drug-related toxicity and adverse effects [4,5].  

Nevertheless, since the first works of Meyer and Overton [6,7], lipophilicity has been tailored to suit our 

practical needs, while its strict definition remains ambiguous. In that sense, according to the International Union for 

Pure and Applied Chemistry (IUPAC), lipophilicity represents the affinity of a molecule or a moiety for a lipophilic 

environment [8]. It is still not clear what a “lipophilic environment” actually is, and how it should be modelled. 

Such a vague definition of the lipophilicity itself might be one of the reasons that create additional space for 

development of various lipophilicity measures and numerous experimental approaches for its measurement and 

estimation. In order to put some constraints the IUPAC gives some recommendations how lipophilicity should be 

or could be measured [8]. The traditionally adopted shake-flask method – based on the distribution between octanol 

and water (commonly denoted as logP, but more frequently replaced with logKOW in contemporary literature) – is 

time and reagent consuming, experimentally demanding, tedious, and mostly applicable to pure compounds that 

have partition coefficients in the range of -3 to 4.5 log units (some modifications of the shake flask method are 

applicable for compounds with logKOW > 4.5). In order to overcome these difficulties many chromatographic 

methods have been developed, and some of them have been adopted as standard methods, parts of OECD 

guidelines (Organization for Economic Cooperation and Development), such as Test No. 117, HPLC method [9]. 

Aside from very specific applications of chromatographic approaches that tend to mimic biosystems such as 

micellar liquid chromatography (MLC) [10-15], immobilized artificial membrane chromatography (IAM) [16,17], 

immobilized proteins etc. [18], the mainstream methods in the determination of lipophilicity are still based on 

typical reversed-phase chromatography including a variety of chemically bonded stationary phases [19-22], where 

octyl-, octadecyl-, and cyanopropyl-modified silica beds are the most frequently used in combination with a polar 

mobile phase (usually binary mixtures of miscible organic solvents and water) [23-25].  

Both high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC) produce a high 

number of chromatographic lipophilicity indices. However, TLC has a significant advantage over HPLC because of 

its simplicity, significantly reduced costs, short analysis time, low consumption of solvents and reagents, and its 

ability to simultaneously handle dozens of samples.  

Several lipophilicity measures stem from TLC experiments. The intercept (RM
0
) and the slope (b) of the linear 

dependence of the retention on the volume fraction of the organic component of the mobile phase (φ), proposed by 

Soczewinski and Matyisik [26] (Eq. 1), have been introduced among them first. The RM value is defined according 

to the Eq. 2. 

bRR MM  0
  (1)
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where RF is the retardation factor, i.e., the ratio of the distance of a solute target zone and the solvent front. 

The parameter b can be related to the specific hydrophobic surface area of the solute [27] and the surface 

tension of the mobile phase [28], while the intercept describes partitioning between pure water and the non-polar, 

hydrophobic stationary phase. 

In addition, the concentration of the organic solvent in the mobile phase resulting in equal distribution of a 

solute among the stationary and mobile phase, C0, was introduced by Bieganowska et al. [29], and is frequently 

used. It is defined as the intercept (RM
0
) and the slope (b): 
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Alongside the extrapolated chromatographic lipophilicity measures, the ones based on primary retention data 

are also used as e.g. the first principal component scores (PC1/RM) derived from principal component analysis 

(PCA) of multivariate retention data [30, 31], and arithmetic means of RM values, more frequently denoted as mRM 

[23-25]. 

Besides the experimental methods, computational approaches for the prediction of logP values are extensively 

used. Their main advantage is that they simply do not require experimental measurements. They can be classified 

in two large families: substructure-based and property-based methods. Substructure-based methods decompose the 

molecular structure into smaller fragments (or even down to the level of single atoms). Depending on the algorithm 

used, each fragment is then associated with a particular logP contribution. The final logP value of the unknown 

compound is obtained by a summation over all fragment contributions, and using correction factors, where 

necessary [32]. Examples of fragmentation/group contribution based methods are: ClogP, AClogP, ALOGP, 

miLogP, KOWWIN, XLOGP2, XLOGP3 [33-38]. Property-based methods, on the other hand, consider the 

molecule as an undivided entity [32]. Calculation of logP is based on quantitative structure - property relationship 

(QSPR) models using physicochemical parameters such as the case with the Linear Solvation Energy Relationships 

(LSER) approach [39], or from molecular descriptors obtained from 3D representations (e.g. COSMOFrag) [40], or 

simple 1D topological, and electrotopological indices (MLOGP, ALOGPs) [41,42]. Nevertheless, both property- 

and substructure-based methods are accompanied by estimation errors that reach orders of magnitude for the same 

molecule as compared to each other. Computational methods that are used in the present work are enlisted in 

section 2.3. 

When it comes to the selection of an appropriate approach to lipophilicity assessment there are several 

problems, errors, and misconceptions, especially in the case of newly synthesized compounds or novel lipophilicity 

indices. If there is no possibility to obtain octanol-water partitioning data, chromatographic and computational 

estimates are most frequently used to estimate lipophilicity. However, no systematic or widely accepted approach 

exists for the selection of appropriate lipophilicity measures. Many procedures use similarities among 

computationally estimated values and experimentally derived lipophilicity indices as a criterion to select the best 

one. Such similarities are most often obtained from hierarchical clustering (HCA) [43,44], principal component 

analysis [21,23,25,45], or simple correlations based on parametric statistics such as Pearson’s correlation 

coefficient [24,25,44]. The last one is applicable only if the data is normally distributed, which is often not the case. 

PCA and HCA do not provide information about statistical significance of such similarities, while the use of 

correlation measures most often lead to selection of the most correlated pairs, neglecting the rest of the statistically 

significant ones.  

The aim of the present work was to rank and group lipophilicity measures from the typical reversed-phase 

thin-layer chromatographic data, to find the most similar and dissimilar ones, to suggest suitable substitutes for the 

octanol-water partition coefficient as a current golden standard in lipophilicity assessment, and to give 

recommendations for the proper use of statistical techniques in the selection of lipophilicity scales. The present 

work is a continuation and extension of our previous research [46,47]. 

 

2 Materials and methods 

 

2.1 Compound set selection 

In total 50 compounds (Table 1) of low molecular mass (94.12-321.18 g mol
−1

) of various chemical structures, 

molecular sizes and shapes have been selected in a way that they cover a relatively broad range of the 

recommended values of experimentally determined octanol-water partition coefficients (0.62 < logKOW < 6.50) and 

http://dx.doi.org/10.1016/j.jpba.2016.04.001
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their various abilities to interact with stationary and mobile phases selected according to Abraham’s solvatochromic 

parameters:  

0.00 < A < 0.94, 0.15 < B < 1.63, 0.79 < S < 2.49, 0.80 < E < 3.43, 0.7751 < V < 2.1924   (4) 

where A, B, S, E, and V are hydrogen bond donating ability, hydrogen bond accepting ability, dipolarity-

polarizability, molar refractivity in excess expressed in units (cm
3
 mol

−1
)/10 and McGowan’s molar molecular 

volume (V has a unit of (cm
3
 mol

−1
)/100), respectively. The full list of compounds accompanied with Abraham’s 

solvatochromic parameters, molecular masses, pKa values and water solubilities is given in the supplementary 

material, Table S1. Special care was taken of the selection of pharmaceutically important compounds (9 

benzodiazepine derivatives) and those with environmentally related issues (12 phenols, 10 polyaromatic 

hydrocarbons (PAH), 4 triazine herbicides, 5 aromatic amines, 6 aromatic alcohols, aldehydes and ketones, 3 

aromatic acids and esters). Under experimental conditions all compounds, with the exception of 4-nitrophenol, 

2,4,6-trichlorphenol, and 4-aminobenzoic acid, have been in their neutral (non-ionized) form (ionization degree < 1 

%). 

 

2.2 Chromatographic experiments 

Two most commonly used stationary phases have been selected: octadecyl- and cyanopropyl-modified silica 

layers coated on aluminum sheets and glass, respectively, (Art. Nos. 5559 and 16464 respectively, Merck 

Darmstadt, Germany). The plates of the 10 × 10 cm size were used. Two typical organic modifiers: methanol and 

acetonitrile have been chosen to prepare binary mixtures with water. The mobile phase composition was tuned in a 

way that allows precise and reliable measurement of retention and good fitting to the Soczewinski-Matyisik linear 

equation (Eq. 1). The fraction of the organic component was varied in the range from 40-80 %v/v, with an 

increment of 5 %. All chromatographic experiments were performed in horizontal fashion using a horizontal 

development chamber (CAMAG, Lutenz, Switzerland). Approximately 0.3-0.5 μL of freshly prepared solutions in 

concentration ≈ 1 mg/ml have been applied on the surface of the plates at 5 mm distance from the edges. The 

chamber was saturated 15 minutes before chromatogram development. Solvent developing distance was 5 cm. The 

mobile phase pH range was between 5.5 and 6.5. No buffer solution was used. After development the plates have 

been dried in a stream of hot air and visually inspected under UV light (λ = 254 nm) allowing individual zones, 

corresponding to the target compounds, to be detected. 

All substances and solvents used were of analytical purity grade. Benzodiazepines have been provided in small 

quantities from the Faculty of Pharmacy – University of Belgrade. Small amounts of PAHs have been a generous 

gift from the Chair of Environmental Chemistry, Faculty of Chemistry – University of Belgrade.  

2.3 Computational prediction of logP-s 

Mostly fragmental methods, either atom- or substructure-based have been employed to calculate logP values 

(with the exception of the linear solvation energy relationship (LSER) approach, AlogPs, and MLOGP, which are 

property-based). ALOGPs, AClogP, miLogP, ALOGP, MLOGP, XLOGP2 and XLOGP3 have been calculated 

through the Virtual Computational Chemistry Laboratory (VCCLAB, http://www.vcclab.org) [55,56], last time 

accessed on September 15, 2015. ALOGP and MLOGP are implemented in the Dragon software v. 6 

(http://www.talete.mi.it); miLogP was developed by Molinspiration and implemented in Molinspiration property 

engine v2014.11 (http://www.molinspiration.com/); XLOGP3 is available through the XLOGP3 software 

(http://www.sioc-ccbg.ac.cn/?p=42&software=xlogp3). LSER estimated logP values have been calculated 

according to the model reported by Abraham et al. [39]. KOWWIN logP values have been obtained from the 

KOWWIN software, part of the EPI Suite package v.4.1 (U.S. EPA). ClogP was calculated using Chem Draw Ultra 

v. 11.0.1 (CambridgeSoft). ACDlogP and ABlogP estimates have been obtained with the freely accessible ACD I-

Lab online database (https://ilab.acdlabs.com/iLab2/), last time accessed on September 15, 2015. ACDlogP was 

also available through the VCCLAB. 

http://dx.doi.org/10.1016/j.jpba.2016.04.001
http://www.vcclab.org/
http://www.talete.mi.it/
http://www.molinspiration.com/
http://www.sioc-ccbg.ac.cn/?p=42&software=xlogp3
https://ilab.acdlabs.com/iLab2/
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Table 1 List of compounds with their octanol-water partition coefficients (logKOW). Recommended, experimentally 

determined values of logKOW have been obtained from the EPI-Suite data base v.4.1 (EPA – U.S. Environmental 

Protection Agency) 

No Compound  logKOW Ref. No Compound  logKOW Ref.  

1 Phenol 1.46* [48] 26 Simazine 2.18* [48] 

2 4-Nitrophenol 1.91* [48] 27 Propazine 2.93* [48] 

3 Benzyl Alcohol 1.10* [48] 28 Ametryn 2.98* [48] 

4 1-Naphthylamine 2.25* [48] 29 Prometryn 3.51* [48] 

5 1-Naphthol 2.85* [48] 30 3-Nitrophenol 2.00* [48] 

6 2,4-Dichlorofenol 3.06* [48] 31 2-Naphthol 2.70* [48] 

7 Anthracene 4.45* [48] 32 4-Hydroxybenzaldehyde 1.35* [48] 

8 Acetophenone 1.58* [48] 33 2-Aminophenol 0.62* [48] 

9 2,4,6-Trichlorophenol 3.69* [48] 34 4-t-Butylphenol 3.31* [48] 

10 Ethyl-4 -hydroxybenzoate 2.47* [48] 35 2,6-Dimethylphenol 2.36* [48] 

11 p-Anisidine 0.95* [48] 36 4-Methoxyphenol 1.58* [48] 

12 1,2,3-benzotriazole 1.44* [48] 37 Methyl-4-hydroxybenzoate 1.96* [48] 

13 Diphenylamine 3.50* [48] 38 2-Nitrobenzaldehyde 1.74* [48] 

14 2,2’ipyridyl 1.50 [49] 39 3-Nitrobenzaldehyde 1.46* [48] 

15 4-Bromoaniline 2.26* [48] 40 Phthalimide 1.15* [48] 

16 Benzophenone 3.18* [48] 41 Oxazepam 2.24* [48] 

17 4-Aminobenzoic acid 0.83* [48] 42 Lorazepam 2.39* [48] 

18 Pyrene 4.88* [48] 43 Clonazepam 2.41* [48] 

19 Benzo(a)pyrene 6.13 [50] 44 Bromazepam 2.05 [53] 

20 Fluorene 4.18* [48] 45 Diazepam 2.82* [48] 

21 Acenaphthene 3.92* [48] 46 Nitrazepam 2.25* [48] 

22 Naphthalene 3.30* [48] 47 Chlordiazepoxide 2.44* [48] 

23 Phenanthrene 4.46* [48] 48 Clobazam 2.12 [54] 

24 Diben[a,h]anthracene 6.50* [51] 49 Medazepam 4.41* [48] 

25 Benz[a]anthracene 5.76 [52] 50 Chrysene 5.81 [50] 

*Values recommended by C. Hansch and A. Leo 

 

 

2.4 Data pretreatment and statistical analysis 

In order to put the lipophilicity indices on the same scale, several data pre-treatment methods have been 

investigated: a) standardization (St), also called autoscaling (mean centering and rescaling to unit standard 

deviation), b) range scaling between the lowest and the highest value of the shake-flask octanol water partition 

coefficient logKOW value (0.62 and 6.75, respectively) (Rg) and c) rank transformation (Rk). All data pretreatments, 

descriptive statistics, PCA, HCA, and analysis of variance (ANOVA) were performed using Statistica v. 10 

(Statsoft Inc. Tulsa, Oklahoma, USA).  

In the case of HCA and PCA, the PLS, PCA and multivariate/Batch SPC module was used (Statistica v.10), 

while analysis of variance was carried out with the factorial ANOVA tool, part of the Advanced models (General 

linear) module (Statistica v. 10). HCA has been carried out using Ward’s amalgamation rule and the Euclidian 

distance measure.  

Two novel, non-parametric statistical methods, sum of ranking differences (SRD) and the generalized pair 

correlation method (GPCM) were also applied to provide a reliable comparison and ranking of the examined 

lipophilicity measures. These methods are entirely general and can give a fast and easy solution to comparison 

problems. Both methods are implemented as Microsoft Excel VBA macros and are available at 

http://aki.ttk.mta.hu/srd/ and http://aki.ttk.mta.hu/gpcm. 

http://dx.doi.org/10.1016/j.jpba.2016.04.001
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2.4.1 Sum of ranking differences (SRD) 

SRD is a novel, fast and entirely general method for the comparison of alternative solutions to the same 

problem – e.g. different methods for the measurement/calculation of the same property (in this case, lipophilicity 

measures) [57,58]. It takes a matrix as its input, which contains the samples/molecules in its rows and 

variables/methods in its columns – thus, a cell in row i and column j contains the property (here, lipophilicity) 

value calculated/measured for the ith molecule with the jth method. SRD is based on the comparison of the 

rankings produced by the different methods, i.e. the samples are ranked (in the order of magnitude) according to 

each method plus a reference method (i), the differences between the rank numbers of each sample according to 

each method and the reference method are calculated (ii), and these ranking differences are added up for each 

method (iii). The reference method can be an exact “golden standard” or as in the present case the average. Using 

the arithmetic mean as reference instead of the recommended experimentally determined logP-s is justified based 

on two main points: a) the average realizes a consensus supported by the maximum likelihood principle, which 

yields a choice of the estimator as the value for the parameter that makes the observed data most probable (the 

average). [59]; b) even systematic errors cancel each other out not only the random errors, at least partially. Even if 

some small biases remain, we are better off using row-average than any of the individual methods. The resulting 

values are called SRD values and the smaller they are, the closer the method is to the reference (in terms of 

ranking). These SRD values are usually normalized to enable the comparison of different SRD calculations: 

SRDnor = 100SRD/SRDmax,  (5) 

where SRDmax is the maximum possible SRD value. 

SRD employs two validation steps: first, a Gauss-like curve is plotted based on the use of random ranks as a 

sort of randomization test (CRRN – Comparison of Results with Random Numbers); if a method overlaps with the 

Gauss-like curve, than it cannot be considered as significantly different from the random ranking. In the second 

step, seven-fold cross-validation is carried out (or leave-one-out cross-validation, if the number of samples is less 

than 14) to provide a population of SRD values, for which average, standard deviation, etc. can be calculated. An 

illustrative animation of the SRD calculation was published as a supplement to our recent article [60]. 

 

2.4.2 Generalized pair correlation method (GPCM) 

The method is based on a 2 × 2 contingency matrix, where the frequencies of the event A, B, C and D are in 

the rows and columns [61]. These frequencies are calculated from a comparison between every selected dependent 

variable pairs (X1 and X2) and the reference (Y) variable (the arithmetic mean). Event A shows how many times 

both of the compared two variables strengthen the correlation (i.e., if Yi > Yj, than X1i > X1j, and X2i > X2j). Similar 

to this, event D shows the amount of those cases, when both of the compared two variables weaken the correlation 

with Y variable (i.e., if Yi > Yj, than X1i < X1j, and X2i < X2j). Events B and C are complementary: variable X1 

strengthen and X2 weakens the correlation (event B) and vice versa (event C). The final decision of the comparison 

is based on Conditional Fisher’s exact test or McNemar test [61]. The procedure is repeated for every possible 

variable pairs. A variable can win the final comparison, if it has the most “win” decisions. ”No decision” results 

can be made if there is no significant difference between the correlations between the reference variable and the 

members of the pair. GPCM compares all the different variable pairs, and counts “wins”, “losses” and “no 

decisions (ties)” between the variables (lipophilicity measures) [61]. The final result can be ordered in three 

different ways: simple ordering (which counts the number of wins), difference ordering (which calculates the 

differences between wins and losses) and significance ordering (the probability weighted form of difference 

ordering). 

 

http://dx.doi.org/10.1016/j.jpba.2016.04.001
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3 Results and discussion 

3.1  Exploratory data analysis and clustering 

Aiming to detect outliers, and explore the data structure for similarities among lipophilicity scales, PCA and 

HCA have been performed on the standardized dataset. Since comparison of lipophilicity measures to the 

arithmetic mean average (AMA) was introduced and justified in section 2.4.1, we have decided to include AMA in 

the PCA and HCA as well. Two PCs capture 88.83 % of the overall data variability in the data (PC1 84.86%, and 

PC2 3.97 %). The score plot (Figure S1, Supplementary material) reveals relatively homogeneous structure of the 

studied set of compounds. Only 4-aminobenzoic acid (comp. no. 17) was out of the 3 standard deviation confidence 

ellipse, most likely due to significant ionization under chromatographic conditions (α = 99.98 %). The rest of the 

solutes might be grouped into four, not entirely distinct groups: I – Comp. nos. 19, 24, 25, and 50; II – 7, 9, 13, 20, 

23, and 49; III – 21, 22, 26-29, 34, 41-48; IV – 1-6, 8, 10, 12, 14, 15, 30, 32, 35-40. The first and the second group 

contain mostly polyaromatic hydrocarbons. All benzodiazepines, except of midazolam, and all triazine herbicides 

are in the third group along with a few phenolic compounds. The rest of phenols, aromatic amines, aldehydes, 

ketones, and esters are in the fourth group.  

The majority of the lipophilicity measures responsible for such disposition of compounds have the highest 

loading values in the PC1 direction, grouped in the tight range of 0.80-0.99 units (Figure 1). Exceptions are slopes, 

b, obtained on a C18 stationary phase using methanol and acetonitrile as organic mobile phase modifiers. The 

majority of computational approaches (XLOGP2, miLogP, AlogPs, ACDlogP, KOWWIN, ClogP, and XLOGP3) 

are centralized in the extremely small range of PC1 vs. PC2 loading space together with the experimentally 

determined logKOW(exp). They are further surrounded with chromatographic descriptors, mostly PC1/RM, mRM, 

and RM
0
 indices in the first level, and C0 in the second one, derived under different chromatographic conditions. 

Water solubility, i.e. its negative logarithm (-logS) perform similarly as C0 and it is the closest to the AMA. 

 

 

Figure 1 Principal component analysis loading plot; similar lipophilicity measures are positioned close to each other. 

http://dx.doi.org/10.1016/j.jpba.2016.04.001
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Fine data variability along the PC2 direction (3.97%) allows distinction of chromatographic indices obtained 

on cyano-modified silica and those derived from octadecyl-silica (Figure 1). The majority of the chromatographic 

indices obtained on cyano-modified silica are located in the lower part of the loading plot; the others are in the 

upper one. Between these two groups lies a very coherent group composed mostly of computational logP-s.  

 

 
 
Figure 2 Hierarchical cluster analysis dendrogram showing similarities among different chromatographic lipophilicity 

indices (cluster B) and in silico predicted logP values (cluster A). The experimental values (logKOW) and the arithmetic 

mean average (AMA) are also included in cluster A. 

Clear distinction between computationally estimated logP-s and chromatographic indices is obtained by HCA 

(Fig 2). Cluster A, comprised of in silico predicted logP-s, logS, and AMA. Cluster B containing all 

chromatographic lipophilicity indices is separated at the level of 14 linkage distance units. However, the difference 

between them is only ~ 2 distance units. Further grouping of indices according to stationary and mobile phases is 

obvious at the level of 10 distance units. While B1 gathers only chromatographic indices obtained on cyano-

modified silica, B2 includes those obtained from both stationary phases (B2a corresponds to CN-modified silica, 

B2b accounts for C18-modified silica). Also, the use of acetonitrile vs. methanol differentiates between B1 and 

B2a. Cluster A can be further divided into two sub-clusters. However, it cannot be explained by the subdivision of 

methods to property- and substructure-based ones. Also, there is the following trend in mutual similarity among the 

types of chromatographic descriptors on almost all chromatographic systems: the most similar to each other are 

mRM and PC1/RM (the shortest linkage distance), the most similar to them is C0, while RM
0
 and b are gathered in 

separate clusters. Figure 2 clearly shows that the classical chemometric method HCA cannot establish a link 

between calculated and chromatographic indices. The experimental value logKOW is far away and separated by 

calculated indices from the chromatographic ones. It is also separated from the AMA value, which is located in the 

first subcluster (Figure 2). 
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If the recommended experimental values logKOW(exp) are considered as the reference, both PCA and HCA lead 

to the same decision about the best lipophilicity measure, i.e. XLOGP3. However, each of the considered 

lipophilicity estimation methods has systematic as well as random errors. Using the arithmetic mean as the 

reference instead of the recommended experimental logKOW is justified based on two main points: a) the maximum 

likelihood principle – the average is the most probable solution and b) even systematic errors cancel each other out. 

According to the closeness of each method to the average point, which is included in the PCA and HCA plots the 

best lipophilicity estimate is obtained by logS in the case of PCA, and LSER in the case of HCA. However, several 

problems still remain. The two most important are: i) unknown statistical significance of obtained grouping and 

similarity to the reference and ii) loss of information due to dimensionality reduction in PCA. 

 

3.2 Comparison of lipophilicity measures by means of SRD and GPCM 

With the aim to overcome the aforementioned problems and answer the above questions, lipophilicity measures 

were compared, ranked, and grouped with non-parametric ranking methods, SRD and GPCM. Both methods also 

provide information regarding statistical significance of the ranking.  

According to the SRD-CRRN ranking of standardized lipophilicity data (Fig. 3a), the lipophilicity estimate 

closest to the reference, in this case the average is ClogP. The parameter is closely followed by the recommended 

experimentally determined values of the octanol-water partition coefficient, then XLOGP3, etc. Actually the 

pseudo-continuous ranking occurs in the range of scaled SRD score values 9.28 – 14.88, including several 

chromatographic descriptors and the majority of in silico lipophilicity estimates. The farthest lipophilicity measures 

are the slopes b obtained on C18 silica. Generally, chromatographic indices obtained on CN-modified silica have 

lower SRD scores than those obtained on C18. All studied lipophilicity indices are able to rank the studied 

compounds according to their lipophilic character better than random ranking – none of the lines overlap with the 

random number distribution, i.e., their ability to measure lipophilic character of selected group of compounds is 

statistically significant. Different data pretreatment methods might lead to slightly different ranking patterns. 

However, the milestone variables (the closest and the farthest from the reference) remain the same (Table S4a).  

GPCM of standardized data provided a slightly different ranking pattern (Figure 3b) with a characteristic 

degeneracy of some variables (variables having the same or indistinguishably similar ranking scores). Here the 

average was used as a dependent variable. The lipophilicity measure closest to the average in this case was the set 

of recommended values, logKOW(exp), closely followed by miLogP, RM
0
 (CN-MeOH), PC1/RM (C18-MeOH), etc., 

the same variables that can be found in the pseudo-continuous ranking in the case of SRD, with a slightly (not 

significantly) altered order of variables. The variables that are farthest from the consensus are again the slopes b 

obtained on C18-silica closely followed by b (CN-MeCN) and AB/logP.  

If the logKOW(exp) values are used as the benchmark instead of the arithmetic mean average, different ranking 

is obtained in the case of both SRD and GPCM, especially in terms of variable cluttering and degeneracy. 

However, the most important variables such as the closest ones (ClogP, XlogP3) and the farthest from the reference 

(b (C18-MeCN)) preserved their positions (Figure S2a and b, Supplementary material).  Although the information 

about the relation of lipophilicity estimators, especially the closest and the farthest methods to this particular 

reference has been obtained, the information regarding the reference itself is lost. It can be only provided if the 

average is kept as the reference point of view.  

Various methods can provide different orderings. SRD has the advantages of “multicriteria optimization”, c.f. 

ref. [62]. It is clear that in this case in silico methods are close to the recommended logKOW(exp) values, while 

chromatographic estimations might seem to perform worse. The reason for such, possibly “biased” behavior might 

be the use of the same, or at least most of the studied compounds in the training of presented in silico methods. 

External validation might provide a proof for a possible bias. However, this is not necessarily a good choice, 

though many authors still support it. In her recent paper Gramatica advises “to avoid the limitation of using only a 

single external set, we […] always verify our models on two/three different prediction sets” [63]. Independently 
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from this, our recent paper clearly shows that the ordering of merits for external validation is indistinguishable from 

random ranking. [62].  

 
 

Figure 3 Comparison, ranking and grouping of chromatographic and in silico lipophilicity measures by SRD-CRRN (a), 

and GPCM-CEPW ranking (b); where CEPW stands for probability weighted ranking (PW) based on Fisher’s conditional 

exact test (CE). Left side y-axes and x-axes are the same and denote score values in %. 

 

Nevertheless we have carried out the SRD and the GPCM ranking of lipophilicity measures on a subset of 

compounds with logKOW values that are likely to be correctly measured with the shake-flask method (logKOW < 3 

and determined with the shake-flask procedure which was verified through a meticulous tracing of the original 

articles, Table S1, Supplementary material). The arithmetic mean average was used as the reference. 

Ranking of lipophilicity measures is slightly altered for both SRD and GPCM (Figure S3a and b, respectively 

in the Supplementary material), however the general trend is the same and the most important variables retained 

their positions compared to the ranking based on the overall set of compounds.  In that sense RM
0
 (CN-MeOH) is 

selected as the lipophilicity measure closest to the average by SRD instead of ClogP which is the second closest 

(Figure S2a), while the farthest ones (b (C18-MeCN), AB/logP, b (C18-MeOH), RM
0
 (CN-MeCN)) remain in their 

original positions. GPCM provides ranking in a similar fashion identifying the following measures as the closest to 

the average: logKOW(exp), miLogP, RM
0
 (CN-MeCN), and b (C18-MeCN) as the farthest one. Therefore, 

conclusions related to identified approaches using the overall set of compounds, for which logKOW values originate 
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from different sources and possibly from different measurement techniques, are valid for the limited set of 

compounds for which logKOW values are more likely to be measured with the shake-flask method.  

In order to test whether the data pretreatment methods and ranking methods employed lead to significantly 

different results, analysis of variance (ANOVA) was performed on the GPCM and SRD score values after 

sevenfold cross-validation. ANOVA was also used to test for the possible difference among chromatographic 

lipophilicity indices, the use of different stationary and mobile phases, and in silico prediction methods.  

Uncertainty has been introduced to SRD and GPCM values by a jackknife-like validation procedure (cross-

validation) as follows: seven minors of the original data matrices were obtained by removing 1/7 of samples. Every 

truncated data set was then subjected to SRD-CRNN and GPCM-CEPW ranking procedures, providing seven score 

values for each of the lipophilicity measures, in total 1386 scores (33 variables (lipophilicity indices) × 3 data 

pretreatment methods × 2 ranking approaches (SRD and GPCM) × 7 repetitions). GPCM scores were range scaled 

to fit the size and order of SRD-s. Obtained scores were used as an input for ANOVA. The following factors and a 

full interaction model without quadratic terms were considered: 

Score = b0 + b1F1 + b2F2 + b3F3 + b12F1F2 + b13F1F3 + b23F2F3 + b123F1F2F3    (6) 

The types of data pretreatment are incorporated in the three level factor, F1: standardization (St), range scaling 

(Rg), and ranking (Rk); F2 represents the type of lipophilicity scale ranking (two levels): SRD and GPCM; F3 takes 

into account the type of lipophilicity measure at six levels: logKOW (exp) – shake-flask method, Cmp – 

computationally estimated logP-s, and four types of chromatographic lipophilicity indices - C18-MeOH, C18-

MeCN, CN-MeOH, CN-MeCN, referring to the use of octadecyl- and cyano-modified silica as stationary phases 

and methanol and acetonitrile as mobile phase components respectively.  

Statistical parameters of ANOVA are summarized in Table 2. The data pretreatment methods do not differ 

at the predefined significance level p = 0.05. However, the type of ranking method, the lipophilicity measure 

(factors F2, F3) and their cross-coupling term are statistically significant. The other interaction terms are not 

significant (Table 2, last column).  

Table 2 Univariate test for significance of factor effects for 1386 score values obtained with SRD and GPCM ranking 

procedures. Factors: F1 – methods of data pretreatment: standardization (St), range scaling (Rg), rank transformation (Rk); F2 – 

ranking methods: SRD and GPCM; F3 - type of lipophilicity measures: Recommended experimental logKOW values 

(logKOW(exp)), in silico estimated logP-s (Cmp), Chromatographic indices obtained on octadecyl- and cyano-modified silica 

using methanol and acetonitrile as mobile phase components (C18-MeOH, C18-MeCN, CN-MeOH, CN-MeCN, respectively). 

Significant factors are indicated in bold. 

Factor Sum of squares Degrees of freedom Mean squares F p 

Intercept 313548.9 1 313548.9 3942.905 0.000000 

F1 11.2 2 5.6 0.070 0.932187 

F2 11252.2 1 11252.2 141.498 0.000000 

F3 32348.2 5 6469.6 81.356 0.000000 

F1×F2 4.2 2 2.1 0.026 0.974172 

F1×F3 35.2 10 3.5 0.044 0.999996 

F2×F3 6676.8 5 1335.4 16.792 0.000000 

F1×F2×F3 10.0 10 1.0 0.013 1.000000 

 

Factor effects are illustrated in a way that is easier to perceive, in Figure 4. Considering all types of 

lipophilicity parameters, the GPCM procedure resulted in generally higher scores compared to the SRD, except in 

the case of the shake-flask method, in which GPCM and SRD scored the same (Figure 4). Considering that the 

smaller the scores the better, i.e., the closer to the average are the lipophilicity measures, it is easy to find that the 

lipophilicities obtained from the shake-flask method are the best ones. Computational methods closely follow the 

recommended experimental logKOW values while chromatographic lipophilicity indices are close to the 
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computational logP-s. Both GPCM and SRD confirm that the use of different organic components in the mobile 

phase does not have any influence on the ordering of lipophilicity scales in the case of octadecyl-silica. Unlike 

octadecyl-silica, cyano-modified silica gel makes a significant difference with regard to the use of methanol vs. 

acetonitrile. Besides that, GPCM does not differentiate lipophilicity parameters obtained on cyano-modified silica 

using methanol as a mobile phase modifier from the rest of the lipophilicity scales measured on octadecyl-silica. 

Only chromatographic indices obtained on CN-silica using acetonitrile are significantly different. Similar 

conclusion might be obtained from the HCA dendrogram (Clusters B1 and B2a, Figure 2). No difference among 

data pretreatment methods (standardization, range scaling, and ranking) can be seen (Fig. 4). The reason why the 

use of acetonitrile vs. methanol alters lipophilicity assessment on CN-silica is most likely due to the strong dipolar 

properties of cyano groups of both stationary and mobile phase components. Since both have the same ability for 

dipolar and polarizable interactions with a solute, but expressed in opposite directions, the overall interaction 

impact on retention might be significantly diminished. This is not expected to occur in the case of C18-silica. The 

same pattern can be observed for GPCM and SRD scores: The pattern is increasing, from the recommended logKOW 

values via computational measures and further on to C18-MeOH and C18-MeCN, then, an exception can be 

observed: a decrease at CN-MeOH, then an increase again at CN-MeCN. 

 

Figure 4 Effect of factors by analysis of variance for sevenfold cross-validated SRD and GPCM score values; the average 

was used for reference in ranking. Score values were plotted on the y-axis. Vertical bars denote 0.95 confidence intervals. 

ANOVA of SRD and GPCM scores provides information about the statistical significance of differences 

among lipophilicity measures, which is an important issue, not adressed by PCA, or HCA. Considering GPCM 

scores, and based on 95% confidence intervals (denoted as up and down whisker-like lines at each data point, 

Figure 4), no statistically significant differences can be detected among in silico determined logP-s, and 

chromatographic indices obtained on C18- and CN-modified silica, except of those obtained on CN-silica in 

combination with acetonitrile as a modifier. In the case of SRD scores, no differences can be observed among C18-

based and CN-silica-based chromatographic indices. However, statistical difference among computationally 

calculated logP-s and chromatographic indices is a borderline case. The recommended logKOW values 

(logKOW(exp)) are the closest to the reference (consensus) and clearly statistically distinct according to both 

comparison methods, SRD and GPCM. 
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3.3 Pattern recognition between lipophilicity measures by non-parametric correlations based on SRD 

and GPCM 

Sometimes the selection of the benchmark (golden standard) is not unambiguous. In that case it is of particular 

interest to employ a methodology that provides information about how different variables relate to each other in an 

easily perceivable way. For this type of problems, correlation matrices are most often used. Pearson’s correlation 

coefficient has been already extensively used for the assessment of novel lipophilicity indices [24,25,44]. In order 

to extend the capabilities of SRD to this type of problems, we have implemented a MS Excel VBA macro for the 

generation of “SRD heatmaps”, where we use all of the variables in turn as the reference to produce a matrix of 

SRD values. We have termed this approach Comparison with One VAriable at a Time (or COVAT, as we refer to it 

in the rest of the article). The final results are presented in a heatmap format, with three coloring schemes: relative, 

absolute and Gaussian. With relative coloring, the range of (normalized) SRD values occurring in the heatmap are 

divided into ten sub-ranges of the same size (i.e. SRDmax/10, as SRDmin = 0 per definition for the diagonal elements) 

and a color is assigned to each of these sub-ranges. Absolute coloring facilitates the comparability of different 

heatmap SRD calculations, as the ten sub-ranges are fixed in this case (0-10, 10-20…90-100%). SRD values 

overlapping with the Gaussian distribution of random ranking can be highlighted with the Gaussian coloring 

scheme. A color reference is provided with each output table created with the macro. To enable a better perception 

of the underlying structure of the SRD matrix, the rows and columns of the heatmap are reordered in the ascending 

order of the row-wise average SRD values (which is at the same time, the ascending order of the column-wise 

average SRDs as the matrix is ideally symmetric). As a consequence, clusters of similar methods/models/etc. (here, 

lipophilicity measures) can be detected along (both sides of) the diagonal. While the resulting SRD matrices are 

ideally symmetric, the presence of tied values in the input matrix can introduce a small extent of asymmetry. 

However, if the occurrence of tied values is not too frequent, this usually does not impair the rearrangement of the 

matrix or the perception of the underlying data structure. The VBA script to produce SRD-COVAT heatmaps is 

available for download on our website: http://aki.ttk.mta.hu/srd/. 

A similar approach was taken for the production of GPCM-COVAT matrices. However, a significant 

difference is that GPCM-COVAT matrices will be asymmetric by definition, as in the case of GPCM, probability 

weighted scores differ whether Xi or Yi is used as a benchmark (therefore the complete absence of symmetry is 

expected). This has significant consequences on the interpretation of GPCM-COVAT matrices. Basically the 

benchmark variables are arranged in columns in an ascending order of the column-wise total sums of the scores. 

However, row-wise summation leads to different results, therefore the arrangement of GPCM-COVAT matrices 

demands a compromise.  

We compared four approaches: a) classical correlation matrix based on Pearson’s correlation coefficient, b) 

non-parametric correlation matrix based on Spearman’s rank correlation coefficient (rho), c) SRD-COVAT, and d) 

GPCM-COVAT matrices. 

In order to identify similarities and dissimilarities among lipophilicity scales, the relative coloring scheme was 

applied, consisting of ten different colors. The most similar variables (the maximum similarity or the minimum 

dissimilarity measure value) are colored in red, while the most dissimilar ones (the minimum similarity or the 

maximum dissimilarity value) are marked with dark blue.  

All matrices show similar patterns but the classical Pearson’s and Spearman’s correlation matrices are more 

similar to each other (Figure 5a and 5b as compared to Figure 6a and 6b). The highly correlated lipophilicity 

measures are located in the upper left corner (square marked as L1 which is mostly composed of chromatographic 

indices obtained on C18-silica, with a few in silico estimates and the recommended values logKOW). In the lower-

intermediate parts (L2 and L3) of both heatmaps somewhat dissimilar lipophilicity indices are located, mainly 

chromatographic ones derived from experiments on CN-silica, with a few computational measures (orange, ochre, 

and yellow colored). An important difference between the Pearson’s and Spearman’s heatmaps are the different 

portions of orange, and ochre colors (70-80% of the maximum correlation values), which are dominant in the 

Pearson’s map. Therefore, it is obvious that the Pearson’s heatmap has a slightly lower discriminatory power. 
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Highly dissimilar (orthogonal) variables, colored in dark green and blue, are located along the bottom and right 

edge of the heatmaps – parts L4 and L5 (slopes b (C18-MeOH) and b (C18-MeCN)). 

 

 
 

Figure 5 Relative colored heatmap representation of Pearson (a) and Spearman (b) correlation matrices. Red color 

represents the highest correlation values while blue marks the lowest one. Color codes are provided on the right side with 

absolute and relative (%) values. 
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Figure 6 Heatmap representations of SRD (a) and GPCM-CEPW (b) COVAT matrices. Red color represents the lowest 

score value (the highest similarity), while blue marks the highest one (the lowest similarity). Color codes are provided on 

the right side with absolute and relative (%) values. CEPW stands for probability weighted ranking (PW) based on 

Fisher’s conditional exact test (CE) 

Instead of the current misuse of Pearson’s correlation matrices [24,25,44] we would like to encourage the 

implementation of: (a) adequate arrangement of variables and (b) coloring schemes which enables patterns among 

variables to be easily perceivable. The choice of the best variable/lipophilicity measure following the 

aforementioned matrix arrangement is straightforward, i.e. the variable that correlates the best with the majority 
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(the upper left corner) is the best choice: XLOGP3, logKOW(exp), and ClogP, along with the rest of the 

lipophilicities belonging to the cluster A (Figure 5a and b), and can replace the rest of them. 

The SRD-COVAT heatmap provides similar patterns as the Spearman based-one, but with significantly greater 

discrimination power (Figure 6a). Practically, red, orange, ochre, dark and light yellow colored squares (regions) 

that cover variables of different similarity are well defined and easily noticeable (clusters M1-M5). Also, the upper 

left red square (M1) of highly similar variables is extremely narrowed to only XLOGP3, logKOW(exp), and ClogP. 

Orange and ochre regions gathers mostly computationally estimated logP-s, mixed with few C18- and CN- derived 

lipophilicity indices (M2). The rest of C18-silica based descriptors can be found in the darker yellow region located 

in the middle parts of the heatmap (M3), while CN-based lipophilicity scales are predominantly colored with light 

yellow parts located in the lower parts of a heatmap space (M4). CN-based lipophilicity scales are here distinctively 

differentiated according to the use of methanol or acetonitrile (M4a and M4b red colored regions). The most 

different lipophilicity measures can be found at the matrix margins colored in dark green and blue (b (C18-MeOH) 

and b (C18-MeOH)).  

Also, it can be concluded that the mRM, PC1/RM and C0 measures are highly correlated for each stationary 

phase-mobile phase combination: they can be detected as smaller clusters along the diagonal. (b values on the other 

hand are not necessarily present in these clusters.) 

The GPCM-COVAT heatmap, based on probability weighted ranking using Fisher’s conditional exact 

significance testing, results in a similar pattern and variable arrangement, with some insignificant differences 

(Figure 6b). GPCM has the greatest discriminatory power of the above mentioned cases. Row-wise summation 

shows a more easily distinguishable pattern. The coloring scheme suggest that the variables that are the most 

similar with the rest of the studied lipophilicity scales should be found at the top of the heatmap, colored in red and 

yellow (the best ones, since they can replace most of the others). In this particular case those are: ClogP, 

logKOW(exp), and XLOGP2 (belonging to M1), as well as RM
0
(CN-MeOH), PC1/RM(C18-MeOH) and mRM(C18-

MeOH) (belonging to M2). The most orthogonal ones, on the other hand, are located at the bottom of the heatmap 

(colored in blue, M5): RM
0
(CN-MeCN), b(CN-MeCN), b(C18-MeOH), and b(C18-MeCN). 

Although the coloring is somewhat arbitrary, it is astonishing that methods based on completely different 

concepts provide so similar patterns for ordering lipophilicity indices. 

 

4 Conclusions 

Many chromatographic methods in addition to in silico estimation approaches have been developed so far in 

order to measure/quantify the lipophilic character of compounds. Now we provide a unique systematic approach to 

select the most appropriate lipophilicity measures available. Many of the chemometric methods applied are 

misused, leading often to wrong conclusions. Sum of ranking differences (SRD) leads to the selection of the closest 

and farthest lipophilicity measure to the reference, in a straightforward manner, compared to principal component 

analysis (PCA) and hierarchical cluster analysis (HCA). While being based on completely different concepts, 

generalized pairwise correlation method (GPCM) provides a similar ordering of lipophilicity scales. Comparison 

with “random numbers” in the case of SRD provides information regarding the statistical significance of the 

obtained ranking (which cannot be obtained from PCA and HCA). Furthermore, uncertainties among SRD and 

GPCM scores, introduced by sevenfold cross-validation experiments enables to test statistical significance among 

studied lipophilicity scales, as well as different factors by analysis of variance (ANOVA) (data pretreatment 

approaches, ordering and ranking procedures). Two factors, namely the way of ranking (SRD and GPCM) and the 

type of lipophilicity measures have been identified as statistically significant by ANOVA. SRD generally results in 

lower scores than GPCM. The shake-flask method provides the lowest scores (the closest to the average) and 

therefore it can be considered as the best one. Computational estimates closely follow. Chromatographic indices 

obtained on octadecyl-modified silica do not differ significantly in terms of the use of methanol or acetonitrile as 

the mobile phase component. However, the situation is different when it comes to cyano-modified silica, in which 
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case acetonitrile exhibits different effects compared to methanol, which can be explained with the strong dipolar 

properties of cyano groups of the stationary phase and acetonitrile as a constituent of the mobile phase, that cancel 

each other out.  

Introduction of a relative coloring scheme to correlation matrices and their adequate arrangement enables the 

discovery of intricate relationships among lipophilicity scales and the selection of the most similar and dissimilar 

ones. SRD-COVAT matrix has more discriminating power than Pearson and Spearman based-ones. The window 

that grasps the lipophilicity scales that are mostly correlated with others are significantly narrowed down (in this 

case to only three recommended: logKOW(exp), XLOGP3 and ClogP). However, although based on completely 

different concepts, GPCM-COVAT heatmaps discriminate lipophilicity scales the most.  
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