1	Agriculture, Ecosystems & Environment, Volume 166, 15 February 2013, Pages 28–34
2	
3	Effects of grazing and biogeographic regions on grassland biodiversity in Hungary –
4	analysing assemblages of 1200 species
5	
6	
7	Báldi, A. ^{a, b, *} , Batáry, P. ^{c, d} & Kleijn, D. ^e
8	
9	^a Animal Ecology Research Group, Hungarian Academy of Sciences and Hungarian Natural
10	History Museum, Baross u. 13, H-1088 Budapest, Hungary
11	^b MTA ÖK Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány u. 2-
12	4, H-2163 Vácrátót, Hungary, baldi.andras@okologia.mta.hu
13	^c Agroecology, Georg-August University, Grisebachstr. 6, D-37077 Göttingen, Germany
14	^d MTA-ELTE-MTM Ecology Research Group, Pázmány P. s. 1C, H-1117 Budapest, Hungary
15	^e Alterra, Centre for Ecosystem Studies, Droevendaalsesteeg 3, P.O. Box 47, 6700 AA,
16	Wageningen, The Netherlands
17	
18	*: Corresponding author is András Báldi
19	MTA ÖK Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány u. 2-
20	4, H-2163 Vácrátót, Hungary, E-mail: baldi.andras@okologia.mta.hu
21	(Secondary e-mail: <u>andrasbaldi@hotmail.com</u>)
22	Phone (cell): +36-30 5485656
23	Skype name: abaldi

1 Agricultural intensification is a major threat to biodiversity. Agri-environment schemes, the 2 main tools to counteract negative impacts of agriculture on the environment, are having mixed 3 effects on biodiversity. One reason for this may be the limited number of species (groups) covered by most studies. Here, we compared species richness and abundance of 10 different 4 5 species groups on extensively (0.5 cattle/ha) and intensively (1.0-1.2 cattle/ha) grazed semi-6 natural pastures in 42 fields in three Hungarian regions. Plants, birds and arthropods 7 (leafhoppers, true bugs, orthopterans, leaf-beetles, weevils, bees, carabids, spiders) were 8 sampled. We recorded 347 plant species, 748 territories of 43 bird species, and 51,883 9 individuals of 808 arthropod species. Compared to West European farmlands, species richness was generally very high. Grazing intensity had minor effects on α and β diversity, abundance 10 and composition of the species assemblages. Region had significant effects on species 11 12 richness and abundance of four taxa, and had strong effects on β diversity and species 13 composition of all taxa. Regional differences therefore contributed significantly to the high 14 overall biodiversity. We conclude that both grazing regimes deliver significant biodiversity 15 benefits. Agri-environmental policy at the EU level should promote the maintenance of large 16 scale extensive farming systems. At the national level, the effectiveness of agri-environment 17 schemes should be improved via promoting and using research evidence. 18 19 20 21 Keywords: agri-environment scheme; arthropod; assemblage composition; bird; Central 22 Europe; plant 23 24

- 1 1. Introduction
- 2

Biological diversity declines at an alarming rate, and one of the main causes is intensification
of agriculture in response to the demand for food, fibre and fuel (Tilman et al., 2001). In
particular, the increased use of inorganic fertilizers, pesticides and machinery, and changes in
land use influence biodiversity directly (de Heer et al., 2005). These changes have led to
cascading effects, like loss of food resources for insectivorous birds, or change in pollination
networks (Biesmeijer et al., 2006; Vickery et al., 2009; Batáry et al., 2010).

9 The increased attention for biodiversity and the ecosystem services provided by it 10 (such as pollination, biological control, seed dispersion), promoted the development of more 11 nature friendly, sustainable forms of agriculture. The potential loss of income associated with 12 nature-friendly management is in many countries financially compensated by means of agri-13 environment schemes (AES). AES are important drivers of land use in Europe, as most 14 countries have agri-environmental programs. In the EU alone, the annual budget amounts to 15 roughly €5 billion/year (Farmer et al., 2008). The available evidence suggests that AES have 16 mixed effects on biodiversity. Conservation management may have positive, negative or no 17 effect, on both targeted and non-targeted species groups (Kleijn & Sutherland, 2003; Kleijn et 18 al., 2006).

19 Most of the studies that have been carried out so far share a number of biases that may 20 have an impact on their outcome. First, there is a significant bias towards studies on one or a 21 few popular taxa, like birds, butterflies or plants (Schuldt & Assmann, 2010). This is 22 consistent with most patterns in ecology (e.g. Báldi & McCollin, 2003), but it provides a 23 biased knowledge, which is probably insufficient to adequately support decision making. The 24 influence of farmland management on several species-rich and/or important taxa remains 25 largely unknown. Additionally we still know very little about the impact of one type of 26 management on a wide range of taxa. With the recent interest in ecosystem services, many of 27 which are related to the diversity of species-rich and/or difficult-to-identify groups, studies 28 that examine simultaneously the response of a wide range of taxa are urgently needed to 29 support effective conservation planning (Schuldt & Assmann, 2010).

Second, most studies have been carried out in intensively farmed areas of West Europe
(UK, the Netherlands, France, Germany) (Stoate et al., 2009). Extrapolation of research
results from one biogeographic region to another is hazardous at best (Whittingham et al.,
2007), suggesting we have very little information of what conservation strategies may be
effective in the low intensity, species rich farmlands in Central and Eastern Europe (CEE)

(Kleijn & Báldi, 2005; Stoate et al., 2009). Insight in conservation management that is
 effective in CEE countries is particularly valuable, as they host large populations of species
 that are declining or have gone extinct in several West European countries (Donald et al.,
 2002; Gregory et al., 2005).

5 Third, species richness and abundance as descriptors of assemblage structure are the 6 most widely used measures of success or failure of farmland habitat management under AES. 7 However, these are often misleading indicators of habitat quality (Vanhorne, 1983; Mortelliti 8 et al., 2010), at least if not complemented by compositional analysis, the third basic descriptor 9 of assemblages (Worthen, 1996). The composition of species assemblages is rarely 10 considered in studies examining biodiversity responses to conservation management on 11 farmland, although this can reveal important impacts since two assemblages may have the 12 same species richness but nevertheless consist of completely different species. It is of high 13 conservation relevance, as the protection of only one assemblage is seemingly sufficient to 14 maintain biodiversity if measured as species richness alone, while composition can reveal the differences among assemblages. 15

16 In this study we evaluated biodiversity responses to different grazing regimes in semi-17 natural grasslands in Hungary. These grasslands cover 12% of the country, and are the most important agricultural habitat for biodiversity (Ángyán et al., 2003). Grasslands are managed 18 19 by grazing and mowing. Fertilisers and pesticides are applied on less than 5% of Hungarian 20 grasslands (Nagy 1998; G. Nagy pers. communication). Recently, a number of papers have 21 been published on a large scale field study carried out in the framework of the EU-funded 22 "EASY" project (Kleijn et al., 2006). In these papers we mainly focused on individual taxa, 23 and used taxon specific approaches and analyses (Báldi et al., 2005; Batáry et al., 2007a, b, c; 24 Batáry et al., 2008; Sárospataki et al., 2009). Here, we use the complete dataset, consisting of 25 10 taxa and approximately 1200 species (plants, birds and various arthropod taxa belonging to 26 different functional groups) to provide a summary analysis on the effects of grazing intensity 27 and regional differences. This will contribute to a better general understanding of effects of 28 AES, because of the multi-taxon approach and the study location in the less known Pannonian 29 region of CEE (Sundseth 2009).

First, we compared species richness of Hungarian grasslands with data from West European farmlands collected with the same sampling protocol to see if CEE farmlands are indeed more diverse across many taxa than West European ones. Second, we evaluated the effects of grazing intensity and region on 10 taxa, using all three basic descriptors of assemblage structure, i.e. species richness, abundance and composition (Worthen, 1996). For the latter we explored compositional differences using diversity partitioning and multivariate techniques. Third, we evaluated the potential of the studied taxa to indicate the effect of grazing intensity. Finally, we formulated recommendations for AES design that effectively maintains high biological diversity on low input farmlands.

- 5
- 6

7 **2. Methods**

8

9 **2.1. Study areas**

10

11 Study fields were equally distributed among the three most widespread grassland types in the 12 Great Plain of Hungary (Molnár et al., 2008a), referred to here as the Alkali, the Meadow and 13 the Heves biogeographic regions, respectively. The three regions differed in their grassland 14 type and landscape structure. Two were located between the Danube and the Tisza Rivers 15 (Fig. A1 in the Supplementary Data). The first, Alkali region was situated on the former flood 16 plain of the Danube River, which is flat and is characterised by large landscape units. As a 17 consequence of river regulations, salinisation has accelerated, resulting in secondary Pannonic 18 alkali steppe vegetation on solonchak-solonetz soil, with common grass species (blue grass 19 Poa pratensis, false sheep's fescue Festuca pseudovina, bermudagrass Cynodon dactylon), 20 and salt resistant species (sea wormwood Artemisia santonicum, sea lavender Limonium 21 gmellini, chamomile Matricaria chamomilla). The Meadow region was located in the 22 northern part of the Danube-Tisza interfluves. The main characteristic of this region was the 23 patchy habitat structure: a mosaic of swamp meadows, calcareous purple moorgrass (Molinia 24 *caerulea*) meadows, salt steppes and Pannonic sand steppe grasslands, with scattered 25 woodlots and farms. Dominant plant species were blue grass, false sheep's fescue and 26 bermudagrass, while characteristic species were purple moorgrass, tufted hairgrass 27 (Deschampsia caespitos) and cinquefoil (Potentilla) species. The Heves region was situated 28 near the River Tisza, 100 km to the east of the two former regions (Fig. A1 in the 29 Supplementary Data). It consists of dry and wet alkali grasslands and marshes on solonetz 30 soil. Dominant plant species were blue grass, false sheep's fescue, quackgrass (Elymus 31 repens) and Scorzonera cana. Characteristic species were the sea plantain (Plantago 32 maritima), sea wormwood, whitetop (*Cardaria draba*) and varrow (*Achillea*) species. 33 The extensively managed study fields fit the grassland management prescriptions of 34 the Hungarian agri-environmental program: low density of livestock (0.5-1.2 animal/ha

depending on pasture productivity, but set to 0.5 animal/ha for the studied regions), no use of
 artificial fertilisers or pesticides, no burning, winter grazing, reseeding, harrowing or
 ploughing, and maintaining clean ditches, and roadsides, etc.

4

5

7

6 2.2. Sampling design

8 We selected field pairs with high and low grazing pressure in the vicinity of each other, so 9 that the systematic differences of fields within pairs can be attributed to the intensity of 10 grazing and other environmental factors have little effect (Kleijn et al., 2006). Each region 11 had 7 field pairs (42 fields in total), consisting of an extensively and an intensively grazed 12 field. For both types, the intensity of grazing was roughly constant over the last five years. 13 The grazing regimes were typical of the "puszta" grasslands. The cattle density was about 0.5 14 cattle per hectare on extensive, and 1-1.2 cattle per hectare on intensive fields. Except for 15 grazing intensity there were no other differences in management. Within regions, fields were 16 in the same grassland type. At the time of study, in 2003, agri-environment schemes (AES) 17 had only just begun operating. Therefore, we were not able to compare fields with and 18 without AES (cf. Kleijn et al., 2006). However, there were extensive fields managed by the 19 national parks for years in the same way, as AES regulations were set from 2004. Thus, the 20 extensive fields were chosen from pastures managed according to AES regulations, although 21 these regulations were effective only from 2004. Intensive fields were selected in some cases 22 in heavily grazed parts of the same large pasture where extensive fields were chosen (14 23 cases), or in nearby intensive pastures of farmers (7 cases). These intensive fields were 24 considered non-scheme fields. None of the fields were fertilised. The size of individual 25 pastures was as large as 100 ha, sometimes over 1000 ha, and the number of grazing cattle 26 was 100-400.

27 Two transects of ten 5x1 m plots 5 m apart were established in all fields, one in the 28 edge of the grassland (but not in ecotone habitat), the other 50 m inside the grassland (Fig. 29 A2). The number of vascular plant species, and their percentage cover was estimated for the 30 840 plots (3 regions, 7 field pairs/region, edge and interior transect in each field) once in 31 2003. Subsequently, relative cover per species and the total number of plant species (i.e. species richness per 100 m²) were determined for each field. Relative plant cover (%) was 32 33 calculated by including bare ground cover. Data of edge and interior transects were pooled for 34 each field.

1 One pitfall trap was located in between the central two plots of each transect. Spiders 2 (Araneae) and carabids (Coleoptera: Carabidae) were identified from the samples. We used 3 funnel pitfall traps (Fig. A2), because they are three times more efficient than cup traps in 4 term of number of individuals (Duelli et al., 1999). A roof was set above each trap to protect it 5 from rain. Pitfall traps were opened two weeks after the full bloom of dandelion (*Taraxacum* 6 *sp*.) in 2003. The traps were emptied on the 14th day, the 28th day and then after a two week 7 break (until 42nd day), on the 56th day (Kleijn et al., 2006).

8 Orthopterans (Orthoptera), leafhoppers (Hemiptera: Auchenorrhyncha), true bugs 9 (Hemiptera: Heteroptera), bees (Hymenoptera: Apoidae), weevils (Coleoptera: Curculionidae) and leaf-beetles (Coleoptera: Chrysomelidae) were sampled using sweep netting along each 10 11 transect in 2003. Three times twenty sweeps along a transect gave one sample. Sampling was 12 repeated in May, June and July, although not all the three samples were used in most cases: 13 for Orthoptera only the July sample was included, since earlier samples were dominated by 14 larvae, which are not identifiable in several species. In addition to the netting, orthopterans 15 were also identified using acoustic counts along the transects. These results were combined 16 with sweep-net samples to obtain species numbers, but not for the analysis on abundance, 17 where only sweep-net samples were included (Batáry et al., 2007c). For leafhoppers the June sample was identified, for Heteroptera, Curculionidea and Chrysomelidae the May and June 18 19 samples were identified. Large bees and bumblebees may escape sweep netting; therefore 20 additional sampling was carried out catching individuals with a butterfly net. A sample 21 comprised three 5 minute catching periods along the transect. Experts identified all arthropods 22 to species level. Only imagos were included in the statistical analyses. Paired extensive and 23 intensive fields were sampled on the same day by the same observer. For each arthropod taxa 24 the number of species and abundance per field was used in the analyses.

25 Birds were censused in 12.5 ha large areas, which included the sample field of the 26 transects. The areas were visited four times in the breeding season (April and May) of 2003. 27 Censuses were carried out under good weather conditions (no wind and rain), from sunrise to 28 9-10 a.m. The observer spent at least 30 minutes at a sample field, slowly walking across the 29 area. In cases where many individual birds were present, the census of a single field may have 30 taken more than an hour. All bird observations, heard or seen, were recorded. Birds just flying 31 through were excluded from the analysis. Based on the four visits, territories were identified 32 (Batáry et al., 2007a).

33

34

2.3. Diversity partitioning

2

3 We used an additive partitioning of biodiversity, which is a natural measure of similarity

4 among multiple assemblages: the proportion of total diversity found within communities

- 5 (Lande, 1996). The total observed diversity γ_{obs}, for each management type and location in
 6 field combination, can be partitioned as:
- 7

```
8 \gamma_{obs} = \alpha + \beta_w + \beta_b
```

9

10 Where α is the mean species richness per field, β_w (β_{within}) is the mean diversity of fields 11 according to treatment (e.g. β diversity between the total species number and each of the 12 seven fields of alkali extensive category), and β_b ($\beta_{between}$) is the mean diversity between the 13 six treatments (3 regions, two grazing intensities) in relation to γ_{obs} . Calculations followed 14 Clough et al. (2007) and Dahms et al. (2010).

- 15
- 16

17 2.4. Analysis of species richness, beta diversity and abundance

18

19 For analysing the effects of grazing intensity (extensive versus intensive), regions (Alkali, 20 Meadow, Heves) and their interaction on species richness (α diversity), β_{within} diversity and 21 abundance of the studied taxa, we applied general linear mixed models (GLMM) with the 22 Restricted Maximum Likelihood method. Pair was included in all models as random factor. 23 The normality of model residuals was assessed using normal quantile-quantile plots, and data 24 were either log or square root transformed, when necessary. Plant cover data were arcsine 25 transformed prior to analysis in order to obtain normal distribution of residuals. Calculations 26 were made using the nlme package (version 3.1, Pinheiro et al., 2009) for R 2.10.1 software 27 (R Development Core Team, 2010). 28 GLMMs were performed for the ten taxa separately. In addition, we applied a multi-29 taxon approach, where species richness and abundance of the ten taxa in the extensive versus

intensive fields were analysed by the Wilcoxon Signed Ranks Test, thus we evaluated if
grazing has a general effect for all studied taxa together.

- 32
- 33

34 **2.5.** Analysis of species composition of assemblages

1

9

2 To measure the influence of management and region on the species composition of the

3 studied taxa, we applied partial redundancy analyses (RDA). The species matrices were

4 constrained by either management or region. Each species matrix was transformed with the

5 Hellinger transformation (Legendre & Gallagher, 2001). This transformation allows the use of

6 ordination methods such as PCA and RDA, which are Euclidean-based, with community

7 composition data containing many zeros, i.e. characterised by long gradients (Legendre &

8 Gallagher, 2001). Calculations were performed using the vegan package (version 1.17,

9 Oksanen et al., 2010) of R 2.10.1 software (R Development Core Team, 2010).

10

11

12 **3. Results**

13

We recorded 347 plant species, 43 bird species with 748 territories and 808 arthropod species represented by 51,883 individuals (Fig. A3). The total number of observed species of the five taxa that had been sampled concurrently in five West European countries using the same sampling protocol was highest in Hungary for four of the taxa (Fig. 1). The exception is the spiders, for which Hungary, Spain and Switzerland held roughly similar numbers of observations.

In general, the extensively and intensively grazed fields had similar species numbers
(α diversity) in each taxon (Table 1). Significant differences in species numbers were
restricted to the leaf-beetles with higher species richness on extensively grazed fields (Table
2). When differences in species richness of all ten taxa were considered together, species
richness on extensively grazed fields was significantly higher than that on intensively grazed
fields (Wilcoxon test, Z=2.502, P=0.012).

26 β_{within} diversity was significantly different between extensively and intensively grazed 27 fields for four out of ten taxa (Table 2). Three taxa had higher β_{within} diversity at intensively 28 grazed fields (true bugs, carabids, birds), indicating larger differences among intensively 29 grazed fields than among extensively grazed fields (Table 2). In contrast, leaf-beetles had 30 higher β_{within} diversity on extensively grazed fields than on intensively grazed fields.

31 Diversity partitioning revealed that local scale α diversity had the lowest contribution 32 to total diversity, and $\beta_{between}$ had the highest (Fig. 2). This suggests that, assemblages at a 33 given field can be relatively species-poor, but that differences between fields and especially 34 regions are large thereby contributing to the general high species richness of Hungarian grasslands. The difference in abundance between extensively and intensively grazed fields
 varied according to taxa (Table 1). No difference was found with the Wilcoxon test,
 indicating a lack of consistent difference in abundance between extensive versus intensive
 fields within taxon (Z=0.153, P=0.878). This was supported by the GLMM results, with six
 taxa not showing any difference, three showing significantly higher abundance on extensively
 grazed fields than on intensively grazed fields, while one taxon showed the opposite pattern
 (Table 2).

8 Region significantly affected species number and abundance of four taxa each, while 9 β_{within} differed for all taxa (Table 2), supporting the results of diversity partitioning (Fig. 2). It indicates that differences between regions are large compared to differences within regions or 10 11 between fields with different grazing intensity. The response to grazing intensity of many taxa 12 differed between regions, as indicated by significant management by region interactions. 13 Effects of management on species richness was dependent on region for two taxa, while 14 management effects on abundance and β_{within} diversity were dependent on region for one and 15 eight taxa respectively (Table 2). For example, the mean difference between orthopteran 16 species richness on extensively grazed and intensively grazed fields respectively was +5, -1 17 and -2, in three regions. For orthopteran abundance this difference was +85, +448, -109 in the 18 three regions. This illustrates that species richness or abundance in extensively grazed fields 19 can be higher than in intensively grazed fields in one region, but lower in another. The weak 20 impacts of grazing management were supported by the analyses of the composition of the 21 species assemblages. Although a significant part of the variation was explained by 22 management in half of the taxa, it never amounted to more than a few percent of the total 23 variation (Table 3). The composition of the species assemblages from the three regions, 24 however, differed highly significantly for all taxa, explaining on average 18 % of variations 25 (Table 3). This indicates that regions with different vegetation and landscape types harbour 26 largely distinct assemblages.

27

28

29 **4. Discussion**

30

31 We studied the biodiversity of semi-natural grasslands in Hungary, and recorded ca. 1200

32 species of 10 taxa collected in a large scale field sampling in 2003. A subsample of five taxa

33 (plants, bees, orthopterans, spiders and birds) were compared with similarly obtained data

34 from Dutch, English, German, Spanish and Swiss farmlands. For most taxa, Hungarian

1 grasslands supported (considerably) larger species pools than the agricultural fields in other 2 countries (Fig. 1, Batáry et al., 2010). Besides the generally less intensive farming in Hungary 3 (Stoate et al., 2009, Báldi & Batáry, in press), there are two mechanisms for this richness. 4 First, it seems that species richness of one group may increase the richness of others, as 5 Batáry et al. (2010) found that insect insect-pollinated plant richness was positively related to 6 bee species richness. Second, our results suggest that the generally high species richness may 7 be a result of the large dissimilarity of fields and regions. Possibly, in Hungary agricultural 8 intensification has not yet homogenized the species assemblages across agricultural fields and 9 regions. We have to note, however, that other factors, like biogeography or other large-scale 10 processes also have effect on the distribution of biodiversity across European farmlands.

11 The effect of grazing pressure was relatively weak on all four measures at the taxon level that is on species richness (α diversity), β_{within} diversity, abundance and species 12 13 composition. More exactly, species richness did not differ between fields with different 14 grazing pressures for any taxa, while β_{within} diversity, abundance and species composition 15 differed for few taxa only. It suggests that the studied difference in grazing pressure resulted 16 for some taxa in a shift in species composition but not in different species numbers. 17 Considering the high number of observed species on the Hungarian fields compared to West 18 European farmland, we conclude that both levels of grazing pressure maintain high levels of 19 biodiversity. Our results are in agreement with Hoste-Danylow et al. (2010), who similarly 20 found that four different management systems supported similar levels of biodiversity in 21 extensive Polish grassland landscapes. However, both abandonment of grazing and 22 intensification will probably have adverse effects on biodiversity. For example, Verhulst et al. 23 (2004) demonstrated that in Central Hungary, bird species richness and abundance was 24 significantly lower on fertilised than on extensively grazed grasslands. Abandoned grasslands 25 had higher bird species richness and abundance than extensively managed grasslands, 26 however, typical grassland species that are endangered in other parts of their range, like 27 Skylark (Alauda arvensis) and Yellow Wagtail (Motacilla flava), were more abundant in 28 extensively grazed fields.

The effect of biogeographic regions was strong on all measured assemblage parameters, including species composition. This indicates that extensively used areas in lowland Hungary are diverse and heterogeneous at large spatial scales, with different regions supporting different sets of species. This is supported by the high $\beta_{between}$ diversity observed in this study (46%-69% of total diversity), which was almost twice as high as that observed in a study in Germany using the same sampling design and protocol in cereal fields (Clough et al.,

1 2007). Dahms et al. (2010) measured β diversity in German grasslands (using a different 2 sampling design so that comparisons have to be made bearing this in mind) and found that 3 between grassland type β diversity never exceeded 28% (Fig. 1 in Dahms et al., 2010). Again 4 this is considerably less than the β diversities observed in this study. These results suggest that 5 in Hungary it is particularly important that the measures prescribed by agri-environment 6 schemes maintain the differences between regions and prevent biodiversity homogenization 7 across regions. In West Europe farmland communities have generally been homogenized as a 8 result of the application of same high-input agricultural practices over large geographical 9 areas. In Hungary, at least in grassland dominated regions, this is not (yet) the case, which 10 may explain why biodiversity levels are still high compared to that in West European 11 countries.

12 The dissimilarity of assemblages among regions calls for a management approach at 13 that spatial level. Davey et al. (2010) described the same pattern while analysing the Entry 14 Level Stewardship scheme of England. They found that farmland birds showed region-15 specific population trends and responses to the AES, supporting earlier findings by 16 Whittingham et al. (2007), who showed that predictors from fields in one geographical region 17 tended to have different effects on birds in other areas. These results are in line with ours as 18 we found that the effect of grazing pressure vary in a wide range of taxa among the three 19 studied regions in Hungary.

20 Species richness is the most widely used index of biodiversity, e.g. in assessing the 21 success of AES. This is a simple index and easy to communicate to decision makers, but it is 22 only one of several descriptors of assemblage structure (Worthen, 1996). Our results indicate 23 that taxa that do not show any response when considering species numbers (species number in 24 Table 2) may nevertheless be different when considering species composition as, for example, 25 indicated by significant effects on β_{within} diversity (β diversity in Table 2). This was true for 26 six out of ten taxa altogether. One possibility to avoid the problems of using species richness 27 of a taxon is to analyse groups with similar traits. Earlier studies have suggested that farmland 28 specialists are good indicators of the quality of extensively farmed habitats, while generalist 29 species are often less clearly linked to habitat characteristics (e.g. Batáry et al., 2007b). 30 Another way is to include compositional analysis in the studies, as in this paper, where 31 contrary to species richness, compositional changes were considerable when we compared 32 assemblages.

Many studies of farmland biodiversity use only one or a few taxa in their evaluation
on the effects of management. However, management effects can be taxon-specific, which

1 means that the same management may have different effects on different taxa. Not 2 surprisingly, there are contradictory results in the literature, and it is not easy to figure out the 3 reasons for differences, as studies were conducted in different fields and years. In this study 4 we were able to demonstrate on 1200 species that the effect of management may vary across 5 taxa (i.e. significant effect in some, but not all taxa, also depending on the used measure). In 6 addition we showed that species richness had a consistent, but non-significant tendency to be 7 larger in extensively grazed fields. However, if all the ten taxa were evaluated in one simple 8 analysis, the difference was significant, showing that a multitaxon approach is an effective 9 tool to detect even small differences in an ineffective measure.

10 Recently, a lot of effort has gone into finding efficient indicators of farmland 11 biodiversity (de Heer et al., 2005). Our study involved ten taxa, providing the possibility to 12 compare their sensitivity to grazing pressure using different measure of richness, abundance 13 and composition of assemblages. No taxon showed significant responses for all biodiversity 14 measures. Birds, carabids and leaf-beetles showed significant effects for three measures, indicating that these species groups may be most sensitive to changes in grassland 15 16 management. We propose to use more than one measure of biodiversity when evaluating 17 management effects on biodiversity. Compositional analysis of assemblages, may offer the 18 greatest insights. Important message is that both popular and the rarely used taxa were 19 responsive to management differences. Therefore, it seems that there is no relationship 20 between the popularity of a taxon and its sensitivity to grassland management, at least in 21 Hungarian grasslands.

- 22
- 23

24 **5. Implications for agri-environment schemes**

25

26 Our study demonstrates that semi-natural grasslands in Hungary harbour a comparatively high 27 farmland biodiversity compared to regions in Western Europe. This seems to be true both for 28 fields with a grazing pressure according to agri-environment prescriptions, and for fields with 29 higher grazing pressure (but without the use of agrochemicals). In countries with such 30 extensive management the aim of schemes should be to prevent intensification. This probably 31 can only be achieved by maintaining viable rural populations, small-scale farming, and nature-friendly, traditional agricultural management. The Hungarian Agri-environment 32 33 program has schemes for all these measures, thus – in theory – providing potential solutions. 34 Such schemes can be very effective both in terms of biodiversity and in terms of value-for-

1 money, because they can maintain the already very species rich farmland habitats. If the 2 maintenance of high levels of biodiversity is the objective of agri-environment schemes they 3 should preferentially be implemented in traditionally managed, low-input farming systems 4 because it is easier to conserve what is still there than to restore what has been lost in the 5 intensively managed farmlands in West Europe (Marini et al., 2008; Kleijn et al. 2009, 2011). 6 Therefore, an urgent task for the Hungarian agri-environment policy is to ensure the long-7 term operation of current grazing prescriptions, and to promote and use research evidence for 8 other farmland types.

- 9
- 10

11 Acknowledgements

12

13 We are grateful for the comments of the referees and the editors which greatly improved the 14 manuscript. We thank the following persons for help in field work: András Bankovics, Anikó 15 Csecserits, Sarolta Erdős, Zsolt Erős, László Gálhidy, Júlia Honti, Béla Kancsal, Katalin 16 Kenderes, Eszter Kovács, Ildikó László, Barbara Lhotsky, Barbara Mihók, László Molnár, 17 Tamás Rédei and Rebeka Szabó. We are extremely greatful for the following individuals for identification of various taxa and advices: Zsolt Józan and Miklós Sárospataki (bees), Tibor 18 19 Kisbenedek and Kirill Orci (orthopterans), András Orosz (Homoptera), Dávid Rédei 20 (Heteroptera), Győző Szél (carabids), Attila Podlussány (weevils), István Rozner (leaf-21 beetles), and Tamás Szűts (spiders). Staff of the Kiskunság and Bükk National Parks gave 22 valuable help, among others we thank Jenő Farkas, András Máté, László Molnár, István 23 Nagy, László Tóth and Tibor Utassy. Dénes Vonah helped with the logistics in the Heves 24 area. We thank the Kiskunság and Bükk National Park Directorates for permissions, and 25 landowners János Csaplár, Pál Oláh and Ferenc Pongrácz for allowing us to work on their 26 fields. The study was supported by the EU-funded project 'EASY' (QLK5-CT-2002-01495), 27 and the paper writing partly by the Faunagenezis project (NKFP 3B023-04). A.B. was 28 supported by the Hungarian Academy of Sciences (Lendület program) and P.B. by the Bolyai 29 Research Fellowship of the Hungarian Academy of Sciences during the preparation of the 30 paper. 31 32

33 Appendix A. Supplementary data

34

1 Supplementary data associated with this article can be found, in the online version, at 2 doi:xxxxxxxxx. 3 4 5 Literature 6 7 Ángyán, J., Tardy, J., Vajnáné-Madarassy, A., (eds) 2003. Védett és érzékeny természeti 8 területek mezőgazdálkodásának alapjai. Mezőgazda, Budapest (in Hungarian). 9 Báldi, A., Batáry, P., 2011. The past and future of farmland birds in Hungary. Bird Study. 58, 10 365-377. 11 Báldi, A., McCollin, D., 2003. Island ecology and contingent theory: the role of spatial scale 12 and taxonomic bias. Global Ecol. Biogeogr. 12, 1–3. 13 Báldi, A., Batáry, P., Erdős, S., 2005. Effects of grazing intensity on bird assemblages and 14 populations of Hungarian grasslands. Agric. Ecosyst. Environ. 108, 251–263. 15 Batáry, P., Báldi, A., Erdős, S. 2007a. Grassland versus non-grassland bird abundance and 16 diversity in managed grasslands: local, landscape and regional scale effects. Biodiv. 17 Conserv. 16, 871-881. 18 Batáry, P., Báldi, A., Szél, G., Podlussany, A., Rozner, I., Erdős, S., 2007b. Responses of 19 grassland specialist and generalist beetles to management and landscape complexity. 20 Divers. Distrib. 13, 196–202. 21 Batáry, P., Orci, K.M., Báldi, A., Kleijn, D., Kisbenedek, T., Erdős, S., 2007c. Effects of local 22 and landscape scale and cattle grazing intensity on Orthoptera assemblages of 23 Hungarian Great Plain. Basic Appl. Ecol. 8, 280-290. 24 Batáry, P., Báldi, A., Samu, F., Szűts, T., Erdős, S., 2008. Are spiders reacting to local or 25 landscape scale effects in Hungarian pastures? Biol. Conserv. 141, 2062–2070. 26 Batáry, P., Báldi, A., Sárospataki, M., Kohler, F., Verhulst, J., Knop, E., Herzog, F., Kleijn, 27 D., 2010. Bees and insect-pollinated grassland plant communities in three European 28 countries. Agric. Ecosyst. Environ. 136, 35–39. 29 Biesmeijer, J.C., Roberts S.P.M., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T., 30 Schaffers, A.P., Potts, S.G., Kleukers, R., Thomas, C.D., Settele, J., Kunin, W.E., 31 2006. Parallel declines in pollinators and insect-pollinated plants in Britain and the 32 Netherlands. Science 313, 351–354.

1	Clough, Y., Kruess, A., Tscharntke, T., 2007. Local and landscape factors in differently
2	managed arable fields affect the insect herbivore community of a non-crop plant
3	species. J. Appl. Ecol. 44, 22–28.
4	Dahms, H., Mayr, S., Birkhofer, K., Chauvat, M., Melnichnova, E., Wolters, V., Dauber, J.,
5	2010. Contrasting diversity patterns of epigeic arthropods between grasslands of high
6	and low agronomic potential. Basic Appl. Ecol. 11, 6–14.
7	Davey, C., Vickery, J., Boatman, N., Chamberlain, D., Parry, H., Siriwardena, G., 2010.
8	Regional variation in the efficacy of Entry Level Stewardship in England. Agric.
9	Ecosyst. Environ. 139, 121–128.
10	de Heer, M. Kapos, V., ten Brink, B.J.E., 2005. Biodiversity trends in Europe: development
11	and testing of a species trend indicator for evaluating progress towards the 2010 target.
12	Phil. Trans. R. Soc. B. 360, 297–308.
13	Donald, P.F., Pisano, G., Rayment, M.D., Pain, D.J., 2002. The Common Agricultural Policy,
14	EU enlargements and the conservation of Europe's farmland birds. Agric. Ecosyst.
15	Environ. 89, 167–182.
16	Duelli, P., Obrist, M.K., Schmatz, D.R., 1999. Biodiversity evaluation in agricultural
17	landscapes: above-ground insects. Agric. Ecosyst. Environ. 74, 33-64.
18	Farmer, M., Cooper, T., Swales, V., Silcock, P., 2008. Funding for Farmland Biodiversity in
19	the EU: Gaining Evidence for the EU Budget Review. Institute of European
20	Environmental Policy, London.
21	Gregory, R.D., van Strien, A., Vorisek, P., Meyling, A.W.G., Noble, D.G., Foppen, P.B.,
22	Gibbons, D.W., 2005. Developing indicators for European birds. Phil. Trans. R. Soc.
23	B. 360, 269–288.
24	Hoste-Danyłow, A., Romanowski, J., Zmihorski, M., 2010. Effects of management on
25	invertebrates and birds in extensively used grassland of Poland. Agric. Ecosyst.
26	Environ. 139, 129–133.
27	Kleijn, D., Báldi, A., 2005. Effects of set-aside land on farmland biodiversity: comments on
28	Van Buskirk and Willi. Conserv. Biol. 19, 963–966.
29	Kleijn, D., Sutherland, W.J., 2003. How effective are European agri-environment schemes in
30	conserving and promoting biodiversity? J. Appl. Ecol. 40, 947–969.
31	Kleijn, D., Baquero, R.A., Clough, Y., Díaz, M., De Esteban, J., Fernández, F., Gabriel, D.,
32	Herzog, F., Holzschuh, A., Jöhl, R., Knop, E., Kruess, A., Marshall, E.J.P., Steffan-
33	Dewenter, I., Tscharntke, T., Verhulst, J., West, T.M., Yela, J.L., 2006. Mixed

1	biodiversity benefits of agri-environment schemes in five European countries. Ecol.
2	Lett. 9, 243–254.
3	Kleijn, D., Kohler, F., Báldi, A., Batáry, P., Concepción, E.D., Clough, Y., Díaz, M., Gabriel,
4	D., Holzschuh, A., Knop, E., Kovács, A., Marshall, E.J.P., Tscharntke, T., Verhulst, J.,
5	2009. On the relationship between farmland biodiversity and land-use intensity in
6	Europe. Proc. R. Soc. B. 276, 903–909.
7	Kleijn, D., Rundlöf, M., Scheper, J., Smith, H.G. & Tscharntke, T., 2011. Does conservation
8	on farmland contribute to halting the biodiversity decline? Trends Ecol. Evol. 26, 474–
9	481.
10	Lande, R., 1996. Statistics and partitioning of species diversity, and similarity among multiple
11	communities. Oikos 76, 5–13.
12	Legendre, P., Gallagher, E.D., 2001. Ecologically meaningful transformation for ordination of
13	species data. Oecologia 129, 271–280.
14	Marini, L., Fontana, P., Scotton, M., Klimek, S., 2008. Vascular plant and Orthoptera
15	diversity in relation to grassland management and landscape composition in the
16	European Alps. J. Appl. Ecol. 45, 361–370.
17	Molnár, Z., Bíró. M., Bölöni, J., Horváth, F., 2008a. Distribution of the (semi-)natural habitats
18	in Hungary I. Marshes and grasslands. Acta Bot. Hung. 50(Suppl), 59–105.
19	Mortelliti, A., Amori, G., Boitani, L., 2010. The role of habitat quality in fragmented
20	landscapes: a conceptual overview and prospectus for future research. Oecologia 163,
21	535–547.
22	Nagy, G., 1998. Ecological conditions, yield potential and grassland management in Hungary,
23	in: Nagy, G., Pető, K., (Eds.), Ecological aspects of grassland management. Grassland
24	Science in Europe, volume 3. European Grassland Federation, Zürich, pp. 1–13.
25	Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., O'Hara, B., Simpson, G.L., Sólymos, P.,
26	Stevens, M.H.H., Wagner, H., 2010. The vegan package: Community Ecology
27	Package. R package version 1.17-2. URL: http://vegan.r-forge.r-project.org
28	Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., the R Core team, 2009. The nlme package:
29	Linear and nonlinear mixed effects models. R package version 3.1-96. URL:
30	http://cran.r-project.org/src/contrib/Descriptions/nlme.html
31	R Development Core Team, 2010. R: A language and environment for statistical computing.
32	R Foundation for Statistical Computing, Vienna. URL: http://www.R-project.org

1	Sárospataki, M., Báldi, A., Batáry, P., Józan, Z., Erdős, S., Rédei, T., 2009. Factors affecting
2	the structure of bee assemblages in extensively and intensively grazed grasslands in
3	Hungary. Comm. Ecol. 10, 182–188.
4	Schuldt, A., Assmann, T., 2010. Invertebrate diversity and national responsibility for species
5	conservation across Europe – A multi-taxon approach. Biol. Conserv. 143, 2747–
6	2756.
7	Stoate, C., Báldi, A., Beja, P., Boatman, N.D., Herzon, I., van Doorng, A., De Snoog, G.,
8	Rakosy, L., 2009. Ecological impacts of early 21st century agricultural change in
9	Europe. J. Environ. Manage. 91, 22–46.
10	Sundseth, K., 2009. Natura 2000 in the Pannonian Region. European Commission,
11	Environment Directorate General, Brussels
12	(http://ec.europa.eu/environment/nature/info/pubs/docs/biogeos/pannonian.pdf)
13	Tilman, D., Fargione, J., Wolff, B., D'Antonio, C., Dobson, A., Howarth, R., Schindler, D.,
14	Schlesinger, W., Simberloff, D., Swackhamer, D., 2001. Forecasting Agriculturally
15	Driven Global Environmental Change. Science 292, 281–284.
16	Vanhorne, B. 1983. Density as a misleading indicator of habitat quality. J. Wildlife Manage.
17	47, 893–901.
18	Verhulst, J., Báldi, A., Kleijn, D., 2004. Relationship between land-use intensity and species
19	richness and abundance of birds in Hungary. Agric. Ecosyst. Environ. 104, 465–473.
20	Vickery, J.A., Feber, R.E., Fuller, R.J., 2009. Arable field margins managed for biodiversity
21	conservation: A review of food resource provision for farmland birds. Agric. Ecosyst.
22	Environ.133, 1–13.
23	Whittingham, M.J., Krebs, J.R., Swetnam, R.D., Vickery, J.A., Wilson, J.D., Freckleton, R.P.,
24	2007. Should conservation strategies consider spatial generality? Farmland birds show
25	regional not national patterns of habitat association. Ecol. Lett. 10, 25-35.
26	Worthen, W.B., 1996. Community composition and nested- subset analyses: basic descriptors
27	for community ecology. Oikos 76, 417–426.
28	
29	

- 1 Table 1. Total species numbers and abundances of a wide range of taxa (plant, herbivore,
- 2 pollinator, predator) from extensively and intensively grazed areas of three grassland types of
- 3 Hungary.
- 4

Taxon	Species number	er	Abundance ¹			
	Extensive	Intensive	Extensive	Intensive		
Plant	266	256	1709	1626		
Leafhopper	79	69	11968	15299		
True bug	116	104	4250	2425		
Orthopteran	37	38	1868	1441		
Leaf-beetle	76	64	1882	2321		
Weevil	100	97	762	737		
Bee	93	85	238	245		
Carabid	77	75	1154	1636		
Spider	79	73	2874	2783		
Bird	35	36	463	285		

5 ¹ abundance is given as number of individuals, except for plants, where the % coverage of all

6 species was summed, and birds, where number of territories is given

7

Table 2. The effect of grazing intensity (Management), grassland type (Region) and their interaction on species richness (alpha diversity), beta diversity and abundance of ten taxa in Hungary based on linear mixed models.

Taxon Ma		agement Region		Management x Region			
Species number F value		P	F value	P	F value	Р	
Plant	1.056	0.318	22.346	<.001	1.724	0.207	
Leafhopper	3.208	0.090	16.694	<.001	3.766	0.043	
True bug	0.256	0.619	5.256	0.016	0.046	0.955	
Orthopteran	0.302	0.589	6.747	0.007	1.172	0.332	
Leaf-beetle	5.333	0.033 E>I	0.731	0.495	5.226	0.016	
Weevil	0.001	0.973	2.403	0.119	0.189	0.830	
Bee	0.200	0.660	0.920	0.417	0.278	0.760	
Carabid	0.804	0.382	2.099	0.152	2.243	0.135	
Spider	0.665	0.426	0.698	0.510	0.322	0.729	
Bird	0.143	0.710	0.652	0.533	0.847	0.445	
0 dimension							
β_{within} diversity		0.272	51 171	< 001	4 1 1 1	0.024	
Plant Loofborner	0.834	0.373	51.171	<.001	4.111	0.034 0.041	
Leafhopper True bug	2.130 11.810	0.162 0.003 E<i< b=""></i<>	17.860 11.529	<.001 <.006	3.843 3.339	0.058	
-	0.257	0.618	27.530	<.000 <.001	5.310		
Orthopteran Leaf-beetle	0.237 21.821	0.018 <.001 E>I	15.865	<.001 <.001	41.209	0.015 <.001	
Weevil	0.867	<.001 E>1 0.364	47.971	<.001 <.001	41.209 39.444	<.001 <.001	
				<.001 0.001	39.444 18.657		
Bee Carabid	0.574 9.589	0.459 0.006 E<i< b=""></i<>	10.917 3.827	0.001	4.614	<.001 0.024	
	9.389 0.665	0.000 E<1 0.426	13.120		2.777	0.024	
Spider Bird	0.003 12.647			<.000	13.952		
DIIU	12.047	0.002 E <i< td=""><td>11.152</td><td>0.001</td><td>13.932</td><td><.001</td></i<>	11.152	0.001	13.932	<.001	
Abundance							
Plant	6.576	0.020 E>I	5.398	0.015	2.301	0.129	
Leafhopper	1.371	0.257	9.831	0.001	0.941	0.409	
True bug	0.748	0.399	1.520	0.246	0.075	0.928	
Orthopteran	7.589	0.013 E>I	24.133	<.001	5.581	0.013	
Leaf-beetle	1.210	0.286	0.495	0.618	0.926	0.414	
Weevil	0.008	0.932	0.891	0.428	0.715	0.503	
Bee	0.016	0.900	1.221	0.318	0.118	0.890	
Carabid	5.831	0.027 E <i< td=""><td>0.753</td><td>0.485</td><td>1.921</td><td>0.175</td></i<>	0.753	0.485	1.921	0.175	
Spider	0.107	0.747	4.706	0.023	0.575	0.573	
Bird	29.635	<.001 E>I	2.259	0.133	0.254	0.779	

*: P<0.05; **: P<0.01; ***: P<0.001; E: extensive fields, I: intensive fields. P values in bold

are significant.

	Management			Region		
	Variation			Variation	pseudo-	
	(%)	pseudo-F	Р	(%)	F	Р
Plant	2.37	1.196	0.246	22.45	5.672	<0.001
Leafhopper	3.39	1.775	0.018	23.95	6.264	<0.001
True bug	2.69	1.227	0.145	13.94	3.176	<0.001
Orthopteran	2.63	1.308	0.183	20.93	5.202	<0.001
Leaf-beetle	3.21	1.517	0.026	16.46	3.893	<0.001
Weevil	2.31	1.053	0.313	14.25	3.245	<0.001
Bee	2.72	1.166	0.158	8.55	1.831	<0.001
Carabid	3.12	1.458	0.048	15.57	3.638	<0.001
Spider	2.94	1.388	0.049	16.56	3.908	<0.001
Bird	3.52	1.729	0.036	19.02	4.666	<0.001

Table 3. Redundancy analysis (RDA) of community composition according to management (extensive *versus* intensive grazing) and region (three region/grassland types) of a wide range of taxa in Hungarian grasslands.

P values in bold are significant.

Fig. 1. Total species richness of plants, bees, orthopterans, spiders and birds on paired fields of extensively and intensively managed fields in Hungary, and in 5 west European countries (Germany, Netherlands, Spain, Switzerland, United Kingdom). AE means field with AES agreement (corresponds to the extensive grazing in Hungary), while C means conventionally managed fields (corresponds to intensive grazing in Hungary). Data are from Kleijn et al. (2006) and this study.

Fig. 2. Diversity partitioning of ten taxa from Hungarian semi-natural grasslands in order of decreasing α diversity. α is the mean species richness per field; β_{within} is the mean diversity within treatment (management and region); $\beta_{between}$ is the between diversity among management and regions.

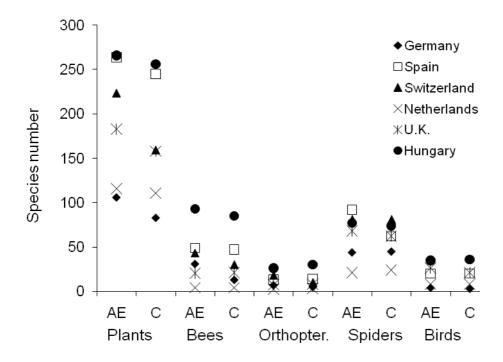
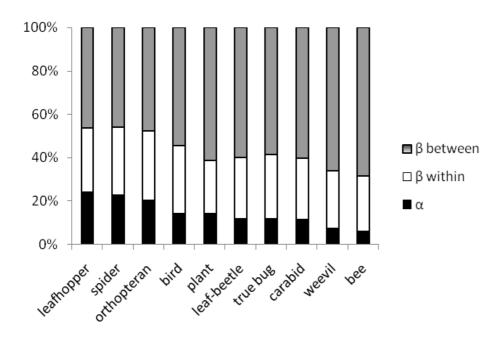
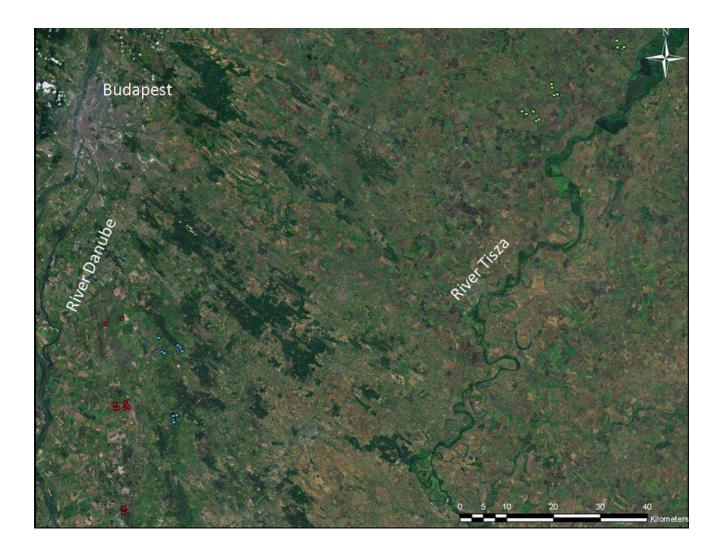
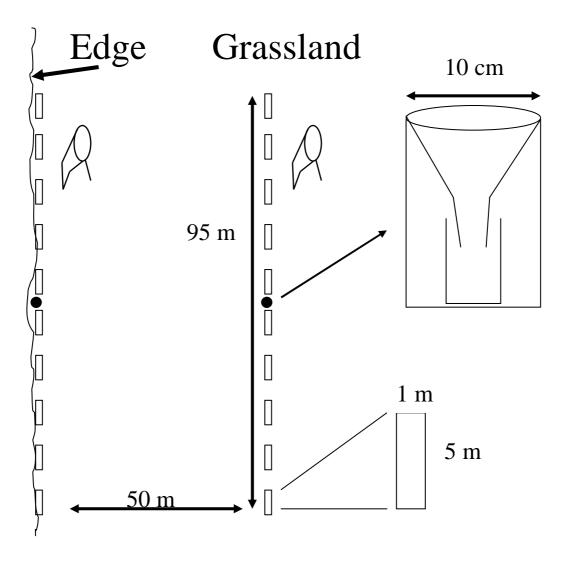
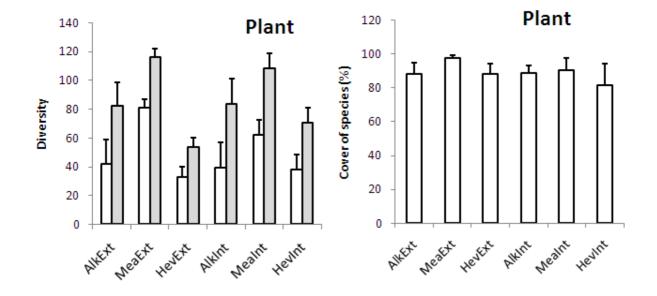


Fig. 1. Total species richness of plants, bees, orthopterans, spiders and birds on paired fields of extensively and intensively managed fields in Hungary, and in 5 west European countries (Germany, Netherlands, Spain, Switzerland, United Kingdom). AE means field with AES agreement (corresponds to the extensive grazing in Hungary), while C means conventionally managed fields (corresponds to intensive grazing in Hungary). Data are from Kleijn et al. (2006) and this study.


Fig. 2. Diversity partitioning of ten taxa from Hungarian semi-natural grasslands in order of decreasing α diversity. α is the mean species richness per field; β_{within} is the mean diversity within treatment (management and region); $\beta_{between}$ is the between diversity among management and regions.

Appendix A. Supplementary data (Fig. A1, A2 and A3) to the paper: Effects of grazing and biogeographic regions on grassland biodiversity in Hungary – analysing assemblages of 1200 species


Fig. A1. Location of the sample areas. Each dot represents a study field (red: Alkali region, blue: Meadow region, green: Heves region).

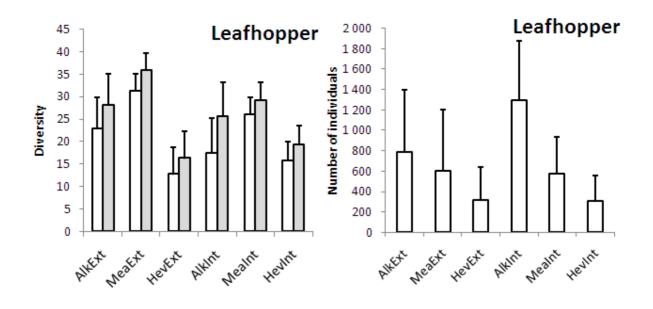


Fig. A2. Scheme of a site to sample plants and arthropods in Hungarian grasslands. The sampling included botanical plots, pitfall traps and sweep-netting. Sweep-netting was done on 95 m transects along the plots. We censused birds on 12.5 ha area (not shown), which included the sample site.

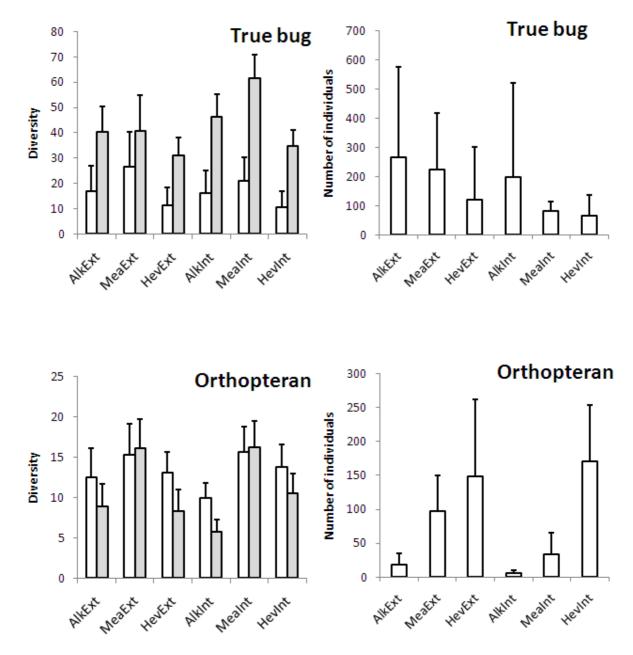


Fig. A3. Species richness (α diversity: white bars; and β_{within} diversity: grey bars) on the left figures, and abundance (percent coverage for plants, number of territories for birds, and number of individuals for all other taxa) on the right figures for ten taxa with SD. Data from Hungarian grasslands. AlkExt: extensively grazed grasslands in the Alkali region, MeaExt: extensively grazed grasslands in the Meadow region, HevExt: extensively grazed grasslands in the three region. AlkInt, MeaInt and HevInt are intensively grazed grasslands in the three regions.

